Volume 59, pp. 89-98, 2023.
A note on “Error bounds of Gaussian quadrature formulae with Legendre weight function for analytic integrands” by M. M. Spalević et al.
Aleksandar V. Pejčev
Abstract
In paper D. Lj. Đjukić, R. M. Mutavdžić Đjukić, A. V. Pejčev, and M. M. Spalević, Error estimates of Gaussian-type quadrature formulae for analytic functions on ellipses – a survey of recent results, Electron. Trans. Numer. Anal., 53 (2020), pp. 352–382, Lemma 4.1 can be applied to show the asymptotic behaviour of the modulus of the complex kernel in the remainder term of all the quadrature formulas in the recent papers that are concerned with error estimates of Gaussian-type quadrature formulae for analytic functions on ellipses. However, in the paper D. R. Jandrlić, Dj. M. Krtinić, Lj. V. Mihić, A. V. Pejčev, M. M. Spalević, Error bounds of Gaussian quadrature formulae with Legendre weight function for analytic integrands, Electron. Trans. Anal. 55 (2022), pp. 424–437, which this note is concerned with, there is a kernel whose numerator contains an infinite series, and in this case the mentioned lemma cannot be applied. This note shows that the modulus of the latter kernel attains its maximum as conjectured in the latter paper.
Full Text (PDF) [270 KB], BibTeX
Key words
error bound, quadrature formula, Legendre weight function
AMS subject classifications
65D32, 65D30, 41A55
Links to the cited ETNA articles
[2] | Vol. 53 (2020), pp. 352-382 D. Lj. Djukić, R. M. Mutavdžić Djukić, A. V. Pejčev, and M. M. Spalević: Error estimates of Gaussian-type quadrature formulae for analytic functions on ellipses-a survey of recent results |
[7] | Vol. 55 (2022), pp. 424-437 D. R. Jandrlić, D. M. Krtinić, Lj. V. Mihić, A. V. Pejčev, and M. M. Spalević: Error bounds for Gaussian quadrature formulae with Legendre weight function for analytic integrands |
ETNA articles which cite this article
Vol. 61 (2024), pp. 121-136 Carlos F. Borges and Lothar Reichel: Computation of Gauss-type quadrature rules |
< Back