Volume 50, pp. 20-35, 2018.
Error bounds for Kronrod extension of generalizations of Micchelli-Rivlin quadrature formula for analytic functions
Rada M. Mutavdžić, Aleksandar V. Pejčev, and Miodrag M. Spalević
Abstract
We consider the Kronrod extension of generalizations
of the Micchelli-Rivlin quadrature formula for the Fourier-Chebyshev
coefficients with the highest
algebraic degree of precision. For analytic functions, the remainder term of these
quadrature formulas can be represented as a contour integral with a
complex kernel. We study the kernel on elliptic contours with foci
at the points
Full Text (PDF) [322 KB], BibTeX , DOI: 10.1553/etna_vol50s20
Key words
Kronrod extension of generalizations of the Micchelli-Rivlin quadrature formula, Chebyshev weight function of the first kind, error bound, remainder term for analytic functions, contour integral representation
AMS subject classifications
65D32, 65D30, 41A55
Links to the cited ETNA articles
[12] | Vol. 45 (2016), pp. 371-404 Sotirios E. Notaris: Gauss-Kronrod quadrature formulae - A survey of fifty years of research |
ETNA articles which cite this article
Vol. 53 (2020), pp. 352-382 D. Lj. Djukić, R. M. Mutavdžić Djukić, A. V. Pejčev, and M. M. Spalević: Error estimates of Gaussian-type quadrature formulae for analytic functions on ellipses-a survey of recent results |