Volume 46, pp. 273-336, 2017.
A unified framework for adaptive BDDC
Clemens Pechstein and Clark R. Dohrmann
Abstract
In this theoretical study, we explore how to automate the selection of weights and primal constraints in BDDC methods for general SPD problems. In particular, we address the three-dimensional case and non-diagonal weight matrices such as the deluxe scaling. We provide an overview of existing approaches, show connections between them, and present new theoretical results: A localization of the global BDDC estimate leads to a reliable condition number bound and to a local generalized eigenproblem on each glob, i.e., each subdomain face, edge, and possibly vertex. We discuss how the eigenvectors corresponding to the smallest eigenvalues can be turned into generalized primal constraints. These can be either treated as they are or (which is much simpler to implement) be enforced by (possibly stronger) classical primal constraints. We show that the second option is the better one. Furthermore, we discuss equivalent versions of the face and edge eigenproblem which match with previous works and show an optimality property of the deluxe scaling. Lastly, we give a localized algorithm which guarantees the definiteness of the matrix $\widetilde S$ underlying the BDDC preconditioner under mild assumptions on the subdomain matrices.
Full Text (PDF) [727 KB], BibTeX
Key words
preconditioning, domain decomposition, iterative substructuring, BDDC, FETI-DP, primal constraints, adaptive coarse space, deluxe scaling, generalized eigenvalue problems, parallel sum
AMS subject classifications
65F08, 65N30, 65N35, 65N55
Links to the cited ETNA articles
[15] | Vol. 45 (2016), pp. 524-544 Juan G. Calvo and Olof B. Widlund: An adaptive choice of primal constraints for BDDC domain decomposition algorithms |
[54] | Vol. 45 (2016), pp. 75-106 Axel Klawonn, Patrick Radtke, and Oliver Rheinbach: A comparison of adaptive coarse spaces for iterative substructuring in two dimensions |
[117] | Vol. 26 (2007), pp. 146-160 Xuemin Tu: A BDDC algorithm for flow in porous media with a hybrid finite element discretization |
ETNA articles which cite this article
Vol. 49 (2018), pp. 1-27 Axel Klawonn, Martin Kühn, and Oliver Rheinbach: Adaptive FETI-DP and BDDC methods with a generalized transformation of basis for heterogeneous problems |
Vol. 49 (2018), pp. 28-40 Leszek Marcinkowski and Talal Rahman: Additive average Schwarz with adaptive coarse spaces: scalable algorithms for multiscale problems |
Vol. 49 (2018), pp. 64-80 Hyea Hyun Kim, Eric Chung, and Junxian Wang: BDDC and FETI-DP algorithms with a change of basis formulation on adaptive primal constraints |
Vol. 48 (2018), pp. 156-182 Alexander Heinlein, Axel Klawonn, Jascha Knepper, and Oliver Rheinbach: Multiscale coarse spaces for overlapping Schwarz methods based on the ACMS space in 2D |
Vol. 52 (2020), pp. 43-76 Axel Klawonn, Martin Kühn, and Oliver Rheinbach: Coarse spaces for FETI-DP and BDDC Methods for heterogeneous problems: connections of deflation and a generalized transformation-of-basis approach |
Vol. 53 (2020), pp. 562-591 Alexander Heinlein, Axel Klawonn, Martin Lanser, and Janine Weber: A frugal FETI-DP and BDDC coarse space for heterogeneous problems |
Vol. 58 (2023), pp. 66-83 Yanru Su, Xuemin Tu, and Yingxiang Xu: Robust BDDC algorithms for finite volume element methods |
Vol. 60 (2024), pp. 169-196 Loïc Gouarin and Nicole Spillane: Fully algebraic domain decomposition preconditioners with adaptive spectral bounds |
< Back