Volume 40, pp. 407-413, 2013.
On computing stabilizability radii of linear time-invariant continuous systems
D. C. Khanh, H. T. Quyen, and D. D. X. Thanh
Abstract
In this paper we focus on a non-convex and non-smooth singular value optimization problem. Our framework encompasses the distance to stabilizability of a linear system $(A,B)$ when both $A$ and $B$ or only one of them are perturbed. We propose a trisection algorithm for the numerical solution of the singular value optimization problem. This method requires $O(n^4)$ operations on average, where $n$ is the order of the system. Numerical experiments indicate that the method is reliable in practice.
Full Text (PDF) [99 KB], BibTeX
Key words
stabilizability radius, optimization, trisection algorithm, linear time-invariant continuous system
AMS subject classifications
65F15, 93D15, 65K10
< Back