SOBOLEV ORTHOGONAL POLYNOMIALS: INTERPOLATION AND APPROXIMATION *

ESTHER M. GARCíA-CABALLERO ${ }^{\dagger}$, TERESA E. PÉREZ ${ }^{\ddagger}$, AND MIGUEL A. PIÑAR ${ }^{\dagger}$

Abstract. In this paper, we study orthogonal polynomials with respect to the bilinear form

$$
(f, g)_{S}=\left(f\left(c_{0}\right), f\left(c_{1}\right), \ldots, f\left(c_{N-1}\right)\right) \mathbf{A}\left(\begin{array}{c}
g\left(c_{0}\right) \\
g\left(c_{1}\right) \\
\vdots \\
g\left(c_{N-1}\right)
\end{array}\right)+\left\langle u, f^{(N)} g^{(N)}\right\rangle
$$

where u is a quasi-definite (or regular) linear functional on the linear space \mathbb{P} of real polynomials, $c_{0}, c_{1}, \ldots, c_{N-1}$ are distinct real numbers, N is a positive integer number, and \mathbf{A} is a real $N \times N$ matrix such that each of its principal submatrices are nonsingular. We show a connection between these non-standard orthogonal polynomials and some standard problems in the theory of interpolation and approximation.

Key words. Sobolev orthogonal polynomials, classical orthogonal polynomials, interpolation, approximation.

AMS subject classifications. 33C45, 42C05.

[^0]
[^0]: *Received November 1, 1998. Accepted for publicaton December 1, 1999. Recommended by F. Marcellán.
 ${ }^{\dagger}$ Departamento de Matemáticas, Universidad de Jaén, Jaén, Spain (emgarcia@ujaen.es). Supported by Junta de Andalucía, G. I. FQM 0178.
 \ddagger Departamento de Matemática Aplicada, Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain (tperez@goliat.ugr.es, mpinar@goliat.ugr.es). Supported by Junta de Andalucía, G. I. FQM 0229, DGES PB 95-1205 and INTAS-93-0219-ext.

