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GLOBAL AND QUADRATIC CONVERGENCE OF THE BLOCK JACOBI METHOD
FOR HERMITIAN MATRICES UNDER THE DE RIJK PIVOT STRATEGY∗

VJERAN HARI†

Abstract. This paper provides a proof of global and quadratic convergence of the block Jacobi method for
Hermitian matrices under the de Rijk pivot strategy. Also global and quadratic convergence of the element-wise
Jacobi method under the same pivot strategy is proved. It is shown that sharp quadratic convergence bounds can be
deduced from an estimate that is obtained in the global convergence proof. Numerical tests illustrate the behavior of
the methods under the de Rijk pivot strategy.
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1. Introduction. In this paper we consider the element-wise and block Jacobi method for
solving the eigenvalue problem of Hermitian matrices under a special ”row-cyclic-like” pivot
strategy named after de Rijk. Although this pivot strategy was first mentioned by Hestenes [37],
its first proper consideration and practical usage was made by P. P. M. de Rijk. In [7], de Rijk
used it for solving the singular value decomposition (SVD) problem with the one-sided Jacobi
method. He used the one-sided method for its “properties of parallelism and vectorizability”.

In the meantime, the Jacobi method has evolved, and today various versions, upgrades,
modifications, and generalizations are used to solve different eigenvalue problems. The
standard Jacobi method for real symmetric or complex Hermitian matrices has become
reliable [55], efficient [10, 11, 13, 14], highly accurate [6, 8, 44, 47, 49], and a commonly used
method. It has an inherent parallelism [15], and it can easily be modified to work with blocks
instead of elements. The modifications that work with blocks are referred to as block Jacobi
methods. Their code makes use of the BLAS3 routines. In this way the methods better exploit
the memory hierarchy system of contemporary computers. The one-sided block method is
even more efficient and accurate. The standard and block Jacobi methods are best known for
their high relative accuracy when applied to a positive definite symmetric matrix.

The standard (element-wise or simple) Jacobi method for Hermitian or real symmetric
matrices has been studied theoretically for more than 65 years. In particular, its global
convergence has been proved for many different pivot strategies [16, 17, 18, 23, 31, 36, 38, 41,
42, 43, 48, 54, 56, 58, 60], and what is missing today is a global convergence proof under a
general cyclic strategy and under the de Rijk pivot strategy. Its quadratic convergence behavior
is well understood and is solved for the cyclic strategies [19, 22, 57, 61], but a proof has been
missing for the de Rijk strategy.

As for the block Jacobi method, global convergence has been proved for the classical [63],
serial [4, 12], and generalized serial pivot strategy [3, 30]. Quadratic convergence has been
proved for the classical pivot strategy [52]. Recently, a new pivot strategy has been intro-
duced by the name dynamic ordering. This dynamic pivot strategy in a way generalizes and
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Croatia (hari@math.hr), ORCID: 0000-0001-7283-0458.

This work is published by ETNA and licensed under the Creative Commons license CC BY 4.0.

83

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://creativecommons.org/licenses/by/4.0/
http://doi.org/10.1553/etna_vol63s83
https://orcid.org/0000-0001-7283-0458
https://creativecommons.org/licenses/by/4.0/


ETNA
Kent State University and

Johann Radon Institute (RICAM)

84 V. HARI

parallelizes the classical pivot strategy [1, 2]. Under this strategy, global [64] and quadratic
convergence [51] of the Hermitian Jacobi method has been proved. Again, global and quadratic
convergence of the block method has not been considered for the de Rijk strategy.

It is known that the simple serial Jacobi method needs less cycles if the diagonal elements
are occasionally ordered into the non-increasing ordering. This reordering of the diagonal
elements can be done, say, after each cycle or after each step. However, if the columns of
the pivot submatrix of the transformation matrix are occasionally swapped, then we lose a
condition that is needed in the global convergence proof. The de Rijk pivot strategy uses
the row-cyclic strategy, but before it operates along the rth row, it finds the largest among
the diagonal elements hrr, hr+1,r+1, . . . ,hnn and brings it to the position (r, r). In this
way, during n − r steps, when the annihilation of the off-diagonal elements in the rth row
takes place, the diagonal element hrr remains the largest diagonal element in the lower-right
principal submatrix of order n− r + 1. This makes the angles in the rotation matrices smaller
and makes the whole process more stable. This is done for each row, and after a few cycles,
all diagonal elements become non-increasingly ordered and remain such until convergence.

What this pivot strategy does within one cycle of the process resembles the pattern of
swapping the diagonal elements in the Cholesky factorization method with diagonal pivoting. If
the one-sided Jacobi method is used, then one cycle under the de Rijk pivot strategy resembles
the QR factorization with column pivoting and the Modified Gram-Schmidt procedure [9,
Chapter 6]. Simply said, the de Rijk pivot strategy gradually orders the diagonal elements into
the non-increasing ordering. Reducing the number of sweeps means reducing the total number
of steps, and this contributes to the accuracy and efficiency of the method. This pivot strategy
has proved to be efficient even for the complex HZ methods, which solves the generalized
eigenvalue problem [26, Section 3.3]. The de Rijk pivot strategy can be efficiently employed
in the core (or kernel) algorithm that is used in the block Jacobi method.

In this paper we first generalize the de Rijk pivot strategy to work with the block Jacobi
method. Then we prove global and quadratic convergence of the complex block and simple
Jacobi method for Hermitian matrices under that pivot strategy. The proofs also hold for the
real (block and simple) Jacobi method. The estimates obtained in the global convergence
proof are so sharp that we use them to prove asymptotic quadratic convergence with bounds
that are equal to the sharpest bounds for the row-cyclic method.

The paper is organized as follows. In Section 2 we define the block Kogbetliantz method
and the block Jacobi method for Hermitian matrices. We also describe the de Rijk pivot
strategy for the simple methods and define it for the block methods. This can be done in
essentially two ways: one that changes the block-matrix partition during the process and
another one that leaves it intact. In Section 3 we gather some known facts that are later used
in the global convergence proofs. They are here presented in condensed form, although they
come from different research problems. In Section 4 we consider the block Jacobi method for
Hermitian matrices under the de Rijk pivot strategy. In particular, we prove an estimate for
the off-norm reduction during one cycle of the method. In Section 5 the obtained estimate is
used to prove global and quadratic convergence of the block and simple Jacobi method under
the de Rijk pivot strategy. In Section 6 we briefly discuss why the de Rijk pivot strategy is
not the best option for the Kogbetliantz method. Finally, in Section 7 we describe how we
have tested the simple and block Jacobi method under the de Rijk pivot strategy in MATLAB.
The numerical tests confirm the presented theory. In Section 8 we give the conclusion of our
theoretical and numerical investigation.
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2. The block Jacobi methods and the de Rijk pivot strategy. Let A be a real or
complex matrix of order n. Let

A =


A11 A12 · · · A1m

A21 A22 · · · A1m

...
...

. . .
...

Am1 Am2 · · · Amm


n1
n2
...
nm

, Art ∈ Cnr×nt , 1 ≤ r < t ≤ m,

(2.1)

n1 n2 · · · nm

be a block-matrix partition of A, where the diagonal blocks Arr, 1 ≤ r ≤ m, are square. The
block-matrix partition (2.1) of A is determined by the partition πn,m = (n1, . . . , nm) of n,
where nr ≥ 1, for all 1 ≤ r ≤ m, and n1 + · · ·+ nm = n. We will consider n and m to be
constant and mostly use the notation π instead of πn,m.

Let us consider the block Jacobi process,

(2.2) A(k+1) = [U(k)]∗A(k)V(k), k ≥ 1, A(1) = A,

with unitary matrices U(k), V(k), k ≥ 1. In the relation (2.2), X∗ denotes the Hermitian
transpose of X . The matrices U(k) = (U

(k)
rt ) and V(k) = (V

(k)
rt ) carry the same block-matrix

partition as A and differ from the identity matrix In in one principal submatrix of order
ni(k) + nj(k). These principal submatrices are denoted by Û(k) and V̂(k) and are called
pivot submatrices of U(k) and V(k), respectively. They are located at the intersection of the
block-rows and block-columns i(k), j(k) of U(k) and V(k),

(2.3) Û(k) =

[
U

(k)
i(k)i(k) U

(k)
i(k)j(k)

U
(k)
j(k)i(k) U

(k)
j(k)j(k)

]
, V̂(k) =

[
V

(k)
i(k)i(k) V

(k)
i(k)j(k)

V
(k)
j(k)i(k) V

(k)
j(k)j(k)

]
, k ≥ 1.

We will write U(k) = E(i(k), j(k); Û(k)), where E = Eπ is the mapping that constructs
the n × n matrix U(k) from the input data i(k), j(k) and Û(k). Using E we have that
V(k) = E(i(k), j(k); V̂(k)). The pivot indices i and j are functions of k. When k is known,
we omit it and write i, j instead of i(k), j(k), respectively. Say, when k is clear from the
context or when we focus on position (i, j) in the matrix, we will write U

(k)
ij instead of

U
(k)
i(k)j(k). We call the matrices U(k), V(k) unitary elementary block matrices.

The same notation is used for the pivot submatrix Â(k) of A(k). The matrices A(k)
ij and

A
(k)
ji will be called pivot blocks of A(k). In step k we construct the pivot submatrices Û(k)

and V̂(k) from the pivot submatrix Â(k).
In the special case when π = (1, 1, . . . , 1), the prefix block is omitted, and we speak of

the element-wise or simple Jacobi method.

2.1. The block and simple Kogbetliantz methods. A typical task of Û(k) and V̂(k) is
to diagonalize Â(k):

(2.4) [Û(k)]∗

[
A

(k)
i(k)i(k) A

(k)
i(k)j(k)

A
(k)
j(k)i(k) A

(k)
j(k)j(k)

]
V̂(k) =

[
A

(k+1)
i(k)i(k) 0

0 A
(k+1)
j(k)j(k)

]
,

where A(k+1)
i(k)i(k) and A(k+1)

j(k)j(k) are diagonal matrices. This choice of U(k) and V(k) is leading
us to the block Kogbetliantz method [4]. It is used to compute the singular value decomposition
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of the initial matrix A. Hence, it is natural to require that (2.4) is the SVD of Â(k). In that
case the diagonal matrix on the right-hand side of (2.4) has non-negative diagonal elements
ordered non-increasingly.

For the block Kogbetliantz method, it is a good idea to diagonalize the diagonal blocks
Arr, 1 ≤ r ≤ m, from (2.1) before the iteration process begins (see [24]). This procedure can
be described by the relation

(2.5) A(1) = [U(0)]∗AV(0),

where U(0) and V(0) are appropriate block-diagonal unitary matrices. More precisely, the
relation (2.5) describes m consecutive SVDs of the diagonal blocks Arr, 1 ≤ r ≤ m. The
relations (2.5) and (2.4) imply that all diagonal blocks A(k)

rr , 1 ≤ r ≤ m, k ≥ 1, remain to
be diagonal and that their non-negative diagonal elements are ordered non-increasingly. In
particular, it means that in each pivot submatrix, almost half of the off-diagonal elements are
zero. This can be used to simplify and accelerate the diagonalization of the pivot submatrices
Â(k), k ≥ 1.

As mentioned above, if n1 = · · · = nm = 1, then we speak of the original, element-wise,
or simple Kogbetliantz method. For the simple Kogbetliantz method, the starting matrix A(1)

is typically obtained by the transformation

(2.6) A(1) = D(0)A or A(1) = AD(0),

where D(0) is the diagonal matrix of unit complex numbers that makes the diagonal of A(1)

nonnegative. If A is real, then D(0) is a diagonal orthogonal matrix. The block and simple
Kogbetliantz methods can be combined in such a way that the simple method is used to
diagonalize the pivot submatrix of the block method in each step.

As it is well-known, one can apply the QR factorization to A and start the iterative process
with a triangular A. If the original matrix A was not square, then this would be a standard
procedure. A triangular A is well suited for the simple and block Kogbetliantz method if
the pivot strategy is row- or column-cyclic. Then the triangular form is in a way preserved,
and it significantly reduces the computational cost. Furthermore, the quadratic asymptotic
convergence of the simple Kogbetliantz method can be proved even in the presence of multiple
singular values [4, 22]. In addition, the simple Kogbetliantz method computes the singular
values to high relative accuracy provided that A can be symmetrically scaled by a diagonal
matrix in such a way that the spectral condition number of the scaled matrix is small [45].
Gobal and quadratic convergence of the block Kogbetliantz method has been proven in [4] for
the case of simple singular values.

If A is real, then U(k), V(k), A(k), k ≥ 0, are real, and we speak of the real block and
simple Kogbetliantz method.

2.2. A special block iterative process. Here we introduce a block iterative process that
will be used in the convergence analysis.

Consider the linear operatorN `r, whose domain is the vector space of complex (or real)
square matrices of order n. Let X be a square matrix of order n, and let X = (Xst) denote
its block-matrix partition defined by π. ThenN `r(X) sets the blocks X`r, Xr`, X``, Xrr to
zero and leaves other blocks intact. We see thatN `r depends on the partition π of n.

Let A(1) = (A
(1)
st ) be a complex square matrix of order n, partitioned in accordance to π.

Consider the sequence (A(k), k ≥ 1) obtained by the rule

A(k+1) = [U
(k)
i(k)j(k)]

∗N i(k)j(k)(A
(k))V

(k)
i(k)j(k)

=N i(k)j(k)

(
[U

(k)
i(k)j(k)]

∗A(k)V
(k)
i(k)j(k)

)
, k ≥ 1,(2.7)
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where U
(k)
i(k)j(k) = E(i(k), j(k); Û(k)), V

(k)
i(k)j(k) = E(i(k), j(k); V̂(k)), and Û(k), V̂(k) are

arbitrary unitary matrices of order ni(k) + nj(k).
For this process we have

(2.8) off2(A(k+1)) = off2(A(k))− off2(Â(k)), k ≥ 1,

where

(2.9) off(X) = ‖Ω(X)‖F , Ω(X) = X− diag(X).

Here X is any square matrix of order n, diag(X) is the diagonal part of X, and ‖ · ‖F is
the Frobenius norm. The quantity off(X) is called the off-norm or the departure from the
diagonal form of X. We use notation off2(X) instead of [off(X)]2.

Another useful measure is Off(X). It is defined by

(2.10) Off(X) = ‖Ω(X)‖F , Ω(X) = X− diag(X11, . . . , Xmm),

and it can be called the block off-norm or the departure from the block-diagonal form of X.
For the process (2.7) we have

Off2(A(k+1)) = Off2(A(k))−Off2(Â(k))

= Off2(A(k))−
(
‖A(k)

ij ‖
2
F + ‖A(k)

ji ‖
2
F

)
, k ≥ 1.

(2.11)

Note that the block matrix Â is defined by the partition (ni(k), nj(k)) of ni(k) + nj(k). The
iterative process (2.7) is more general then the block Kogbetliantz method because Û(k), V̂(k)

are arbitrary unitary matrices for every k ≥ 1. The relation (2.8) holds also for the simple and
block Kogbetliantz method, and (2.11) holds for the block Kogbetliantz method.

2.3. The associated sequences (Ȧ(k), k ≥ 1) and (
•

A(k), k ≥ 1). Let us return to
the block Kogbetliantz method. It generates the sequence of matrices (A(k), k ≥ 1) by the
rule (2.2), with (2.5) as the initial transformation. Let

(2.12) Ȧ(k) = Ω(A(k)),
•

A(k) = Ω(A(k)), k ≥ 1.

Since the diagonal blocks of A(k) are diagonal, we have Ȧ(k) =
•

A(k), i.e., Ȧ(k) is both the
off-diagonal and the block-off-diagonal part of A(k).

With the sequence of matrices (A(k), k ≥ 1) generated by the block Kogbetliantz

method, we associate the sequences (Ȧ(k), k ≥ 1) and (
•

A(k), k ≥ 1), and we briefly call
them the associated sequences.

The associated sequences can be obtained from Ȧ(1) = Ω(A(1)) =
•

A(1) by the rule (2.7)
provided that we have at disposal the transformation matrices U(k), V(k), k ≥ 1, which are
obtained by applying the block Kogbetliantz method to A(1). This procedure can be coded
efficiently if we keep a vector of length n that holds the diagonal of the matrices A(k), k ≥ 1,
generated by the block Kogbetliantz method.

In the case of the simple Kogbetliantz method, we have only one associated sequence,
that is, (Ȧ(k), k ≥ 1), defined by the relation (2.12).
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2.4. Block and simple Jacobi methods for Hermitian matrices. If H is Hermitian and
we are solving the eigenvalue problem for H, then the Hermitian property of the initial matrix
has to be preserved during the process. This leads us to the block and simple Jacobi method
for Hermitian matrices. Now, we have V

(k)
i(k)j(k) = U

(k)
i(k)j(k), k ≥ 0, and the relation (2.2)

can be written as

H(k+1) = [U(k)]∗H(k)U(k), k ≥ 0,

where H(0) = H, H(1) is the Hermitian matrix whose diagonal blocks are diagonal and U(0)

is a block-diagonal unitary matrix. The relation (2.4) is the eigenvalue decomposition of the
pivot submatrix Ĥ(k).

The relations (2.7) and (2.8) are both valid, and the matrices Ḣ(k), k ≥ 1, are Hermitian

with zero diagonal blocks. Therefore, we have Ḣ(k) =
•

H(k), k ≥ 1.
If H is real and symmetric, then the generated matrices H(k), k ≥ 0, are real and

symmetric, while U(k), k ≥ 0, are orthogonal.

2.5. Pivot strategies. Here we define what a pivot strategy for the block methods is, and
then we consider a special one, the de Rijk pivot strategy.

The selection of pivot pairs is defined by a pivot strategy. A pivot strategy can be identified
with a function I : N → Pm, where

N = {1, 2, . . .}, Pm = {(r, t); 1 ≤ r < t ≤ m}.

Here, Pm contains pairs of indices which address the blocks in the upper block-triangle
of the matrix A. It contains M = m(m − 1)/2 pairs. For a given m with 3 ≤ m ≤ n,
the function I can be defined in many ways. If I is periodic, then I is called periodic
pivot strategy. Let I be a periodic pivot strategy with the basic period P . If P = M and
{I(k) : k = 1, . . . , P} = Pm, then I is called a cyclic strategy. Then the first cycle consists of
the first M steps of the method. More about pivot strategies can be found in [24, 41, 58] and
especially in [30, Section 3].

The most commonly used cyclic strategy is the well-known row-cyclic strategy. It is
defined by the row-wise ordering of the set Pm, i.e., by the sequence of pairs

(1, 2), (1, 3), . . . , (1,m), (2, 3), (2, 4), . . . , (2,m), (3, 4), . . . , (m− 1,m).

Using the row-cyclic process (2.2), for the matrix A(M+1) obtained at the end of the first
cycle, we have

A(M+1) = [U(1)U(2) · · ·U(M)]∗A(1)[V(1)V(2) · · ·V(M)]

= [U(1:m−1)U(m:2m−3) · · ·U(M)]∗A(1)[V(1:m−1)V(m:2m−3) · · ·V(M)]

= [U1,2:mU2,3:m · · ·Um−1,m]∗A(1)[V1,2:mV2,3:m · · ·Vm−1,m],

where

U(r1:r2) = U(r1) · · ·U(r2), V(r1:r2) = V(r1) · · ·V(r2), 1 ≤ r1 ≤ r2 ≤ m,(2.13)
Ur,r+1:m = Ur,r+1 · · ·Urm, Vr,r+1:m = Vr,r+1 · · ·Vrm, 1 ≤ r ≤ m− 1.(2.14)

In the special case when r2 = r1, we have U(r1:r1) = U(r1), V(r1:r1) = V(r1). Contin-
uing the process, in the cycle t one simply adds (t − 1)M to the superscripts of the terms
in the above relations. We will also use the notation V

[t]
r,r+1:m, 1 ≤ r ≤ m − 1, where

V
[t]
r,r+1:m = V

[t]
r,r+1 · · ·V

[t]
rm. Here, the matrices V

[t]
rs belong to the cycle t of the method. A

similar notation is used for the left-hand transformations U
[t]
rs.
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2.5.1. The de Rijk pivot strategy. The de Rijk pivot strategy [7] is the row-cyclic
strategy which is “interrupted” at most m − 1 times within each cycle. It can be described
by considering one full cycle of the process (2.2), say, the first cycle. For the de Rijk (pivot)
strategy we use the notation that was introduced for the row-cyclic strategy. If we consider
just one cycle of the method, then we can simplify the notation by using just the subscripts or
superscripts.

We describe this strategy for the simple and block Kogbetliantz method. The definition
automatically extends to the simple and block Jacobi method for Hermitian matrices.

2.5.2. The simple and block Kogbetliantz methods under the de Rijk strategy. In [7]
this pivot strategy was used in the context of computing the SVD by the one-sided Jacobi
method. Here it is defined in the context of the Kogbetliantz method. If π = (1, . . . , 1), then
we have m = n and M = N , where

N =
n(n− 1)

2
.

We use the variables m and M in those relations that are valid for both the block and
simple Kogbetliantz method. In the relations that are specific for the simple method, we use n
and N instead of m and M , respectively.

The first cycle is described as follows:

(2.15) A(M+1) = A[1] = [U[1]]∗A(1)V[1],

where

U[1] = P1U
(1:m−1)P2U

(m:2m−3) · · ·Pm−2U
(m−2:m−1)Pm−1U

(M),

V[1] = P1V
(1:m−1)P2V

(m:2m−3) · · ·Pm−2V
(m−2:m−1)Pm−1V

(M),

or, using the notation (2.14),

U[1] = P1U1,2:mP2U2,3:m · · · Pm−2Um−2,m−1:mPm−1Um−1,m,(2.16)

V[1] = P1V1,2:mP2V2,3:m · · · Pm−2Vm−2,m−1:mPm−1Vm−1,m.(2.17)

Note that in each subsequent cycle, the permutation matrices can differ from those in the
previous cycle. Next, we consider separately the simple and the block method under that pivot
strategy.

2.5.3. The simple Kogbetliantz method under the de Rijk strategy. We consider the
case m = n and M = N . Let

(2.18) s` = 1 + 2 + · · · + ` =
`(`+ 1)

2
, 1 ≤ ` ≤ n− 1; s0 = 0.

Since sn−1 = N = 1 + 2 + · · ·+ n− 1, from (2.18) we obtain N − sn−1 = 0 and

N − s` = N − (1 + 2 + · · ·+ `) = n− 1 + (n− 2) + · · ·+ (`+ 1), 1 ≤ ` < n− 1,

and consequently we have

N − sn−r + 1 =

{
1, r = 1,

1 + (n− 1) + (n− 2) + · · ·+ (n− (r − 1)), 2 ≤ r ≤ n− 1.
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Note that in step k = N − sn−r + 1, the transformation A(k+1) = [PrU
(k)]∗A(k)[PrV

(k)]
takes place. Let us now define the permutation matrices. We have

(2.19) Pr = Irr′ , r′ ≥ r, 1 ≤ r ≤ n− 1,

where Irr′ is the transposition matrix and r′ is the smallest index such that

(2.20) a
(N−sn−r+1)
r′r′ = max

r≤`≤n
a
(N−sn−r+1)
`` , 1 ≤ r ≤ n− 1.

Thus, before the annihilation of the elements in the rth row and column begins, the rows and
columns r and r′ are swapped. The relations (2.20) and (2.19) imply that the permutational
transformation makes the (r, r)-element larger than or equal to the elements at positions (`, `),
` > r. If r′ = r, then we have Pr = In, and no swap occurs.

We see that the de Rijk strategy tries to order the diagonal elements into the non-increasing
ordering during the process.

2.5.4. The block Kogbetliantz method under the de Rijk strategy. In this case we
have m < n and M < N . We have to extend the de Rijk pivot strategy to be suitable for the
block method. We propose two solutions which we call the (pivot) strategies bdR1 and bdR2.

2.5.5. The bdR1 strategy. In the above relations P1,. . . ,Pm−1 are block transposition
matrices of order n which are used to swap the block-rows and block-columns r and r′. Let

(2.21) sr = n1 + · · ·+ nr, 1 ≤ r ≤ m; s0 = 0.

If r′ = r, then Pr = In. Otherwise, we have

(2.22) Pr =


Isr−1

Onrnr′ Inr
Isr′−1−sr

Inr′ Onr′nr
In−sr′

 , 1 ≤ r < r′ ≤ m,

where the zero diagonal blocksOnrnr′ andOnr′nr have the dimensions nr×nr′ and nr′×nr,
respectively. This means that Pr does not carry the same block-matrix partition as A. If in the
relation (2.22) r′ = r + 1, then the diagonal block Isr′−1−sr is omitted.

The subscript r′ is chosen to be the smallest one that satisfies

(2.23) a
(M−sm−r+1)
sr′−1+1,sr′−1+1 = max

r≤`≤m
a
(M−sm−r+1)
s`−1+1,s`−1+1, 1 ≤ r ≤ m− 1.

Note that for each r, 1 ≤ r ≤ m− 1, the position (sr−1 + 1, sr−1 + 1) is exactly where the
first diagonal element of the rth diagonal block lies. This first diagonal element is also the
largest diagonal element of the rth diagonal block. The superscript M − sm−r + 1 indicates
the stage of the block process just after the block at position (r − 1,m) has been zeroed. Note
that

M − sm−r + 1 =

{
1, r = 1,

1 + (m− 1) + (m− 2) + · · ·+ (m− (r − 1)), 2 ≤ r ≤ m− 1 .

The matrices Pk, 1 ≤ k ≤ m− 1, are such that the whole diagonal blocks of the current
matrix are swapped. Note that the similarity transformation with Pk also changes (permutes)
the current partition π that defines the block-matrix partition. Therefore, for computational
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reasons it is advantageous when all entries of π (except maybe the last one) are equal. We call
this pivot strategy block de Rijk strategy of the first kind or shorter the bdR1 strategy.

REMARK 2.1. Note that a(M−sm−r+1)
sr′−1+1,sr′−1+1 from the relation (2.23) equals the spectral

norm of A(M−sm−r+1)
r′r′ . Instead of using the spectral norm, one can use some other matrix

norm, say, the Frobenius norm of A(M−sm−r+1)
r′r′ , to select r′. All later convergence results

will hold equally well for both ways of selecting r′.

2.5.6. The bdR2 strategy. Alternatively, if we want to maintain the same block-matrix
partition in all A(k), then we can use the following definition of Pr,

(2.24) Pr =

[
Iq

Iq+1,(q+1)′Iq+2,(q+2)′ · · · Iq+nr,(q+nr)′

]
, q = sr−1, 1 ≤ r ≤ m.

Here, Iq+k,(q+k)′ , with (q + k)′ ≥ q + k, 1 ≤ k ≤ nr, is a transposition matrix which brings
the largest diagonal element in the lower-right part of the matrix (of order n− q − k) to the
(q + k, q + k)-position via a similarity transformation. First, (q + 1)′ is found, then (q + 2)′,
and finally (q + nr)

′. Then the rows and columns q + 1, q + 2, . . . , q + nr are interchanged
with those of (q + 1)′, (q + 2)′, . . . , (q + nr)

′, respectively.
There are several drawbacks of this pivot strategy. After the swapping of the rows and

columns, we have to reorder the diagonal elements to ensure that those in each diagonal block
are ordered non-increasingly. Furthermore, the diagonal blocks may fail to be diagonal.

However, for this choice of Pr it seems natural to discard the requirement that the diagonal
blocks are diagonal and that the diagonal elements are non-increasingly ordered. This implies
that the transformation (2.5) is not needed. Instead, we can assume that the relation (2.6) holds.
The condition (2.6) makes the diagonal elements real and nonnegative, and this can be used to
simplify the core algorithm which diagonalizes the pivot submatrix.

If we assume that the simple Kogbetliantz method under the de Rijk strategy is used to
diagonalize the pivot submatrix Â(k), then the algorithm will transform Â(k) into a diagonal
matrix with nonnegative diagonal elements ordered non-increasingly (this is proved later
in the paper). In particular, when annihilations in the block row r are completed (for any
1 ≤ r ≤ m − 1), then all diagonal blocks of the current matrix will be diagonal with
nonnegative diagonal elements ordered non-increasingly. We will call this pivot strategy block
de Rijk strategy of the second kind or shorter the bdR2 strategy.

In the case m = n, both definitions of the de Rijk strategy for the block Kogbetliantz
method reduce to the definition of the de Rijk strategy for the simple Kogbetliantz method.
The same will hold in the case of the block and simple Jacobi method for Hermitian matrices.

Using the de Rijk strategy, the total number of cycles needed to diagonalize the initial
matrix is generally reduced. This is accomplished by a gradual reordering of the diagonal
elements. Ultimately, all diagonal elements are ordered non-increasingly.

2.5.7. The case of Hermitian matrices. As we will see, our convergence analysis
requires a certain symmetry property of the iterated matrices. This is automatically achieved if
the initial matrix is real symmetric or complex Hermitian, and the method is the real or the
complex (simple or block) Jacobi method. These Jacobi methods solve the eigenvalue problem
for H.

To shorten the presentation, we will consider only the complex block Jacobi method
for the Hermitian matrix H. In the case of the block method we will specially consider the
case when Û(k) is computed by the simple Jacobi method under the de Rijk pivot strategy.
This choice ensures that the diagonal elements of each diagonal block are non-increasingly
ordered. Alternatively, we can use, say, the row-cyclic strategy, and after computing Û(k),
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the columns of Û(k) can be permuted so that the diagonal elements of [Û(k)]∗Ĥ(k)Û(k) are
ordered non-increasingly.

In the case of the simple (i.e., element-wise) Jacobi method under the de Rijk strategy,
the initial update, like in the relation (2.5), is omitted. In the case of the block Jacobi method
under the bdR1 strategy, it is replaced by H(1) = [U(0)]∗H U(0), where U(0) is the block-
diagonal unitary matrix which makes the diagonal blocks of H(1) diagonal and orders the
diagonal elements in each diagonal block non-increasingly. In the case of the bdR2 strategy,
the relation (2.5) is omitted.

3. Some auxiliary results. Here we present some known results which we will use as
tools in our convergence analysis.

3.1. A minor modification of the results of Bujanović and Drmač. First, we slightly
modify [4, Lemma 4.1] such that the results hold for the associated process of the block
Kogbetliantz method for triangular matrices. We use the following notation: The tth largest
singular value of a matrix X is denoted by σt(X). The largest and smallest singular values
of X are σmax(X) and σmin(X), respectively. Recall that σmax(X) = ‖X‖2, where ‖X‖2 is
the spectral norm of X. As mentioned earlier, the Frobenius norm is denoted by ‖X‖F .

The next lemma can be applied to both products U(1)U(2) · · ·U(m−1) and
V(1)V(2) · · ·V(m−1). Let

(3.1) R(k) = R
(k)
1,k+1 = E(1, k + 1; R̂(k)), R̂(k) =

[
C

(k)
1 S

(k)
1

S
(k)
2 C

(k)
2

]
, 1 ≤ k ≤ m− 1,

where C(k)
1 , C(k)

2 , R̂(k), R(k) are square matrices of order n1, nk+1, n1 + nk+1, n, respec-
tively.

LEMMA 3.1. ([4, Lemma 3.1]) The product

R(1:m−1) = (R
(1:m−1)
st ) = R(1)R(2) · · ·R(m−1)

is an upper block triangular matrix, except for the first block-column. In particular, we have

R
(1:m−1)
11 = C

(1)
1 C

(2)
1 · · · C

(m−1)
1 , R(1:m−1)

ss = C
(s−1)
2 , s = 2, . . . ,m

R
(1:m−1)
s1 = S

(s−1)
2

(
C

(s)
1 · · · C

(m−1)
1

)
, s = 2, . . . ,m

R
(1:m−1)
1t =

(
C

(1)
1 · · · C

(t−2)
1

)
S
(t−1)
1 , t = 2, . . . ,m

R
(1:m−1)
st = S

(s−1)
2

(
C

(s)
1 · · · C

(t−2)
1

)
S
(t−1)
1 , 2 ≤ s < t ≤ m

R
(1:m−1)
st = 0, m ≥ s > t ≥ 2.

If a left circular shift of the block columns is made, then an upper block Hessenberg
matrix is obtained. To illustrate the form of R(1:m−1) we have used MATLAB with symbolic
arithmetic.
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EXAMPLE 3.2. Consider the following MATLAB script:
syms c1 c2 c3 c4 c5 c6 s1 s2 s3 s4 s5 s6 ...

C1 C2 C3 C4 C5 C6 S1 S2 S3 S4 S5 S6 R U P
cii = sym([c1 c2 c3 c4 c5 c6]); sij = sym([s1 s2 s3 s4 s5 s6]);
cjj = sym([C1 C2 C3 C4 C5 C6]); sji = sym([S1 S2 S3 S4 S5 S6]);
n=7;% The row-cyclic pivot strategy
for i = 1:n-1
U=sym(eye(n)); k=0;
for j = i+1:n
k = k+1; R = elem_plane(n,i,j,cii(k),sij(k),sji(k),cjj(k));
U = U*R;

end
disp(U); pause

end
function R = elem_plane(n,i,j,rii,rij,rji,rjj)

R = sym(eye(n)); R(i,i)=rii; R(i,j)=rij; R(j,i)=rji; R(j,j)=rjj;
end

The script assumesm = n = 7, computes the matrix R(1:m−1), and displays it just before
reaching the pause statement for the first time. The script uses notation which is different but
still linked to the notation in Lemma 3.1:

ck↔ C
(k)
1 , sk↔ S

(k)
1 , Ck↔ C

(k)
2 , Sk↔ S

(k)
2 , k = 1, 2, . . . ,m− 1.

We copied and edited the matrix obtained after the first pause statement. In particular,
we deleted all occurrences of the multiplication operator * and of the commas that separate
matrix elements. To save some horizontal space, we replaced all occurrences of ck, sk, Ck, Sk
with Ck1 , Sk1 , Ck2 , Sk2 instead of C(k)

1 , S(k)
1 , C(k)

2 , S(k)
2 , respectively. Here is the result R(1:6):

C1
1C

2
1C

3
1C

4
1C

5
1C

6
1 S1

1 C1
1S

2
1 C1

1C
2
1S

3
1 C1

1C
2
1C

3
1S

4
1 C1

1C
2
1C

3
1C

4
1S

5
1 C1

1C
2
1C

3
1C

4
1C

5
1S

6
1

S1
2C

2
1C

3
1C

4
1C

5
1C

6
1 C1

2 S1
2S

2
1 S1

2C
2
1S

3
1 S1

2C
2
1C

3
1S

4
1 S1

2C
2
1C

3
1C

4
1S

5
1 S1

2C
2
1C

3
1C

4
1C

5
1S

6
1

S2
2C

3
1C

4
1C

5
1C

6
1 0 C2

2 S2
2S

3
1 S2

2C
3
1S

4
1 S2

2C
3
1C

4
1S

5
1 S2

2C
3
1C

4
1C

5
1S

6
1

S3
2C

4
1C

5
1C

6
1 0 0 C3

2 S3
2S

4
1 S3

2C
4
1S

5
1 S3

2C
4
1C

5
1S

6
1

S4
2C

5
1C

6
1 0 0 0 C4

2 S4
2S

5
1 S4

2C
5
1S

6
1

S5
2C

6
1 0 0 0 0 C5

2 S5
2S

6
1

S6
2 0 0 0 0 0 C6

2


.

Since the symbolic arithmetic maintains the order in which operations are applied, we
can safely replace scalar matrix elements obtained by the MATLAB code with the appropriate
blocks of our choice.

The displayed matrix shows how the blocks R(1:6)
st of R(1:6) from Lemma 3.1 are com-

posed of the blocks from R̂(k), 1 ≤ k ≤ m− 1. Using the script, the matrix R(1:m−1) can be
visualized for any m (cf. [4, Example 3.1]).

Next, we assume that R̂(k) and consequently R(k) are unitary matrices. Using the
Cosine-Sine decomposition of R̂(k) from (3.1), we can write

R̂(k) =

[
C

(k)
1 S

(k)
1

S
(k)
2 C

(k)
2

]
=

[
W

(k)
1

W
(k)
2

] [
C(k) S(k)

−(S(k))∗ C̃(k)

][
Z

(k)
1

Z
(k)
2

]
,
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where

C(k) =

[
cos Φ(k)

Ini−nj

]
, S(k) =

[
sin Φ(k)

0

]
, C̃(k) = cos Φ(k), ni ≥ nj ,

C(k) = cos Φ(k), S(k) =
[
0 sin Φ(k)

]
, C̃(k) =

[
Inj−ni

cos Φ(k)

]
, ni < nj ,

cos Φ(k) = diag
(

cosϕ
(k)
1 , . . . , cosϕ

(k)
min{ni,nj}

)
,

sin Φ(k) = diag
(

sinϕ
(k)
1 , . . . , sinϕ

(k)
min{ni,nj}

)
,

where cos Φ(k) and sin Φ(k) are nonnegative diagonal matrices. The angles ϕ(k)
1 are called the

canonical angles from the CS decomposition of R̂(k) or simply the canonical angles of R̂(k).
For simplicity, sometimes we will call them the canonical angles of R(k).

LEMMA 3.3. For an arbitrary unitary matrix U of order np + nq , partitioned according
to the partition (np, nq), there exists a permutation matrix P such that in the block-matrix

Ũ = UP =

[
Ũ11 Ũ12

Ũ21 Ũ22

]
np
nq

both diagonal blocks are square and nonsingular with the minimum singular value satisfying

σmin(Ũ11) = σmin(Ũ22) ≥ f(np, nq),

f(np, nq) ≡ max

{
3√

(nq + 1)(4np + 6np − 1)
,

(
np + nq
np

)−1/2}
.(3.2)

Proof. The first bound within the braces is from [12], while the second one is obtained
from [28, Lemma 3.3] by setting ε = 0.

Let X = (Xst) be a square matrix of order n, partitioned according to π. We will use the
following notation:

OffL(X) =

[
m−1∑
t=1

m∑
`=t+1

‖X`t‖2F

]1/2
, OffR(X) =

[
m−1∑
`=1

m∑
t=`+1

‖X`t‖2F

]1/2
,(3.3)

γt(X) =

[
m∑

`=t+1

‖X`t‖2F

]1/2
, ρt(X) =

[
m∑

`=t+1

‖Xt`‖2F

]1/2
, 1 ≤ t ≤ m− 1.(3.4)

From (2.10) and (3.3) we obtain

Off2(X) = Off2
L(X) + Off2

R(X).

The following lemma is a slight modification of [4, Lemma 4.1]. Here, we consider the special
block Jacobi process from Section 2.2, and we use the notation (2.3) for the pivot submatrices
of U(k) and V(k). We also use the relation (2.13). Thus, for each k = 1, 2, . . . ,m− 1, Û(k),
V̂(k) are arbitrary unitary matrices of order n1 × nk+1.
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LEMMA 3.4. Let G be a triangular matrix of order n, partitioned according to π and
such that all diagonal blocks of G are zero. Let

G(m) = (U(1:m−1))∗GV(1:m−1)

be the matrix obtained by applying the first m− 1 steps of the special block Jacobi process
under the row-cyclic strategy to G.

If G is upper-triangular, then there exists a ψ1 ∈ [0, π/2] such that

(3.5) γ1(G(m)) = Off(G(m)) sinψ1, OffR(G(m)) = Off(G(m)) cosψ1,

where

(3.6) sin2ψ1 ≤ 1− σ2
min(V

(2)
11 V

(3)
11 · · ·V

(m−1)
11 ) ≤ 1−

m−1∏
k=2

σ2
min(V

(k)
11 ).

Here V (k)
11 is the n1 × n1 block of V̂(k), 1 ≤ k ≤ m− 1.

Let ψ(k) ∈ [0, π/2] be the maximal canonical angle of V̂(k) such that
cosψ(k) = σmin(V

(k)
11 ), 1 ≤ k ≤ m − 1. Then there exist angles ψ̌(k), 0 ≤ ψ̌(k) ≤ ψ(k),

2 ≤ k ≤ m− 1, such that

(3.7) sin2ψ1 = 1−
m−1∏
k=2

cos2 ψ̌(k).

If G is lower-triangular, then there exists a φ1 ∈ [0, π/2] such that

(3.8) ρ1(G(m)) = Off(G(m)) sinφ1, OffL(G(m)) = Off(G(m)) cosφ1,

where

(3.9) sin2 φ1 ≤ 1− σ2
min(U

(2)
11 U

(3)
11 · · ·U

(m−1)
11 ) ≤ 1−

m−1∏
k=2

σ2
min(U

(k)
11 ).

If φ(k) ∈ [0, π/2] is the maximal canonical angle of Û(k) such that cosφ(k) = σmin(U
(k)
11 ),

then there exist angles φ̌(k), 0 ≤ φ̌(k) ≤ φ(k), 2 ≤ k ≤ m− 1, such that

(3.10) sin2 φ1 = 1−
m−1∏
k=2

cos2 φ̌(k).

Proof. The relations (3.5) and (3.6) are obtained following the lines of the proof of [4,
Lemma 4.1]. The only difference comes from our assumption that U(k) and V(k) are arbitrary
unitary elementary block matrices.

The relations (3.8) and (3.9) are obtained from (3.5) and (3.6) by considering the process

[G(k+1)]∗ = [V(k)]∗[G(k)]∗U(k), k ≥ 1; G(1) = G,

which is obtained by applying the Hermitian conjugate operator to the original process

G(k+1) = [U(k)]∗G(k)V(k), k ≥ 1; G(1) = G.

The relations (3.7), (3.10) are obtained from (3.6), (3.9), respectively.
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3.2. Nearly diagonal Hermitian matrices. In the global convergence analysis of the
Jacobi method for Hermitian matrices, we will consider the case when several diagonal
elements are affiliated to the same multiple eigenvalue. This can occur in the later stage of the
iterative process. To this end we recall some of the known results concerning nearly diagonal
Hermitian matrices [21, 62].

Let H be a Hermitian matrix of order n, and let

(3.11) λ1 = · · · = λς1 > λς1+1 = · · · = λς2 > · · · > λςp̃−1+1 = · · · = λςp̃ , ςp̃ = n,

be the non-increasing ordering of the eigenvalues of H. In the case p̃ = 1, we have H = λ1In.
This trivial case is not interesting, so we assume p̃ > 1.

If we set ς0 = 0, the relation (3.11) implies that

(3.12) νr = ςr − ςr−1
is the multiplicity of λςr . Now, let λς0 = λ0 =∞, λςp̃+1

= −∞, and

(3.13) 3δr = min{λςr−1 − λςr , λςr − λςr+1}, 1 ≤ r ≤ p̃.

From (3.13) we conclude that 3δr is the gap in the spectrum of H associated with the eigen-
values λςr . If

(3.14) δ = min
1≤r≤p̃

δr,

then 3δ is the minimum gap in the spectrum of H.
Now, suppose that ‖Ω(H)‖2 < δ. Let P be a permutation matrix such that the diagonal

elements of H̃ = P∗HP = (h̃rt) are ordered non-increasingly. Then by the spectral theorem
for Hermitian matrices, we have |λt − h̃tt| ≤ ‖Ω(H̃)‖2 = ‖Ω(H)‖2 < δ, 1 ≤ t ≤ n. Let
us partition H̃ into a block-matrix H̃ = (H̃rt), where the block H̃rt has dimension νr × νt.
This block-matrix partition is defined by π̃ = (ν1, ν2, . . . , νp̃). We call π̃ the natural partition
while π = (n1, n2, . . . , np) is the basic partition.

As the following lemma shows, each diagonal block H̃rr can be approximated by λςrIνr .
For computational purposes and for theoretical simplicity, we will use the Frobenius norm
instead of the spectral norm.

LEMMA 3.5. Let H be a Hermitian matrix of order n, and let

(3.15) off(H) ≤ δ ,

where δ is defined by (3.14). Then there is a permutation matrix P such that for the matrix
H̃ = P∗HP = (H̃rt), partitioned according to the natural partition π̃, we have for all
1 ≤ r ≤ p̃,

(3.16) ‖H̃rr − λςrIνr‖F ≤
0.44

δr

p̃∑
t=1

t 6=r

‖H̃rt‖2F ≤ 0.22
Off2(H̃)

δr
≤ 0.22

off2(H)

δr
.

We also have

(3.17)
p̃∑
r=1

‖H̃rr − λςrIνr‖2F ≤ 0.1
Off4(H̃)

δ2
≤ 0.1

off4(H)

δ2
.

Proof. The first inequality in (3.16) is proved in [21, Lemma 2.1] for real symmetric
matrices, but the proof naturally extends to complex Hermitian matrices. The second inequality
in (3.16) holds because H̃ is Hermitian. The last inequality in (3.16) comes from the fact
that Off(H̃) ≤ off(H̃) and off(H̃) = off(H) (see (2.9) and (2.10)). The assertion (3.17) is
implied by (3.16). We have also used: 0.22 · 0.44 = 0.0968 < 0.1.
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4. The off-norm reduction related to one cycle of the block Jacobi method for
Hermitian matrices. Here, we consider the first cycle of the block Jacobi method for
Hermitian matrices under the de Rijk pivot strategy. We first consider the core algorithm. Then
we derive certain important estimates related to the first m − 1 steps of the block method.
After that we derive the off-norm reduction bounds for the whole cycle.

Suppose H is a Hermitian matrix of order n, and we are solving the eigenvalue problem
Hx = λx, x 6= 0. We apply the block Jacobi method under the bdR1 pivot strategy to H
and consider the first cycle of the iterative process. Later, at the end of Section 4.3, we will
consider the pivot strategy bdR2.

Using the relations (2.15) and (2.16)–(2.17) from Section 2.5.1, we have

H(M+1) = H[1] = [U[1]]∗H(1)U[1],

U[1] = P1U1,2:mP2U2,3:mP3U3,4:m · · ·Pm−2Um−2,m−1:mPm−1Um−1,m.(4.1)

Here,

(4.2) H(1) = [U(0)]∗H U(0),

where the unitary matrix U(0) diagonalizes the diagonal blocks of H and orders the diagonal
elements of each diagonal block of H(1) non-increasingly.

Using the expression for U[1] from the relation (4.1), we can split the process in such a
way that in the first cycle the method generates the sequence of M +m− 1 matrices:

H
(1)
P1
,H(2),H(3), . . . ,H(m),H

(m)
P2

,H(m+1), . . . ,H(2m−2),H
(2m−2)
P3

,H(2m−1),

. . . ,H(3m−5), . . . ,H
(M−2)
Pm−2

,H(M−1),H(M),H
(M)
Pm−1

,H(M+1).
(4.3)

Now, let us pay attention to the superscripts appearing in the sequence of matrices (4.3). Set
τ(0,m) = 1, and for r = 1, 2, . . . ,m− 1, let

(4.4) τ(r,m) = 1 + (m− 1) + (m− 2) + · · · + (m− r) =
(2m− r − 1)r

2
+ 1.

The definition (4.4) also covers the case r = 0. We have

τ(1,m) = m, τ(2,m) = 2m− 2, . . . , τ(m− 2,m) = M, τ(m− 1,m) = M + 1.

For each r, 1 ≤ r ≤ m− 1, we have

H
(τ(r−1,m))
Pr

= P∗rH
(τ(r−1,m))Pr,(4.5)

H(τ(r−1,m)+1) = [U(τ(r−1,m))]∗H
(τ(r−1,m))
Pr

U(τ(r−1,m)),(4.6)

H(k+1) = [U(k)]∗H(k)U(k), k = τ(r − 1,m) + 1, . . . , τ(r,m)− 1.(4.7)

If Pr = In for some r, then H
(τ(r−1,m))
Pr

= H(τ(r−1,m)), and the term H
(τ(r−1,m))
Pr

can be
removed from the sequence of matrices defined by (4.5)–(4.7). After the similarity transforma-
tion with Pr is completed, the partition π of n has to be updated by interchanging the entries
r and r′. From the relations (4.5)–(4.7), we see that π can be updated at most m− 1 times in
one cycle. As we have already done, we will use the same notation π for all updated partitions
during the whole iterative process.

To simplify notation, when we write limk→∞H(k) or (H(k), k ≥ 1), we assume that the
matrices H

(τ(r−1,m))
Pr

are included in the sequence (H(k), k ≥ 1).
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4.1. The core algorithm. As we have discussed earlier, the core or kernel algorithm of
the block method is used to diagonalize the pivot submatrix. The core algorithm has to be a
globally convergent method so that in each step of the block method, the matrix Û(k) exists.
To prove global convergence of the block method, we may have to modify the core algorithm
(see [12, 28]).

4.1.1. The basic and modified core algorithm. By the basic core algorithm we mean a
method that is used for solving the Hermitian eigenvalue problem of the pivot submatrix Ĥ(k),
such as the QR method or some convergent simple or block Jacobi method, without using
additional permutations, as it is discussed below.

The modified core algorithm is designed to achieve two goals:
(a) The unitary transformation matrices U(k) are such that

(4.8) σmin(U
(k)
i(k)i(k)) ≥ Cπ > 0, k ≥ 1,

where

(4.9) Cπ = min
1≤p<q≤m

f(np, nq)

and f(np, nq) is defined in (3.2).
(b) The unitary transformation matrix U(k) is such that the diagonal elements ofH(k+1)

i(k)i(k)

and of H(k+1)
j(k)j(k) are ordered non-increasingly.

The condition (b) ensures that the diagonal elements of every diagonal block of any iteration
matrix H(k) are ordered non-increasingly. The condition (a) is used in the convergence proof.
We call U(k) satisfying conditions (a) and (b) the modified transformation matrix.

A straightforward way to compute Û(k) such that it satisfies conditions (a) and (b) is
as follows: First, compute any eigenvector matrix Ŵ(k) of Ĥ(k). For this purpose the basic
core algorithm is used. Then find a permutation matrix P̂(k) such that Ŵ(k)P̂(k) satisfies
condition (a). Finally, find the permutation matrix Q̂(k) = diag(Q

(k)
i(k)i(k), Q

(k)
j(k)j(k)), where

Q
(k)
i(k)i(k) (Q(k)

j(k)j(k)) is a permutation matrix of order ni(k) (nj(k)) that orders the diagonal

elements of H(k+1)
i(k)i(k) (H(k+1)

j(k)j(k)) non-increasingly. Then set Û(k) = Ŵ(k)(P̂(k)Q̂(k)). It is

easy to see that U(k) = E(i(k), j(k); Û(k)) satisfies both conditions (a) and (b).

4.1.2. The relaxed modified core algorithm. In certain situations we can simplify the
matrix P̂(k) or even replace it with the identity matrix. Such a permutation matrix will be
denoted by P̂

(k)
0 . In [12], the matrix P̂(k) is computed using the QR factorization with column

pivoting of the ni × (ni + nj) block [W
(k)
11 W

(k)
12 ] of Ŵ(k). It is computed as a product of

transposition matrices, P̂(k) = Î
(k)
11′ Î

(k)
22′ · · · Î

(k)
nin′i

, where Î
(k)
11′ , . . . , Î

(k)
nin′i

are obtained by an
appropriate QR factorization algorithm with column pivoting.

The relaxed modified core algorithm is obtained by replacing the permutation matrix
P̂(k) with P̂

(k)
0 . The matrix P̂

(k)
0 is obtained from P̂(k) by adding a simple rule (see [28,

Definition 3.2]):

• if r̃ is the smallest number from the set {1, 2, . . . , ni} such that r̃′ > ni, then set
P̂

(k)
0 = Î

(k)
r̃r̃′ · · · Î

(k)
nin′i

. If such r̃ does not exist, then set P̂
(k)
0 = In.

This actually means that P̂
(k)
0 = In, provided that P̂(k) = diag(P̂

(k)
ni(k) , Inj(k)), where P̂

(k)
ni(k)

is a permutation matrix of order ni(k).
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If the relaxed modified core algorithm is used, then we will have Û(k) = Ŵ(k)(P̂
(k)
0 Q̂(k))

and U(k) = E(i(k), j(k); Û(k)). As earlier, the permutation matrix Q̂(k) serves to ensure that
the condition (b) is satisfied.

In [28, Section 3.2]) it has been proved that condition (a) holds with the same bound Cπ
for both the modified core algorithm and the relaxed modified core algorithm. We note that
the matrices Q̂(k) do not change the singular values of U (k)

i(k)i(k) and U (k)
j(k)j(k). Therefore, they

do not change the relation (4.8).
Often we will use the term modified core algorithm with the attribute R instead of the

relaxed modified core algorithm.
REMARK 4.1. As it will become evident later (see the proof of Theorem 5.9), it is

advantageous to choose the indices 1′, 2′,. . . ,n′i as small as possible. So, if during the
computation there are two or more candidates for r′, 1 ≤ r ≤ ni, then we choose the smallest
one.

4.1.3. The well-behaved core algorithm. Using [28, Definition 4.1], we say that a
method for solving the Hermitian eigenproblem is well-behaved if it is globally convergent
and for every ε > 0 there is a ζ > 0 such that

off(H) < ζ ⇒ ‖H−Λ‖F < ε,

where Λ is the limit of the sequence of matrices generated by applying the method to H.
If the core algorithm of the block Jacobi method is well-behaved, then the following series

of implications hold:

(4.10)
lim
k→∞

off(H(k)) = 0 =⇒ lim
k→∞

off(Ĥ(k)) = 0

=⇒ lim
k→∞

(
[Û(k)]∗Ĥ(k)Û(k) − Ĥ(k)

)
= 0.

The Hermitian block Jacobi method satisfies the relation (2.8). Hence, the sequence
(off(H(k)), k ≥ 0) is non-increasing and therefore convergent. If it converges to zero,
then by Lemma 3.5 in the later stage of the block process, the diagonal elements are affiliated
to the eigenvalues. If the core algorithm is well-behaved, then it will not change the affiliation
of the diagonal elements. Then, in the case of the modified core algorithm with or without
the attribute R, we will show that the permutations P

(k)
0 or P(k) and Q(k) do not ruin the

affiliation of the diagonal elements.
An example of the well-behaved eigenvalue method for Hermitian matrices is any con-

vergent cyclic simple Jacobi method. In particular, this is true if the pivot strategy is the
generalized cyclic strategy [3, 30]. Also, the classical Jacobi method is well-behaved. In the
proof of Theorem 5.4 we will show that the simple Jacobi method under the de Rijk pivot
strategy is well-behaved.

4.2. The firstm− 1 steps of the block method. We have

H(m) = [U(1:m−1)]∗H
(1)
P1

U(1:m−1), H
(1)
P1

= P∗1H
(1)P1,(4.11)

U(1:m−1) = U(1)U(2) · · ·U(m−1) = U12U13 · · ·U1m = U1,2:m.

In the following analysis we presume that the matrices U(k), 1 ≤ k ≤ m− 1, are known since
they have been computed by the block Jacobi method. The matrices U1j = E(1, j; Û1j) are
defined by unitary matrices Û1j of order n1 + nj . Each matrix Û1j = Û(j−1) is partitioned
as in the relation (2.3).
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Let

(4.12) H
(1)
P1

= L(1) + D(1) + R(1), R(1) = [L(1)]∗,

where D(1) and L(1) (R(1)) are the block-diagonal and the strictly lower- (upper-) block-

triangular part of H
(1)
P1

. Then for Ḣ
(1)
P1

= Ω(H
(1)
P1

), we have Ḣ
(1)
P1

=
•

H
(1)
P1

and

(4.13)
•

H
(1)
P1

= L(1) + R(1).

Let us now define matrices L(k), R(k), k = 2, . . . ,m. They carry the same block-matrix
partition as H

(1)
P1

and are computed by the iterative process (cf. (2.7))

(4.14) L(k+1) = [U(k)]∗N 1,k+1(L(k))U(k), R(k+1) = [U(k)]∗N 1,k+1(R(k))U(k).

By analogy, we say that in step k of the process (4.14), the pivot submatrix of L(k) (R(k)) is
L̂(k) (R̂(k)). From the relation (4.14) we see that in step k, 1 ≤ k ≤ m− 1, these two pivot
submatrices become the null matrices of order n1 + nk+1.

Let us consider the evolution of the matrices L(k), R(k) from their origins L(1), R(1) to
L(m), R(m), respectively. It is easy to see that L(k) (R(k)) is lower- (upper-) block-triangular,
except for the first block-row (block-column).

To clarify, we depict L(k) and R(k) for the case m = 8, k = 5, where 0 and X denote
a zero and a possibly non-zero block, respectively:

L(5)
=



0 X X X 0 0 0 0

0 0 0 0 0 0 0 0
0 X 0 0 0 0 0 0
0 X X 0 0 0 0 0
0 X X X 0 0 0 0
X X X X X 0 0 0
X X X X X X 0 0
X X X X X X X 0


, R(5)

=



0 0 0 0 0 X X X

X 0 X X X X X X
X 0 0 X X X X X
X 0 0 0 X X X X
0 0 0 0 0 X X X
0 0 0 0 0 0 X X
0 0 0 0 0 0 0 X
0 0 0 0 0 0 0 0


.

From the relation (4.14) we see that in the next (that is, in the 5th) step, we will obtain an
additional zero (non-zero) block in the first block-column (block-row) of L(6) and a non-zero
(zero) block in the first block-column (block-row) of R(6). This proves the structure of the
zero and non-zero blocks of L(k), R(k) for 1 ≤ k ≤ m.

LEMMA 4.2. Let the matrices L(1) and R(1) be defined by (4.13) and L(k), R(k),
2 ≤ k ≤ m, by (4.14). Then we have

(4.15)
•

H(k) = L(k) + R(k), R(k) = [L(k)]∗, 2 ≤ k ≤ m.

Proof. Note that in the relation (4.15) we haveH(k)
st = L

(k)
st +R

(k)
st , s 6= t, and at least one

of the blocks L(k)
st or R(k)

st is zero. Let us extend the relation (4.15) so that for k = 1 instead

of
•

H(1) = L(1) + R(1) we have the relation (4.13). We prove the so updated relation (4.15)
by induction with respect to k.

For k = 1 the updated relation (4.15) holds since it reduces to (4.13). Suppose that the
updated relation (4.15) holds for k, 1 ≤ k < m. We have to prove that it holds for k + 1. So,
let us consider step k of the block Jacobi method and of the process (4.14), which computes
L(k+1) (R(k+1)) from L(k) (R(k)).

In step k, the pivot submatrix Ĥ(k) becomes a diagonal matrix of order n1 + nk+1. It
means that Ḣ(k+1) has zero diagonal blocks and additionally the (1, k + 1)- and (k + 1, 1)-
blocks are zero.
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From the relation (4.14) we see that the pivot submatrices L̂(k) and R̂(k) become the null
matrices of order n1 + nk+1. From the zero-nonzero structure of L(k) and R(k), we know
that all diagonal blocks of L(k+1) and R(k+1) are zero.

Using the induction hypothesis, i.e., the relation (4.15), from the relation (4.14) we obtain

•

H(k+1) = [U(k)]∗N 1,k+1(
•

H(k))U(k) = [U(k)]∗N 1,k+1(L(k) + R(k))U(k)

= [U(k)]∗N 1,k+1(L(k))U(k) + [U(k)]∗N 1,k+1(R(k))U(k) = L(k+1) + R(k+1).

This proves the induction step and the lemma.
Let Et be the n× (n− t) matrix defined by

(4.16) Et =

[
0

In−t

]
, 1 ≤ t ≤ n− 1.

If X is a square matrix of order n, then E∗tXEt is the right bottom principal submatrix of X
of order n− t. From the relation (4.14) we see that we can apply Lemma 3.4 to the triangular
matrices L(0) and R(0). We obtain the following lemma:

LEMMA 4.3. Let H be a Hermitian matrix of order n partitioned according to π. Let us
apply to H the first m− 1 steps of the block Jacobi method under the bdR1 pivot strategy. The
method generates matrices H(1), H

(1)
P1

, H(2), . . . ,H(m) and U(0), U(1), . . . ,U(m−1) which
satisfy the relations (4.5)–(4.7).

Let L(k), R(k), 1 ≤ k ≤ m, be defined by (4.12)–(4.14). Then the relation (4.15) holds,
and for the matrix Ḣ(m) we have

(4.17) Ḣ(m) =
•

H(m) = L(m) + R(m), R(m) = [L(m)]∗.

There exists a ϕ1 ∈ [0, π/2] such that

γ1(R(m)) = Off(R(m)) sinϕ1, OffR(R(m)) = Off(R(m)) cosϕ1,(4.18)

ρ1(L(m)) = Off(L(m)) sinϕ1, OffL(L(m)) = Off(L(m)) cosϕ1,(4.19)

where

(4.20) sin2ϕ1 ≤ 1− σ2
min(U

(2)
11 U

(3)
11 · · ·U

(m−1)
11 ) ≤ 1−

m−1∏
k=2

σ2
min(U

(k)
11 ).

If ϕ(k) ∈ [0, π/2] is the maximal canonical angle from the Cosine-Sine decomposition
of U

(k)
11 such that cosϕ(k) = σmin(U

(k)
11 ), then there exist angles ϕ̌(k), 0 ≤ ϕ̌(k) ≤ ϕ(k),

2 ≤ k ≤ m− 1, such that

(4.21) sin2ϕ1 = 1−
m−1∏
k=2

cos2 ϕ̌(k).

We also have

(4.22) ρ1(L(m)) = ρ1(H(m)) = γ1(H(m)) = γ1(R(m)),

and

(4.23) OffL(L(m)) =

√
2

2
‖E∗n1

•

H(m)En1
‖F = OffR(R(m)).
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Proof. The relation (4.17) has been proved in Lemma 4.2. The relations (4.18)–(4.21)
follow directly from Lemma 3.4. One applies Lemma 3.4 to the matrices L(k) and R(k). Since
V(k) = U(k) and R(k) = [L(k)]∗, for all k, we have ψ(k) = φ(k) = ϕ(k), 2 ≤ k ≤ m − 1.

Finally, since
•

H(m−1) is Hermitian, the relations (4.22) and (4.23) are obtained from (4.17).

The Hermitian matrix
•

H(m) = L(m) + R(m) is made of the zero blocks on the diagonal

and at positions (1,m), (m, 1). Other blocks can be nonzero. The structure of
•

H(m) for the
case m = 8 is shown below:

•

H(m) =
•

H(8)
=



0 L
(8)
12 L

(8)
13 L

(8)
14 L

(8)
15 L

(8)
16 L

(8)
17 0

R
(8)
21 0 R

(8)
23 R

(8)
24 R

(8)
25 R

(8)
26 R

(8)
27 R

(8)
28

R
(8)
31 L

(8)
32 0 R

(8)
34 R

(8)
35 R

(8)
36 R

(8)
37 R

(8)
38

R
(8)
41 L

(8)
42 L

(8)
43 0 R

(8)
45 R

(8)
46 R

(8)
47 R

(8)
48

R
(8)
51 L

(8)
52 L

(8)
53 L

(8)
54 0 R

(8)
56 R

(8)
57 R

(8)
58

R
(8)
61 L

(8)
62 L

(8)
63 L

(8)
64 L

(8)
65 0 R

(8)
67 R

(8)
68

R
(8)
71 L

(8)
72 L

(8)
73 L

(8)
74 L

(8)
75 L

(8)
76 0 R

(8)
78

0 L
(8)
82 L

(8)
83 L

(8)
84 L

(8)
85 L

(8)
86 L

(8)
87 0


.

4.3. The remaining steps of the first cycle. Let us consider the transformation
H(m) 7→ H

(m)
P2

, where

H
(m)
P2

= P∗2H
(m)P2 =

[
In1

Pn−n1

]∗
H(m)

[
In1

Pn−n1

]
.

The similarity transformation with P2 interchanges the block-columns (block-rows) 2 and
2′, where 2′ ≥ 2. This transformation does not change the Frobenius norm of the first block-

column and block-row. In addition, it does not change ‖E∗n1

•

H(m)En1
‖F . Since E∗n1

•

H
(m)
P2

En1

is Hermitian we have

OffR(E∗n1
H

(m)
P2

En1) =

√
2

2
‖E∗n1

•

H
(m)
P2

En1‖F = OffL(E∗n1
H

(m)
P2

En1)

=

√
2

2
Off(E∗n1

H(m)En1).(4.24)

All later transformations in the first cycle do not change the Frobenius norm of the first
block-column and block-row. Therefore, we have

(4.25) ρ1(H(M+1)) = ρ1(H(m)) = γ1(H(m)) = γ1(H(M+1)).

Let us now consider the remaining M −m+ 1 steps of the first cycle. In particular, we
consider steps that nullify pivot blocks in the rth block-row and block-column.

LEMMA 4.4. Suppose we are in the stage of the process when all blocks in the block-row
and block-column r − 1 have all been zeroed. We assume 2 ≤ r ≤ m− 1. Then we have:

(i) The similarity transformation with Pr does not change the Frobenius norm of any of

the first r− 1 block-rows and block-columns of
•

H(τ(r−1,m)) and of H(τ(r−1,m)). It
also does not change Off(E∗sr−1

H(τ(r−1,m))Esr−1
).

(ii) The similarity transformation with U(k), τ(r − 1,m) ≤ k ≤ τ(r,m)− 1, does not
change the Frobenius norm of any of the first r − 1 block-rows and block-columns of
•

H(τ(r−1,m)) and of H(τ(r−1,m)).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

CONVERGENCE OF THE JACOBI METHOD UNDER THE DE RIJK PIVOT STRATEGY 103

(iii) The similarity transformation with U(k), τ(r − 1,m) ≤ k ≤ τ(r,m)− 1, does not
increase off(E∗sr−1

Hτ(r−1,m)Esr−1
). We have

Off2(E∗sr−1
H(τ(r,m))Esr−1)

= Off2(E∗sr−1
H(τ(r−1,m))Esr−1

)−
τ(r,m)−1∑

k=τ(r−1,m)

off2(Ĥ(k)),
(4.26)

where sr−1 and Esr−1
are defined by the relations (2.21) and (4.16), respectively. In

the relation (4.26) we assumed the notation Ĥ(τ(r−1,m)) = Ĥ
(τ(r−1,m))
Pr

.
Proof. The assertions (i) and (ii) are implied by the fact that all transformations are unitary

and the Frobenius norm is invariant under unitary transformations. The assertion (iii) follows
from the relation (2.8) or (2.11), which holds for any block Jacobi method for Hermitian
matrices. Here, it holds for the block Jacobi method applied to E∗sr−1

H(τ(r−1,m))Esr−1
under

the bdR1 pivot strategy. We have also used the second assertion of (i).
Let

(4.27) H(0)
r = E∗sr−1

H
(τ(r−1,m))
Pr

Esr−1
, 1 ≤ r ≤ m− 1.

In particular, we have H
(0)
1 = H

(1)
P1

. The matrix H
(0)
r is the bottom-right principal submatrix

of H
(τ(r−1,m))
Pr

of dimension n− sr−1 = nr + · · ·+ nm. Let

H(0)
r = L(0)

r + D(0)
r + R(0)

r , R(0)
r = [L(0)

r ]∗, 1 ≤ r ≤ m− 1,

where D
(0)
r and L

(0)
r (R(0)

r ) are the block-diagonal and the strictly lower- (upper-) block-
triangular part of H

(0)
r . Then we have

(4.28)
•

H(0)
r = L(0)

r + R(0)
r , 1 ≤ r ≤ m− 1.

Next, we define matrices L
(k)
r , R

(k)
r , 1 ≤ k ≤ m − r. They carry the same block-matrix

partition as H
(0)
r , and they are defined as follows (cf. the relation (4.14)):

L(k)
r = [Ur,r+k]∗N r,r+k(L(k−1)

r )Ur,r+k, 1 ≤ k ≤ m− r,(4.29)

R(k)
r = [Ur,r+k]∗N r,r+k(R(k−1)

r )Ur,r+k, 1 ≤ k ≤ m− r.(4.30)

LEMMA 4.5. For the matrices L
(k)
r , R

(k)
r , 1 ≤ k ≤ m − r, defined by (4.29), (4.30),

and (4.28), we have

•

H(k)
r = L(k)

r + R(k)
r , R(k)

r = [L(k)
r ]∗, 1 ≤ k ≤ m− r, 1 ≤ r ≤ m− 1,

where

H(k)
r = E∗sr−1

H(τ(r−1,m)+k)Esr−1
, 1 ≤ k ≤ m− r, 1 ≤ r ≤ m− 1.

Proof. The proof uses induction with respect to k and is almost identical to the proof of
Lemma 4.2.

The structure of
•

H(k)
r for the case m = 8, r = 4, k = 3 is shown below. The superscript

` stands for τ(r − 1,m) + k = τ(3, 8) + 3 = (2 · 8− 3− 1) · 3/2 + 3 = 21, and we use the
notation H(`) = (H

(`)
st ), L

(k)
r = (L

(`)
st ), R

(k)
r = (R

(`)
st ):
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•

H(`)
=

 H
(`)
1 H

(`)
2

[H
(`)
2 ]∗ Ḣ(k)

r

 =



0 H
(`)
12 H

(`)
13 H

(`)
14 H

(`)
15 H

(`)
16 H

(`)
17 H

(`)
18

H
(`)
21 0 H

(`)
23 H

(`)
24 H

(`)
25 H

(`)
26 H

(`)
27 H

(`)
28

H
(`)
31 H

(`)
32 0 H

(`)
34 H

(`)
35 H

(`)
36 H

(`)
37 H

(`)
38

H
(`)
41 H

(`)
42 H

(`)
43 0 L

(`)
45 L

(`)
46 0 R

(`)
48

H
(`)
51 H

(`)
52 H

(`)
53 R

(`)
54 0 R

(`)
56 R

(`)
57 R

(`)
58

H
(`)
61 H

(`)
62 H

(`)
63 R

(`)
64 L

(`)
65 0 R

(`)
67 R

(`)
68

H
(`)
71 H

(`)
72 H

(`)
73 0 L

(`)
75 L

(`)
76 0 R

(`)
78

H
(`)
81 H

(`)
82 H

(`)
83 L

(`)
84 L

(`)
85 L

(`)
86 L

(`)
87 0


.

Now, we apply Lemma 3.4 to the matrices L
(k)
r and R

(k)
r , 1 ≤ k ≤ m − r. Following the

lines in the proof of Lemma 4.3, we obtain that there exist real numbers (angles) ϕr ∈ [0, π/2]
such that

γ1(R(m−r)
r ) = Off(R(m−r)

r ) sinϕr, OffR(R(m−r)
r ) = Off(R(m−r)

r ) cosϕr,(4.31)

ρ1(L(m−r)
r ) = Off(L(m−r)

r ) sinϕr, OffL(L(m−r)
r ) = Off(L(m−r)

r ) cosϕr,(4.32)

where

sin2ϕr ≤ 1− σ2
min(U

(τ(r−1,m)+1)
11 U

(τ(r−1,m)+2)
11 · · ·U (τ(r,m)−1)

11 )

≤ 1−
τ(r,m)−1∏

k=τ(r−1,m)+1

σ2
min(U

(k)
11 ), 1 ≤ r ≤ m− 2.

(4.33)

If for each k and r, τ(r − 1,m) + 1 ≤ k ≤ τ(r − 1,m)− 1, ϕ(k)
r ∈ [0, π/2] is the maximal

canonical angle from the Cosine-Sine decomposition of Û(k) such that cosϕ
(k)
r = σmin(U

(k)
11 ),

then there exist angles ϕ̌(k)
r , 0 ≤ ϕ̌(k)

r ≤ ϕ(k) such that

sin2ϕr = 1−
τ(r,m)−1∏

k=τ(r−1,m)+1

cos2 ϕ̌(k)
r , 1 ≤ r ≤ m− 2.

For each r, 1 ≤ r ≤ m− 2, we have

ρ1(L(m−r)
r ) = ρ1(H(m−r)

r ) = γ1(H(m−r)
r ) = γ1(R(m−r)

r ),(4.34)

OffL(L(m−r)
r ) = OffR(R(m−r)

r ) =

√
2

2
Off(E∗srH

(τ(r,m))Esr )

=

√
2

2
off(H

(0)
r+1).

(4.35)

Combining the relations (4.35) and (4.32), we obtain for 1 ≤ r ≤ m− 2,

off2(H
(0)
r+1) = 2Off2

L(L(m−r)
r ) = 2Off2(L(m−r)

r ) cos2ϕr = Off2(H(m−r)
r ) cos2ϕr

=

(
off2(H(0)

r )−
m−r∑
k=1

off2(Ĥ(k)
r )

)
cos2ϕr ≤ off2(H(0)

r ) cos2ϕr.(4.36)

Here, we have used the notation Ĥ
(1)
r = Ĥ

(τ(r−1,m)
Pr

, Ĥ
(k)
r = Ĥ(τ(r−1,m)+k−1),

2 ≤ k ≤ m− r, 1 ≤ r ≤ m− 2. From the relation (4.36) we obtain

(4.37) off2(H
(0)
r+1) ≤ off2(H) cos2ϕ1 cos2ϕ2 · · · cos2ϕr, 1 ≤ r ≤ m− 2.

In the last line we have used H
(0)
1 = H

(1)
P1

and off(H
(1)
P1

)) = off(H(1)) = off(H).
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4.3.1. Revisiting the bdR2 pivot strategy. Now, let us assume that the permutation
matrices Pr are as in the relation (2.24). It means that we are considering the bdR2 pivot
strategy. When using the bdR2 pivot strategy, all diagonal blocks of H

(m−r)
r , 1 ≤ r ≤ m− 2,

are diagonal. The same is true for the diagonal blocks of each Hτ(r−1,m), 1 ≤ r ≤ m.
This change in the definition of the permutation matrices has almost no impact on the

above analysis and the obtained relations. Let us verify this. The relations (4.11), (4.13), and
the Lemmas 4.2, 4.3 hold. Also, the relations (4.24), (4.25), and Lemma 4.4 hold.

The relations (4.27)–(4.30) and Lemma 4.5 hold with the bdR2 pivot strategy. Also,
the relations (4.31)–(4.35) hold. The relations (4.36) and (4.37) hold for both block pivot
strategies.

One can verify that in the relations (4.26), (4.35), (4.36), (4.37) all appearances of off2(·)
can be replaced by Off2(·) provided that only bdR1 is used.

5. The main results for the Hermitian block and simple Jacobi methods. Here, we
prove convergence of the block and simple Jacobi method for Hermitian matrices under the
de Rijk pivot strategy. For the block method it means that we consider both the bdR1 and
bdR2 strategy. The results automatically hold for the block and simple Jacobi method for real
symmetric matrices.

First, we prove convergence to diagonal form of the block method. Then we prove global
convergence of the simple Jacobi method. After that we prove global convergence of the block
method. The obtained results for the off-norm reduction per cycle are so sharp that we use
them to prove asymptotic quadratic convergence of the block and simple Jacobi method.

The problems with the global convergence proof of the block Kogbetliantz method are
considered in the next section.

5.1. Convergence to diagonal form of the block method. The first result does not
explicitly specify what kind of core algorithm is used.

PROPOSITION 5.1. Let H be a Hermitian matrix of order n partitioned according to π.
Let us apply the first cycle of the block Jacobi method under the de Rijk pivot strategy to H.
The method generates matrices H(1), H

(1)
P1
, . . . ,H(M+1) and U(0), U(1), . . . ,U(M) which

satisfy the relations (4.5)–(4.7). We have

off2(H(M+1)) = off2(H)(1− cos2ϕ1 · · · cos2ϕm−2)

≤ off2(H)

(
1−

M−1∏
k=1

i(k)6=j(k)−1

σ2
min(U

(k)
i(k)i(k))

)
.(5.1)

Here, the angles ϕk are defined by the relations (4.32), (4.29), (4.28), and U (k)
i(k)i(k) is the

upper-left block of Û(k) as in the relation (2.3).
Proof. At the end of the cycle we obtain the matrix H(M+1) = (H

(M+1)
st ). For this matrix

we have H(M+1)
m−1,m = 0, Ḣ(M+1) =

•

H(M+1), and

off2(H(M+1)) = ‖(
•

H(M+1)‖2F = 2

m−2∑
r=1

ρ2r(H
(M+1)),

where ρr(H
(M+1)) = ρ1(E∗srH

(M+1)Esr ) and ρ1(·) is defined in (3.4). Using the first two
assertions of Lemma 4.4, the relations (4.34), (4.32), and Lemma 4.5, we have

2ρ2r(H
(M+1)) = 2ρ21(H(m−r)

r ) = 2ρ21(L(m−r)
r ) = 2off2(L(m−r)

r ) sin2ϕr

= off2(H(m−r)
r ) sin2ϕr ≤ off2(H(0)

r ) sin2ϕr, 1 ≤ r ≤ m− 2.
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Using (4.37) we obtain

off2(H(M+1)) ≤ off2(H)

m−2∑
r=1

cos2ϕ1 · · · cos2ϕr−1sin
2ϕr

= off2(H)(1− cos2ϕ1 cos2ϕ2 · · · cos2ϕm−2).

(5.2)

The equality in (5.2) is easy to prove (cf. [36]). Setting c2r = cos2ϕr, s2r = sin2ϕr,
1 ≤ r ≤ m− 2, we have

m−2∑
r=1

c21 · · · c2r−1s2r

= s21 + c21s
2
2 + c21c

2
2s

2
3 + c21c

2
2c

2
3s

2
4 + · · ·+ c21c

2
2 · · · c2m−3s2m−2

= 1− c21 + c21(1− c21) + c21c
2
2(1− c23) + c21c

2
2c

2
3(1− c24) + · · ·+ c21c

2
2 · · · c2m−3(1− c2m−2)

= 1− c21c22 · · · c2m−2.

The relation (4.33) implies

(5.3) cos2ϕr ≥
τ(r,m)−1∏

k=τ(r−1,m)+1

σ2
min(U

(k)
i(k)i(k)), 1 ≤ r ≤ m− 2.

The proof of the proposition follows from (5.2) and (5.3).
Note that the condition i(k) 6= j(k)− 1 in the relation (5.1) means that pivot positions

(i(k), i(k)) and (j(k), j(k)) are not adjacent. This fact will be used in the proof of the
quadratic convergence of the method in the case of double eigenvalues.

The following theorem is a consequence of Proposition 5.1. It does not specify what kind
of modified core algorithm is used.

THEOREM 5.2. If the block Jacobi method uses the modified transformation matrices,
then we have

lim
k→∞

off(H(k)) = 0.

Proof. The method generates the sequences of matrices (H(k), k ≥ 1) and
(U(k), k ≥ 0) using the relations (4.5), (4.6), (4.7). If we apply Proposition 5.1 to the matrix
H[t] = H(tM+1), for t = 0, 1, 2, . . ., we obtain

(5.4) off2(H((t+1)M+1)) ≤ off2(H(tM+1))

(
1−

(t+1)M−1∏
k=tM+1

i(k)6=j(k)−1

σ2
min(U

(k)
i(k)j(k))

)
.

Since the modified transformations are used, we have σmin(U
(k)
i(k)j(k)) ≥ Cπ > 0, k ≥ 1,

where Cπ is defined by (4.9), (3.2). The relation (5.4) implies

(5.5) off2(H[t+1]) ≤ off2(H[t])
[
1− (C2

π)(m−1)(m−2)/2
]
, t ≥ 0.

In (5.5) we have used the fact that each set St,

St = {k; tM + 1 ≤ k ≤ (t+ 1)M, i(k) 6= j(k)− 1}, t ≥ 0,
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has exactly (m − 2) + (m − 3) + · · · + 1 = (m − 1)(m − 2)/2 elements. From (5.5) we
obtain

(5.6) off2(H[t]) ≤ off2(H[0])
[
1− C(m−1)(m−2)

π

]t
, t ≥ 0.

The relation (5.6) implies

(5.7) lim
t→∞

off(H[t]) = 0.

The proof of the theorem is implied by the relation (5.7) and the inequalities

off(H[t+1]) = off(H((t+1)M+1)) ≤ off(H(k)) ≤ off(H(tM+1)) = off(H[t]),

which hold for every t ≥ 0 and every k satisfying tM + 1 ≤ k ≤ (t + 1)M . We also have
used off(H(τ(r−1,m)+1)) ≤ off(H

(τ(r−1,m))
Pr

) = off(H(τ(r−1,m))).
REMARK 5.3. From the relation (5.4) it is obvious that Theorem 5.2 holds even if we do

not require that the unitary transformations U
(k)
i(k)j(k), i(k) + 1 = j(k) are modified. Instead,

we only need to demand for such a k that after making the pivot submatrix Ĥ(k) diagonal, the
diagonal elements are ordered non-increasingly.

5.2. Global convergence of the simple Jacobi method. An immediate corollary of
Theorem 5.2 is obtained for the casem = n. Then we have π = (1, 1, . . . , 1). Let us recall one
step of the simple Jacobi method for Hermitian matrices. Since the initial transformation (4.2)
is not needed, we set H(1) = H. In step k, the method computes the unitary plane matrix
(complex Jacobi rotation) U(k) = E(i, j; Û(k)),

Û(k) =

[
cosφk −eıαk sinφk

e−ıαk sinφk cosφk

]
.

The Jacobi angle φk and the phase αk are computed using the formulas

(5.8) tan(2φk) =
2|h(k)ij |

h
(k)
ii − h

(k)
jj

, −π
4
≤ φk ≤

π

4
, αk = arg(h

(k)
ij ),

where H(k) = (h
(k)
rs ). The diagonal elements h(k)ii , h(k)jj are updated using

(5.9) h
(k+1)
ii = h

(k)
ii + |h(k)ij | tanφk, h

(k+1)
jj = h

(k)
jj − |h

(k)
ij | tanφk.

The off-norm is updated by

off2(H(k+1)) = off2(H(k))− 2|h(k)ij |
2, k ≥ 1.

In the case of a real symmetric H and the real Jacobi method, one has to set αk = 0 in the
relation (5.8) and 2|h(k)ij | has to be replaced by 2h

(k)
ij . Also, in (5.9), the term |a(k)ij | tanφk

has to be replaced by h(k)ij tanφk.
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THEOREM 5.4. Let H be a Hermitian matrix of order n. Let us apply to H the simple
Jacobi method under the de Rijk pivot strategy. Then we have

lim
k→∞

H(k) = Λ,

where Λ is the diagonal matrix of the eigenvalues of H ordered non-increasingly. Further-
more, we have

(5.10) off(H((t+1)N+1)) ≤ off(H(tN+1))

[
1−

(t+1)N−1∏
k=tN+1

i(k)6=j(k)−1

cos2 φk

]1/2
, t ≥ 0,

where φk are the Jacobi angles. Both assertions also hold for the case of a real symmetric
matrix H and the real Jacobi method.

Proof. Since

σmin(U
(k)
11 ) = | cosφk| = cosφk ≥ cos

(π
4

)
=

√
2

2
, k ≥ 1,

all U(k) are modified transformation matrices. Applying Theorem 5.2, we obtain
limk→∞ off(H(k)) = 0. The estimate (5.10) follows directly from the relation (5.4). Hence,
it remains to show that the diagonal elements h(k)11 , h(k)22 , . . . ,h(k)nn converge to the eigenvalues
λ1, λ2, . . . ,λn such that λ1 ≥ λ2 ≥ · · · ≥ λn.

Suppose the process has reached the stage in which

(5.11) off(H(k)) < δ, k ≥ k0,

where δ is from (3.14). Let us assume that the eigenvalues are numbered so that (3.11) holds.
By the assertion (3.16) of Lemma 3.5, we conclude that each diagonal element of H(k),
k ≥ k0, has to be at most 0.22δ away from an eigenvalue of H. Let us define intervals Dr,

Dr = {z ∈ R; |z − λr| < 0.22δ}, 1 ≤ r ≤ p̃,

where p̃ is from the natural partition of n. These intervals are disjoint, and the minimum
distance between two adjacent intervals equals 3δ − 2 · 0.22δ = 2.56δ. From Lemma 3.5 we
conclude that each interval Dr contains exactly νr diagonal elements, where νr is defined
by (3.12).

Now, let us consider one cycle or sweep of the Jacobi method starting with the matrix
H(tN+1) such that tN + 1 ≥ k0. In each Jacobi step within that cycle, the diagonal elements
cannot change the intervals in which they are located. This is seen from the relation (5.9). In
particular, we see that the affected diagonal elements h(k)ii and h(k)jj can change at most by the

amount |h(k)ij tanφk| ≤ |h(k)ij | ≤ off(H(k))/
√

2 < δ/
√

2, which is much smaller than 2.56δ.
To simplify notation we can assume k0 = 1. Then we have t = 0, and we consider the

first cycle. Our aim is to show that

(5.12) h
(N+1)
ςr−1+1,ςr−1+1, . . . , h

(N+1)
ςr,ςr ∈ Dr, 1 ≤ r ≤ p̃.

While the Jacobi steps cannot change the affiliation of the diagonal elements, the permutational
transformation can change the ordering of the diagonal elements along the diagonal.

Let us consider the first ν1 permutational transformations. The first permutation brings
the largest diagonal element to position (1, 1). All later permutational transformations cannot
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change the affiliation of that diagonal element to λ1 because they do not affect it. Hence,
h
(N+1)
11 ∈ D1.

The second permutational transformation brings the largest diagonal element of E∗1H
(n)E1

to the second diagonal position in the matrix H
(n)
P2

. Now, the same argument as earlier applies
to it. Finally, the last of the first ν1 permutational transformations brings the largest diagonal
element of the matrix E∗ν1−1 H(N−sn−ν1+1) Eν1−1 to the (ν1, ν1)-position in H

(N−sn−ν1+1)

Pν1
.

Note that N − sn−ν1 = n − 1 + (n − 2) + · · · + (n − (ν1 − 1)). Now, D1 contains ν1
diagonal elements of H

(N−sn−ν1 )
Pν1

, and they are located in the first ν1 diagonal positions. The
interval D1 cannot contain more diagonal elements, so it is now full. All later permutational
transformations in the first cycle do not affect the first ν1 diagonal elements. This proves (5.12)
for r = 1.

The same argument applies to the next ν2 permutational transformations.
For ` = 1, . . . , ν2, the permutation Pν1+` brings the largest diagonal element of
E∗ν1+`−1H

(N−sn−ν1−`+1)Eν1+`−1, to the diagonal position ν1 + `. Continuing this process
we obtain the relation (5.12).

If H is real symmetric, then the real Jacobi method is applied. It is easy to verify that all
statements and arguments in the proof remain to hold.

From the proof of Theorem 5.4 we see that the simple Jacobi method for the Hermitian
(symmetric) matrix under the de Rijk strategy is well-behaved. Indeed, for a sufficiently large
k, neither the Jacobi step nor the permutational transformation can change the affiliation of
the diagonal elements.

5.3. Quadratic convergence of the simple method. Theorem 5.4 implies that the simple
Jacobi method under the de Rijk pivot strategy is quadratically convergent. This is implied by
the fact that, eventually, the process essentially reduces to the row-cyclic Jacobi method.

In the case of simple eigenvalues, the proof can use the technique from [36], and it takes
just a few lines of text. Let Λ(k), k ≥ k0, denote the diagonal matrix of the eigenvalues of
H ordered so that the diagonal elements of H(k) are affiliated to the corresponding diagonal
elements of Λ(k) (more details on Λ(k) are given in the next section). Here k0 is such
that (5.11) holds. We consider the stage of the process when k ≥ tN + 1 ≥ k1 ≥ k0, and k1
is such that the diagonal elements of Λ(k1) are ordered non-increasingly.

Using a variant of Bernoulli’s inequality we have∏
k

cos2 φk =
∏
k

(1− sin2 φk) ≥ 1−
∑
k

sin2 φk.

This implies

1−
∏
k

cos2 φk ≤
∑
k

sin2 φk.

Hence, from the relations (5.10) and (5.8) we obtain

off2(H([t+1])) ≤ off2(H[t])

(t+1)N−1∑
k=tN+1

i(k)6=j(k)−1

sin2 φk ≤ 0.0763
off4(H[t])

δ2

or

(5.13) off(H[t+1]) ≤ 0.2763
off2(H[t])

δ
, t ≥ 0.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

110 V. HARI

Here we have used

| sinφk| ≤ | tanφk| ≤
1

2
| tan(2φk)| =

|h(k)i(k)j(k)|

|h(k)i(k)i(k) − h
(k)
j(k)j(k)|

≤
|h(k)i(k)j(k)|

2.56δ
,

and

(t+1)N−1∑
k=tN+1

i(k) 6=j(k)−1

|h(k)i(k)j(k)|
2 ≤

(t+1)N∑
k=tN+1

|h(k)i(k)j(k)|
2 =

1

2

(
off2(H[t])− off2(H([t+1])

)

≤ 1

2
off2(H[t]).

Since the diagonal elements of each Λ(k), tN ≤ k ≤ (t+ 1)N , are ordered non-increasingly
and the angles φk, i(k) = j(k)− 1, do not appear in the estimate, the presented proof holds in
the case of simple and double eigenvalues. In this way we have proved the following theorem:

THEOREM 5.5. If the eigenvalues of the initial Hermitian matrix H are simple or double,
then the Jacobi method under the de Rijk pivot strategy is quadratically convergent, and the
relation (5.13) holds.

In the general case when multiple eigenvalues are present, we are confident that the
quadratic convergence of the method can be proved by following the lines of the proof
of [22, Theorem 2.8(i)]. The proof will use the fact that the permutations P(k) can swap only
the diagonal elements that lie within the same diagonal block in the natural partition of the
current matrix. The proof will be much longer and more complicated than the one presented
here for the special cases of simple and double eigenvalues.

5.4. Global convergence of the block Jacobi method. In Theorem 5.2 we have shown
that the block Jacobi method which uses the modified core algorithm (with or without attribute
R) converges to diagonal form under the de Rijk pivot strategy. To simplify terminology we
will simply say that the modified block Jacobi method converges to diagonal form. The results
proved here use ideas and notation from [28, Section 4]. For the sake of completeness of the
presentation, we will provide all the necessary details.

Combining the convergence to diagonal form with Lemma 3.5, we conclude that for large
enough k, say, for k ≥ k0, the diagonal elements of H(k) are affiliated to the eigenvalues of H.
By this we mean that the condition (3.15) holds for each H(k), k ≥ k0. Note that k0 depends
on H, on the block pivot strategy (bdR1 or bdR2), and on the modified core algorithm that is
part of the block Jacobi method.

For k ≥ k0, let Λ(k) denote a diagonal matrix of the eigenvalues of H such that

(5.14) lim
k→∞

(H(k) −Λ(k)) = 0.

Here, each diagonal entry of Λ(k) is an eigenvalue of H that is closest to the corresponding
diagonal entry of H(k). The modified block Jacobi method is globally convergent if and only
if for every initial Hermitian matrix H, the associated sequence (Λ(k), k ≥ k0) is convergent.
So, we have to find conditions under which the sequence (Λ(k), k ≥ k0) becomes stationary.

From the relation (5.14) we see that it makes sense to transfer some terminology and
notation from H(k) to Λ(k). So, we call Λ̂(k) a pivot submatrix of Λ(k) if it is extracted from
Λ(k) in the same way as Ĥ(k) is extracted from H(k). Then Λ̂(k) = diag(Λ

(k)
i(k)i(k),Λ

(k)
j(k)j(k)),

and the diagonal elements of H(k)
i(k)i(k) (H(k)

j(k)j(k)) are affiliated to the diagonal elements
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of Λ
(k)
i(k)i(k) (Λ(k)

j(k)j(k)). Since the diagonal elements of H(k)
i(k)i(k) (H(k)

j(k)j(k)) are ordered

non-increasingly, we conclude that the same is true for the diagonal elements of Λ
(k)
i(k)i(k)

(Λ(k)
j(k)j(k)).

In Theorem 5.2 we have used the modified core algorithm, so we can write

(5.15) Û(k) = ˆ̃U(k) ˆ̃P(k), ˆ̃P(k) ∈ {P̂(k)Q̂(k), P̂
(k)
0 Q̂(k)}, k ≥ 1,

and consequently we have U(k) = Ũ(k)P̃(k), k ≥ 1. Here ˆ̃U(k) and Û(k) are computed by
the basic and modified core algorithm, respectively.

Let

(5.16) H̃(k+1) = [Ũ(k)]∗H(k)Ũ(k), k ≥ 1.

Then we have H(k+1) = [P̃(k)]∗H̃(k+1)P̃(k) and off(H̃(k+1)) = off(H(k+1)) for k ≥ 1.
LEMMA 5.6. Let H be a Hermitian matrix of order n, and let the sequences (H(k), k ≥ 1)

and (U(k), k ≥ 0) be obtained by applying the modified block Jacobi method to H under the
de Rijk pivot strategy. If the basic core algorithm is well-behaved, then the assertions (i)–(iii)
hold:

(i) lim
k→∞

(
ˆ̃U(k)Λ̂(k) − Λ̂(k) ˆ̃U(k)

)
= 0;

(ii) if k is sufficiently large and σ(Λ
(k)
i(k)i(k)) ∩ σ(Λ

(k)
j(k)j(k)) = ∅, then

P̂(k) = diag(P
(k)
i(k)i(k), Inj(k));

(iii) if the eigenvalues of H are simple, then for a sufficiently large k we have

lim
k→∞

(
| ˆ̃U(k)| − Ini(k)+nj(k)

)
= 0.

Here ˆ̃U(k) and P̂(k) are from the relation (5.15).
Proof. (i) This assertion follows directly from the relations (5.14) and (4.10). Since the

basic core algorithm is well-behaved, we have replaced Û(k) in the relation (4.10) by ˆ̃U(k).
(ii) The assertion (i) can be written in the form

(5.17) ˆ̃U(k)Λ̂(k) − Λ̂(k) ˆ̃U(k) = Ê(k), lim
k→∞

Ê(k) = 0.

Let ˆ̃U(k) = (ˆ̃u
(k)
st ), Ê(k) = (ê

(k)
st ), Λ̂(k) = diag(λ̂

(k)
1 , . . . , λ̂

(k)
ni(k)+nj(k)

). From (5.17) we
conclude that there is an integer k1, k1 ≥ k0, such that

(5.18) |ˆ̃u(k)st | =
|ê(k)st |

|λ̂(k)
s − λ̂(k)

t |
≤ |ê

(k)
st |
3δ

, λ̂(k)
s 6= λ̂

(k)
t , k ≥ k1.

Here, 3δ is the minimum gap in σ(H). By the assumption in (ii), we obtain from (5.18)

(5.19)
[
‖Ũ (k)

i(k)j(k)‖
2
F + ‖Ũ (k)

j(k)i(k)‖
2
F

]1/2
≤ ‖Ê

(k)‖F
3δ

, k ≥ k1.

From (5.19) we see that for a sufficiently large k, we can make the off-diagonal blocks of the
unitary matrix ˆ̃U(k) arbitrary close to the appropriate zero matrices. Therefore, the diagonal
blocks Ũ (k)

i(k)i(k) and Ũ (k)
j(k)j(k) approach some unitary matrices of order ni(k) and nj(k), re-

spectively. Hence, when the QR factorization algorithm with column pivoting is applied to
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[Ũ
(k)
i(k)i(k) Ũ

(k)
i(k)j(k)], it delivers the permutation matrix P̂(k) = I11′I22′ · · · Ini(k)n′i(k) in which

all second subscripts 1′, 2′, . . . , n′i(k) are from the set {1, 2, . . . , ni(k)}. This proves (ii).
(iii) If the eigenvalues of H are simple, then the relation (5.18) implies that the off-

diagonal elements of ˆ̃U(k) tend to zero as k →∞. This proves (iii) and the lemma.
As a final note, the different block pivot strategies bdR1 and bdR2 generate different

permutation matrices P(k), but the proof of Lemma 5.6 stays the same.
From the proof of Lemma 5.6, we see that P(k) can differ from In for an arbitrary large k.

Therefore, we cannot prove convergence of (Λ(k), k ≥ k0) without additional assumptions.
However, we can make use of the property R of the modified algorithm.

THEOREM 5.7. The modified block Jacobi method is globally convergent under the
de Rijk pivot strategy provided the basic core algorithm is well-behaved, the modified core
algorithm has the property R, and one of the following conditions holds:

(a) the eigenvalues of the initial matrix H are simple,
(b) for a sufficiently large k, the diagonal elements of H(k) affiliated with the same

eigenvalue lie in one diagonal block of the current block-matrix partition.
Proof. As the block method uses the modified core algorithm, the iteration matrix H(k)

converges to diagonal form. Using the assertions (ii) and (iii) of Lemma 5.6 and the assumption
that the modified core algorithm has the property R, we conclude that both conditions (a)
and (b) imply that for a sufficiently large k, we have P̂

(k)
0 = Ini(k)+nj(k) , and therefore we

have Û(k) = ˆ̃U(k)Q̂(k).
In case (a) we have Q̂(k) = Ini(k)+nj(k) . Indeed, since the basic core algorithm is well-

behaved, the diagonal elements of both H̃(k+1) and H(k) are affiliated to the same eigenvalues.
We know that the diagonal elements of each diagonal block of H̃(k+1) are in non-increasing
order. The condition (a) implies that they are in descending order. The same must be true for
the diagonal elements of H(k). Therefore, the permutation matrix Q(k) has to be the identity.

From the relation (5.18) we conclude that ˆ̃U(k) tends to diagonal form. Hence, we obtain

lim
k→∞

(|U(k)| − In) = lim
k→∞

(|Ũ(k)| − In) = 0.

Consequently, for a large enough k, ‖ diag(H(k+1))− diag(H(k))‖F is arbitrarily small, and
the diagonal elements of H(k) cannot change their affiliation to the eigenvalues of H.

In case (b) the proof is similar although a bit more complicated. Recall that the diagonal
elements of Λ

(k)
i(k)i(k) (Λ(k)

j(k)j(k)) are ordered non-increasingly. Let τi(k) (τj(k)) be the partition

of ni(k) (nj(k)) determined by the diagonal elements of Λ
(k)
i(k)i(k) (Λ(k)

j(k)j(k)) (cf. (3.11), (3.12)),
and let τ̂ (k) = (τi(k), τj(k)) be the partition of ni(k) + nj(k). The partition τ̂ (k) is linked to
the sequence λ̂(k)

1 , . . . ,λ̂(k)
ni(k)+nj(k)

of the diagonal elements of Λ̂(k). The assumption in (b)

implies that τ̂ (k) is a subpartition of the partition (ni(k), nj(k)) of Ĥ(k). We can call the
block-matrix partition defined by τ̂ (k) the local natural partition of Λ̂(k) and of Ĥ(k).

Let us partition ˆ̃U(k), Q̂(k), and Û(k) using the local natural partition of Ĥ(k). The
condition (b) and the relation (5.18) imply that ˆ̃U(k) tends to block-diagonal form. Because
the basic core algorithm is well-behaved, condition (b) implies that for a large enough k, the
matrix Q̂(k) is block diagonal. Hence, for a large enough k, Û(k) is arbitrary close to the
block-diagonal form determined by τ̂ (k). Let us prove

(5.20) lim
k→∞

(
[Û(k)]∗Ĥ(k)Û(k) − Ĥ(k)

)
= 0.
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From the relation (5.14) we have

(5.21) Ĥ(k) = Λ̂(k) + Ξ̂(k), lim
k→∞

Ξ̂(k) = 0.

Using (5.21), for a large enough k, we have

‖[Û(k)]∗Ĥ(k)Û(k) − Ĥ(k)‖F ≤ ‖[Û(k)]∗Λ̂(k)Û(k) − Λ̂(k)‖F + 2‖Ξ̂(k)‖F .

The matrices Λ̂(k) and Û(k) carry the same local natural partition, Λ̂(k) is diagonal, while
Û(k) tends to block-diagonal form. This implies

lim
k→∞

(
[Û(k)]∗Λ̂(k)Û(k) − Λ̂(k)

)
= 0.

The relation (5.20) is implied from the last three relations.
Since [Û(k)]∗Ĥ(k)Û(k) is diagonal, (5.20) implies

‖diag(H(k+1))− diag(H(k))‖F = ‖[Û(k)]∗Ĥ(k)Û(k) − diag(Ĥ(k))‖F
≤ ‖[Û(k)]∗Ĥ(k)Û(k) − Ĥ(k)‖F + ‖Ĥ(k) − diag(Ĥ(k))‖F → 0 as k →∞.

As in the case (a) we conclude that for a large enough k, the diagonal elements of H(k) cannot
change their affiliation to the eigenvalues of H.

Note that condition (a) is contained in (b). We separated it because it is the most common
case in practice. In the general case, when the diagonal elements of H(k) affiliated with the
same eigenvalue remain scattered across several blocks, we have to add an additional property
to the modified block Jacobi method (see [28, Definition 4.2]).

DEFINITION 5.8. The block Jacobi method has a property D if it is convergent to diagonal
form and for a sufficiently large k the diagonal elements of the associated matrices Λ(k) are
in non-increasing ordering.

For the modified block Jacobi method, the first condition of Definition 5.8 is fulfilled.
It is an open question how to most efficiently implement the property D in the block Jacobi
method. Obviously, for a large enough t it will suffice to apply just one permutational similarity
transformation on H[t] which orders the diagonal elements non-increasingly.

THEOREM 5.9. The modified block Jacobi method is globally convergent under the de Rijk
pivot strategy provided that it has the property D, the basic core algorithm is well-behaved,
and the modified core algorithm has the property R.

Proof. Our goal is to prove that (Λ(k), k ≥ k0) is a stationary sequence. Theorem 5.7
implies that it remains to consider the case when the initial matrix H has at least one multiple
eigenvalue which fails to satisfy condition (b).

Since the basic core algorithm is well-behaved, from the relation (5.16) we conclude that
the matrix Λ(k), k > k0, is associated with both H(k) and H̃(k+1).

Let k′0 = max{k0, k′}, where k′ is such that each Λ(k), k > k′, has non-increasing
diagonal elements (see Definition 5.8). We consider step k of the block Jacobi method such
that k satisfies k ≥ k1 ≥ k′0 and where k1 will be addressed later.

To simplify notation we will omit the superscript k, and in the following analysis we will
denote the matrices (see Section 4.1)

Ĥ(k), Λ̂(k) = diag(λ̂
(k)
1 , . . . , λ̂

(k)
ni+nj ), Û(k), P̂(k), P̂

(k)
0 , Q̂(k), ˆ̃U(k), ˆ̃H(k+1),H(k+1)

by

Ĥ, Λ̂ = diag(λ̂1, . . . , λ̂ni+nj ), Û, P̂, P̂0, Q̂, ˆ̃U, ˆ̃H′, H′,
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respectively. Here, ˆ̃H′ = ˆ̃U∗Ĥ ˆ̃U. We also denote ni(k) (nj(k)) by ni (nj) and
Λ̂ = diag(Λii,Λjj).

Let Λ̂′ = diag(λ̂′1, . . . , λ̂
′
ni+nj ) be associated with Ĥ′ = Û∗ĤÛ. Then

Λ̂′ = [P̂0Q̂]∗Λ̂P̂0Q̂, and our aim is to show Λ̂′ = Λ̂. Obviously, Λ̂′ = Λ̂ implies Λ′ = Λ.
Since the modified block Jacobi method has the property D, the diagonal elements of Λ are in
non-increasing ordering. Thus, λ̂1 ≥ · · · ≥ λ̂ni+nj . Since we consider the case λ̂ni = λ̂ni+1,
we have four possibilities:

(a) Λ̂ = λ̂1Ini+nj ,
(b) λ̂1 = · · · = λ̂r > λ̂r+1 ≥ · · · ≥ λ̂ni+nj , ni < r < ni + nj ,
(c) λ̂1 ≥ · · · ≥ λ̂r > λ̂r+1 = · · · = λ̂ni+nj , 1 ≤ r < ni,
(d) λ̂1 ≥ · · · ≥ λ̂r > λ̂r+1 = · · · = λ̂s > λ̂s+1 ≥ · · · ≥ λ̂ni+nj ,

1 ≤ r < ni < s < ni + nj .
(a) If Λ̂ = λ̂1Ini+nj , then all diagonal elements of Ĥ and Ĥ′ are affiliated with the multi-

ple eigenvalue λ̂1. Then for any permutation matrix P̂0 and Q̂, we have
Λ̂′ = [P̂0Q̂]∗Λ̂P̂0Q̂ = Λ̂.

(b) In this case we can write Λ̂ = diag(Λ̂1, Λ̂2), where Λ̂1 = λ̂1Ir. Let us partition ˆ̃U,
P̂, and Q̂ in accordance with the partition (r, ni + nj − r) of ni + nj :

(5.22) ˆ̃U =

[
ˆ̃U11

ˆ̃U12

ˆ̃U21
ˆ̃U22

]
, P̂ =

[
P11 P12

P21 P22

]
, Q̂ =

[
Q11 Q12

Q21 Q22

]
=

[
Qii

Qjj

]
.

Here, ˆ̃U11, P11, and Q11 have dimension r, r > ni, and Qii has dimension ni. As
in the proof of Lemma 5.6(ii), we conclude that for a sufficiently large k1, ‖ ˆ̃U12‖F and

‖ ˆ̃U21‖F can be made so small that the QR algorithm with column pivoting of [Ũii Ũij ] yields
P̂ = diag(P11, Ini+nj−r). Since the modified core algorithm has the property R, the matrix
P̂ is replaced by P̂0 = diag(P

(0)
11 , Ini+nj−r), where P

(0)
11 is of order r.

As for Q̂, we have Q̂ = diag(Qii, Qjj), and let us consider the product Q̂∗Λ̂Q̂. This
product reduces to two products: Q∗iiλ̂1IniQii = λ̂1Ini and Q∗jjΛjjQjj = Λjj . Here we
used the fact that Qjj orders the diagonal of Λjj non-increasingly and that the diagonal
elements of Λjj are already ordered non-increasingly. We obtain

Λ̂′ = Q̂∗P̂∗0Λ̂P̂0Q̂ = Q̂∗

[
[P

(0)
11 ]∗λ̂1IrP

(0)
11

Λ̂2

]
Q̂ = Q̂∗Λ̂Q̂ = Λ̂.

(c) In this case we have Λ̂ = diag(Λ̂1, Λ̂2), Λ̂2 = λ̂ni+njIni+nj−r, 1 ≤ r < ni. Let

us partition ˆ̃U, P̂, and Q̂ in accordance with Λ̂. We obtain the relation (5.22) where ˆ̃U11,
P11, and Q11 have dimension r. For a sufficiently large k1, ‖ ˆ̃U12‖F and ‖ ˆ̃U21‖F can be
made so small that the Householder QR algorithm with column pivoting of [Ũii Ũij ] yields

(see Remark 4.1) P̂ = diag(P11,P22). Here we used the fact that ˆ̃U11 is close to a unitary
matrix. Since the modified core algorithm has the property R, the matrix P̂ is replaced
by P̂0 = diag(Ir,P22). Now, as the matrix P22 has the same dimension as Λ̂2, we have
P̂T

0 Λ̂P̂0 = Λ̂.
We also have Q12 = 0, Q21 = 0, so that Q̂ = diag(Q11,Q22) = diag(Qii, Qjj). This

is implied by the assumption λ̂r > λ̂r+1. Now, the permutation matrixQii orders the diagonal
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elements of Λii non-increasingly, although they have already been ordered non-increasingly.
Therefore, we have Q∗iiΛiiQii = Λii, and the proof of Λ̂′ = Λ̂ is completed similarly as in
the case (b).

(d) In this case we partition Λ̂, ˆ̃U, P̂, and Q̂ in accordance with the partition
(r, s− r, ni + nj − s) of ni + nj . We have Λ̂ = diag(Λ̂1, Λ̂2, Λ̂3), with Λ̂2 = λ̂sIs−r, and

ˆ̃U =


ˆ̃U11

ˆ̃U12
ˆ̃U13

ˆ̃U21
ˆ̃U22

ˆ̃U23

ˆ̃U31
ˆ̃U32

ˆ̃U33

 , P̂ =

P11 P12 P13

P21 P22 P23

P31 P32 P33

 , Q̂ =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 .
As above, we conclude that for a sufficiently large k1, ‖[ ˆ̃U12,

ˆ̃U13]‖F and ‖ ˆ̃U23‖F can be
made so small that the QR factorization with column pivoting of [Ũii Ũij ] yields
P̂ = diag(P11,P22, Ini+nj−s). Here P11 = I11′ · · · Ir,r′ with all second subscripts
1′, . . . , r′ not larger than r < ni. Because the modified core algorithm has the property
R, the matrix P̂ is replaced by P̂0 = diag(Ir,P22, Ini+nj−s). Since P22 has the same
dimension as Λ̂2 = λ̂sIs−r, we have P̂T

0 Λ̂P̂0 = Λ̂.
As for the matrix Q̂, for a sufficiently large k1 we must have Q12 = 0, Q13 = 0,

Q23 = 0, and therefore Q̂ = diag(Q11,Q22,Q33). This is implied by the assumption
λ̂r > λ̂r+1 = · · · = λ̂s > λ̂s+1. Furthermore, Q11 and Q33 are block-diagonal and such that
Q∗11Λ̂1Q11 = Λ̂1 and Q∗33Λ̂3Q33 = Λ̂3. Since Λ̂2 = λ̂sIs−r we have Q∗22Λ̂2Q22 = Λ̂2.
Thus, Q̂∗Λ̂Q̂ = Λ̂. Together with P̂T

0 Λ̂P̂0 = Λ̂ this proves Λ̂′ = Λ̂ and completes the proof
of the theorem.

Next, we consider the case when the core algorithm is the simple Jacobi method under
the de Rijk pivot strategy.

COROLLARY 5.10. Let the modified block Jacobi method be defined by the de Rijk pivot
strategy. Let the basic core algorithm be the element-wise Jacobi method under the de Rijk
pivot strategy, and let the modified core algorithm have the property R. Then the iterative
process will reach the stage when off(H(k)) ≤ δ, k ≥ k0.

If during just one full cycle, starting with the step t0M , t0M ≥ k0, the modified core
algorithm is replaced by the basic core algorithm, then the block Jacobi method will have the
property D, and therefore it will be globally convergent.

Proof. By Theorem 5.2 the block Jacobi method converges to diagonal form. We have
already shown that the simple Jacobi method under the de Rijk pivot strategy is well-behaved.
Hence, Theorem 5.9 implies that it remains to show that the block method has the property D.

We will use the following fact: if the core algorithm is the simple Jacobi method under
the de Rijk pivot strategy, then the diagonal elements of each Ĥ(k) ′ = [Û(k)]∗Ĥ(k)Û(k) are
ordered non-increasingly.

Let us consider the cycle of the process that begins with t0M , t0M ≥ k0 where k0 is
from the relation (3.15). The proof mimics the proof of Theorem 5.4. To simplify notation we
can assume that t0 = 0. Then the diagonal elements of the first diagonal block of H(m) are
affiliated with the largest eigenvalue(s).

If the multiplicity ν1 of λς1 from (3.11) is not larger than n1, then the first ν1 diagonal
elements of H(m)

11 will be affiliated with λς1 . Otherwise, all diagonal elements of H(m)
11 are

affiliated with λς1 . If n1 + · · · + n`−1 < ν1 ≤ n1 + · · · + n`, then we have to consider
first τ(`,m) = m − 1 + (m − 2) + · · · + (m − `) steps of the block method. Since the
core algorithm orders the diagonal elements of the current pivot submatrix non-increasingly,
we conclude that in H(τ(`,m)) the first ν1 diagonal elements are affiliated to λς1 . Repeating
the same argument for the diagonal elements that are affiliated to λς2 and later to the other
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eigenvalues, we obtain that the associated matrix Λ(M) has non-increasingly ordered diagonal
elements. This ordering cannot be disrupted by later transformations as shown in the proof
of Theorem 5.9. This shows that the smallest k from Definition 5.8 satisfies k ≤ (t0 + 1)M .

Corollary 5.10 raises a question how to implement it in a practical computation. In which
cycle to replace the modified core algorithm with the basic one? Let t count the cycles. It is
sufficient to provide a sequence of positive integers, say, (3, 5, 7, 9, . . .), and then in cycles 3,
5, 7, 9, . . . replace the modified with the basic core algorithm. To ensure global convergence,
one has to take care that there is an infinite number of cycles that employ the modified core
algorithm.

Anyway, after the cycle t0 (t0 is from Corollary 5.10) is completed, the modified core
algorithm with the property R will be reduced to the basic one.

5.5. Quadratic convergence of the block method. The following quadratic convergence
result can be seen as a corollary of Proposition 5.1 and Theorem 5.9.

THEOREM 5.11. Consider the modified block Jacobi method under the de Rijk pivot
strategy such that it has the property D, the basic core algorithm is well-behaved, and the
modified core algorithm has the property R. Then it is quadratically convergent, provided
the diagonal elements that converge to the same eigenvalue are contained within the same
diagonal block or within two adjacent diagonal blocks of the basic block-matrix partition. For
a sufficiently large t0 we have

off(H([t+1]) ≤ 0.27622
off2(H[t])

δ
, t ≥ t0.

Proof. By Theorem 5.9 the block Jacobi method is globally convergent. So, there exists
a k0 such that the diagonal elements of Λ(k), k ≥ k0, are ordered non-increasingly and the
relation (5.11) holds. Let t0 be the smallest integer such that t0M ≥ k0. We consider the
cycle t of the method such that t ≥ t0. To simplify notation, we can assume t = 0. In the first
cycle, the process starts with H(1) = H[0] and ends with H(M+1) = H[1].

Instead of using (5.10) and (5.8), which are linked to the simple method, we will use the
relation (5.1) from Proposition 5.1. By a variant of Bernoulli’s inequality we obtain

off2(H[1]) ≤ off2(H[0])

(
1−

M−1∏
k=1

i(k) 6=j(k)−1

cos2 ϕ(k)

)
≤ off2(H[0])

M−1∑
k=1

i(k)6=j(k)−1

sin2 ϕ(k),

where cosϕ(k) = σmin(U
(k)
i(k)i(k)) is the cosine of the maximal angle from the Cosine-Sine

decomposition of Û(k). In the following we will replace the subscripts i(k), j(k) by i, j,
respectively.

From the same decomposition of Û(k) we get

sinϕ(k) = σmax(U
(k)
ji ) = ‖U (k)

ji ‖2 = ‖U (k)
ij ‖2.

From (2.8) we obtain

M−1∑
k=1

i6=j−1

‖H(k)
ij ‖

2
F ≤

1

2
off2(H[0]).
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To connect the last two relations, we use Ĥ(k)Û(k) = Û(k)Ĥ(k) ′, which is linked to the
transformation of the pivot submatrix. Equating the (1, 2)-submatrices on the left- and right-
hand sides of this equation, we obtain

H
(k)
ii U

(k)
ij − U

(k)
ij H

(k)
jj
′ = −H(k)

ij U
(k)
jj .

Since the diagonal blocks H
(k)
ii and H

(k)
jj
′ are diagonal, we can assume that

H
(k)
ii = diag(ξ

(k)
1 , . . . , ξ

(k)
ni ) and H

(k)
jj
′ = diag(ξ

(k)
1
′, . . . , ξ

(k)
nj
′). For the (r, s)-element

of U (k)
ij , we obtain

(ξ(k)s
′ − ξ(k)r )(U

(k)
ij )rs = (H

(k)
ij U

(k)
jj )rs.

Because the relation (5.11) holds, the diagonal elements of H(k)
ii and H(k)

jj
′ are at most 0.22δ

close to the corresponding diagonal elements of Λ̂(k). The diagonal elements converging to
the same eigenvalue are contained within the same diagonal block or within two adjacent
diagonal blocks. Since i+ 1 < j we conclude that

|ξ(k)r − ξ(k)s
′| ≥ 3δ − 2 · 0.22δ = 2.56δ.

Hence, we obtain

|(U (k)
ij )rs| =

|(H(k)
ij U

(k)
jj )rs|

|ξ(k)r − ξ(k)s
′|
≤
|(H(k)

ij U
(k)
jj )rs|

2.56δ
, 1 ≤ r ≤ ni < s ≤ ni + nj ,

and consequently,

‖U (k)
ij ‖2 ≤ ‖U

(k)
ij ‖F ≤

‖H(k)
ij U

(k)
jj ‖F

2.56δ
≤
‖H(k)

ij ‖F ‖U
(k)
jj ‖2

2.56δ
≤
‖H(k)

ij ‖F
2.56δ

.

Combining all previous relations we arrive at

off2(H[1]) ≤ off2(H[0])

M−1∑
k=1

i 6=j−1

sin2 ϕ(k) = off2(H[0])

M−1∑
k=1

i 6=j−1

‖U (k)
ij ‖

2
2

≤ off2(H[0])

2.562δ2

M−1∑
k=1

i(k)6=j(k)−1

‖H(k)
ij ‖

2
F ≤

off4(H[0])

2 · 2.562δ2
.

To complete the proof, one has to take the square root of the left- and right-hand side of the
obtained inequality.

Once the eigenvalues are computed, we can detect from (3.11) the natural partition. Since
the basic partition is also known, we can verify a posteriori whether the conditions of the
corollary are met.

The quadratic convergence proof of the block Jacobi method in the general case is still
an open problem. A first approach to solve it could be to try to follow the lines of the proof
in [22] and use some of the above relations.
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6. The Kogbetliantz method under the de Rijk pivot strategy. If one wants to compute
the singular value decomposition of a square matrix, then one can use the simple [5, 35, 39, 40]
or block [4, 53] Kogbetliantz method. However, there are several reasons why not to use the
de Rijk pivot strategy with this method. To explain it, we will consider the simple method. All
arguments that hold for the simple method will also hold for the block method.

The most precious feature of a method is its ability to compute the output data with an
accuracy that is close to the one that the problem allows. Such a method is said to have the high
relative accuracy property. The QR factorization is a useful tool which reduces a rectangular
or square matrix to triangular form. This procedure not only reduces the matrix to a simpler
form but it also maintains the property of the matrix that allows for the computation of the
SVD to high relative accuracy.

So, a typical procedure for computing the SVD of a square matrix would first use the QR
factorization with column pivoting and then would employ some iterative method to compute
the SVD of the obtained triangular matrix. An excellent choice for the second procedure is the
provably globally convergent row- (or column-) cyclic Kogbetliantz method [34]. The reason
is threefold:

• The algorithm is simplified because during the iteration the pivot submatrix is trian-
gular and half of all of the off-diagonal elements are zero. This can be used to reduce
the cost associated with one step of the method. Approximately, the number of flops
needed for updating the current matrix is one half of the number of flops when the
Kogbetliantz method updates the full square matrix.

• The total number of sweeps (and thus of steps) in practical computation is reduced
because the method is quadratically convergent [20, 22]. The quadratic convergence
is guaranteed in the case of simple singular values. In the case of multiple singular
values, the diagonal elements converging to the same multiple singular value have to
occupy adjacent positions on the diagonal. This can be achieved by using a special
procedure at the end of each cycle.

• The method computes the singular values to high relative accuracy [45].

Now, let us consider what happens when the Kogbetliantz method is applied to an upper-
triangular matrix A under the de Rijk pivot strategy. One can easily see that each permutation
matrix that is part of the pivot strategy ruins the special (sometimes called essentially triangular
or hierarchically triangular) form that is created by the row-cyclic strategy [34]. This means
that at the end of the first cycle the matrix will become the full square matrix. When applied
to a full square matrix under the de Rijk strategy, the Kogbetliantz method has the following
disadvantages:

• The method is not provably globally convergent, i.e., there is no proof of global
convergence.

• The method is not efficient. Each step is twice as expensive as the step of the row-
cyclic method when applied to the triangular matrix. The additional cost comes from
the fact that in the case of multiple singular values, the method is not quadratically
convergent [19]. Namely, this means more sweeps until convergence.

• There is no proof that the Kogbetliantz method is a high relative accuracy method
when applied to a full square matrix.

In conclusion, although the de Rijk pivot strategy can be defined and used with the simple and
block Kogbetliantz method, there are reasons why not to use it.

However, the de Rijk pivot strategy can be used with the simple and block one-sided
Jacobi method for computing the SVD of a triangular matrix. The global and quadratic
convergence results proved in this paper apply directly to those one-sided Jacobi methods.
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7. Several numerical examples. We have used MATLAB to observe the behavior of
the function off(H(k)) for all steps k until convergence. Here, H is the initial real symmetric
matrix. We considered the real simple and block Jacobi methods.

The block method is supposed to operate on large matrices. If the computation is done on
a parallel computer, it can use any parallel cyclic pivot strategy, and as the core algorithm it
then can use the simple Jacobi method. We will see that the de Rijk pivot strategy is a good
choice for the simple Jacobi method when it is used as the core algorithm. For smaller matrices
the computation can be done on standard computers like a PC. In this case one can use both
the block and simple Jacobi method and can employ the de Rijk strategy in both cases.

As has been shown in [13, 14], before employing the one-sided Jacobi method to solve
the SVD of a matrix, it is advantageous to apply the QR factorization with column pivoting of
the matrix and, oftentimes additionally, the LQ factorization of the obtained triangular factor
R. In this way the obtained factor L is closer to diagonal form, and its diagonal entries are
arranged in non-increasing ordering. Furthermore, if the initial matrix allows for accurate
singular value computation, then the same is true for the computed triangular factors R and L.
Then the block or simple Jacobi method makes an excellent choice for the iterative part of the
procedure.

If the eigenvalue problem of a symmetric (or complex Hermitian) positive definite matrix
H is considered, then one can first use the Cholesky factorization with diagonal pivoting
followed by the LQ factorization of the Cholesky factor. Again the one-sided block Jacobi
method can be used to solve the SVD of the computed factor L, and the core algorithm can be
the simple Jacobi method under the de Rijk pivot strategy.

These important cases direct us to consider the convergence properties of the block or
simple Jacobi method for symmetric or complex Hermitian matrices which are somewhat
closer to diagonal form and have non-increasing diagonal elements. Here we considered only
real matrices and methods.

7.1. The simple Jacobi method under the de Rijk strategy. As mentioned earlier, the
simple Jacobi method is a good choice for the core algorithm of the block method. Here are a
few facts that justify it:

• the core algorithm operates on matrices of small size, typically between 32 and 512,
and

• the pivot submatrices Ĥ(k) in the block Jacobi method are most of the time almost
diagonal. For almost diagonal symmetric matrices, the simple Jacobi method is
highly accurate [44] and efficient since a quadratic asymptotic convergence takes
place (see [22, 61] and Section 5.3 here).

The core algorithm is used to compute both the eigenvalues and eigenvectors. Therefore, we
will make several tests to see whether the de Rijk strategy minimizes the total number of cycles
required to diagonalize a symmetric matrix. To this end we will compare the efficiency of five
pivot strategies:

1. the row-cyclic strategy,
2. the row-cyclic strategy modified as follows: before each cycle the permutational

similarity transformation is applied to the matrix in such a way that the diagonal
elements are ordered non-decreasingly,

3. the row-cyclic strategy modified as in the latest item, only that the diagonal elements
are ordered non-increasingly,

4. the de Rijk pivot strategy,
5. the de Rijk pivot strategy, but before applying the Jacobi method, the diagonal

elements are ordered non-increasingly.
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The corresponding simple Jacobi methods are coded in MATLAB as functions named

djacobi, djacobi_a, djacobi_d, djac_Rijk, and djac_DRijk.

The input and output arguments are the same for all functions. The input arguments are a
symmetric matrix A and a variable eivec that determines whether the eigenvectors are to be
computed, e.g., the function djacobi_Rijk is invoked by

[eivs,V,offs,indicator] = djac_Rijk(A,eivec).
Here, eivs is the column vector of eigenvalues, V is the eigenvector matrix, and indicator
is a vector of six components.

The first component indicates if some problem was encountered before or during the
iteration. The second and third entry count the total number of steps and number of steps
in which the transformation was really computed. Namely, in the later stage of the process,
the pivot elements become so small that they can be set to zero [55] without performing the
similarity transformation. The fourth and fifth entries are the total number of cycles and the
number of actual cycles (the third entry divided by N = n(n− 1)/2). The last entry is the
total number of swaps used by the method. This number includes the swaps that are used in
the permutational similarity transformations provided they are a part of the method (this refers
to the functions djacobi_a, djacobi_d, djac_Rijk, and djacobi_DRijk).

The output variable offs is a two-column matrix. The first column stores the ordinal
numbers of the steps at which the off-norm is computed while the second column contains the
corresponding off-norms. In each cycle the off-norm is computed ndisp times. The default
of ndisp is 20. The output offs is used to plot the off-norm curve.

Let us describe the stopping criterion of the process. We have used the one from [55],
which works well for the two-sided Jacobi methods. Before computing the elements of
the rotation matrix, it is tested in the script whether the pivot element aij can be replaced
with zero, and the process continues with the next step. The pivot element is set to zero if
fl(|aii|+µ |aij |) = |aii| and fl(|ajj |+µ |aij |) = |ajj |, where µ = 100. Here fl(e) denotes
the computed value of the expression e. This implies µ|aij | ≤ ε|aii| and µ|aij | ≤ ε|ajj |,
and consequently |aij |/

√
|aiiajj | ≤ ε/µ. Here, ε is the unit roundoff. Replacing the pivot

element by zero in such a way will be referred to as an empty or zero transformation. The
process is terminated when all off-diagonal elements become zero. From [6] we easily deduce
that replacing aij by zero in this way can relatively perturb each eigenvalue of the positive
definite matrix A by an amount not larger than ε/µ.

We have used two ways of generating the initial symmetric matrix A of order n. The
first one generates a positive definite matrix which, for given n, depends on four parameters
k1,k2,k3, and kk. To compute A we have used the following code:

function retval = matgen(n,k1,k2,k3,kk)
X=rand(n); X=X.’*X; D=diag(scalvec(n,k1,k2,k3,kk)); X=D*X*D; retval= 0.5*(X+X.’);
end

function retval=scalvec(n,k1,k2,k3,k)
d1=logspace(round(k1),round(k2),k); d2=logspace(round(k2),round(k3),n-k+1);
retval=[d1,d2(2:n-k+1)];
end

We have chosen n = 512 and kk=round(n/2), i.e., kk = 256. The three parameters k1,
k2, k3 are selected using three loops which begin with the statements: for k1=5:-4:-3,
for k2=3:-4:-5, for k3= 2:-5:-8. In this way most of the generated matrices have
descending diagonal elements, and their eigenvalues can be computed to high relative accuracy.

For all figures, the vertical lines of the grid separate the cycles. The ticks on the x-axis
coincide with the vertical lines. They are labeled by the appropriate number of steps: 1, N + 1,
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2N + 1, 3N + 1, . . . , where N = n(n− 1)/2 = 130816. The y-axis is labeled off-norm
because the y-values of the graphs are obtained from the second column of the appropriate
matrices offs. In Figure 7.1 we have selected six typical cases from the obtained 27 graphs.
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FIG. 7.1. The graphs of the off-norm function.
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We have labeled the graphs obtained by the functions

djacobi, djacobi_a, djacobi_d, djac_Rijk,
djacobi_DRijk

with

row-cyclic, row-cyclic asc, row-cyclic desc, deRijk,
deRijk modified,

respectively.
We see that the performance of the modified de Rijk pivot strategy was always the best or

among the best ones. The number of swaps that occurred in djac_Rijk was the smallest (in
the range 173–1340), followed by the number of swaps in djacobi_DRijk (202–1263),
djacobi_d (293–1840), and djacobi_a (1219–2286).

The second way generates a positive definite matrix A which, for given n, also depends on
the parameters k1, k2, k3, and kk. This time we have chosen n = 256, kk=round(n/2).
The matrix A is computed using the code which is listed below:

[Q,~]=qr(rand(n)); m=round(n/5); nn=10; nn1=20;
d=scalvec(n,k1,k2,k3,kk); for k=m+1:m+nn, d(k)=d(m); end
for k=n-m+1:n-m+nn1, d(k)=d(n-m)+1e-4*sin(pi*k/n); end
A=Q*diag(d)*Q.’; A=0.5*(A+A.’);

The matrix A has two clusters of eigenvalues; the one of smaller size includes 10 eigen-
values, and the other one has 20 eigenvalues. The second cluster has a width of about 10−4.
The width of the first cluster depends on k1, k2, k3, and on the limitations of the computer
arithmetic. This width is as small as max{10k1, 10k2, 10k3}ε, where ε is the unit roundoff.
The graphs obtained by MATLAB are very similar to the ones presented above. Interestingly,
with three of the eight matrices, the performance of djacobi was worse than or equal to the
performance of djacobi_a.

7.2. The block Jacobi method under the de Rijk strategy. We have tested four variants
of the block methods under the de Rijk pivot strategy. The first two variants are the bdR1
method with and without the initial sorting of the diagonal elements in the non-increasing
ordering. The third and fourth variants are the bdR2 method with and without the initial sorting
of the diagonal elements. In all four block methods, the core algorithm was the same, the
simple Jacobi method under the modified de Rijk strategy. This means that the initial sorting
of the diagonal elements of the pivot submatrix was used. The input and output parameters
are similar as in the scripts related to the simple Jacobi methods, only that the off-norms are
computed after certain block-steps. The block iterative process is terminated when in one
cycle all transformations within the core algorithm are empty. This automatically implies that
off(A) = 0.

We have used the same algorithms for generating the initial symmetric matrix. Thus, for
a given n, the initial matrix is determined by four parameters: k1, k2, k3, and kk. When
we used the parameters satisfying k1 ≥ k2 ≥ k3, kk = n/2, the off-norm reduction was
almost the same for all four block methods. Therefore, we have chosen n = 1024, kk = 512,
k1 = 1, k2 = 5, k3 = −4. For the block methods, we have chosen the block size to be 4, 8,
16, 32, and 64.

As mentioned earlier, in each figure, the grid’s vertical lines mark the beginning of the
new cycle. The x-ticks coincide with these vertical lines. In Figure 7.2 all five graphs of the
off-norm functions for different choices of the block sizes are displayed.
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FIG. 7.2. The graphs of the off-norm function.

As is expected, the larger the block size, the fewer cycles are needed to complete the
process. It can be seen that the initial sorting of the diagonal elements really contributes to the
decrease of the total number of cycles. We can also observe the ultimate quadratic reduction
of the off-norm per cycle. Next, we considered the off-norm function when the symmetric
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matrix has clusters of mutually close eigenvalues. We have chosen n = 2048 and the block
size 16. The symmetric matrix A is generated in a similar way as in Section 7.1. We have used
the function gensymm_mult whose listing is given below:

function A = gensymm_mult(n,kk,k1,k2,k3,posit,rng_num)
[~,m]=size(posit); d=scalvec(n,k1,k2,k3,kk); rng(rng_num);
for i=1:m

pi=posit(1,i); ni=posit(2,i); ei=posit(3,i);
for j=pi:pi+ni, d(j) = d(pi)+ei*(2.0*rand-1.0); end

end
[Q,~]=qr(rand(n)); A=Q*diag(d)*Q.’; A=0.5*(A+A.’); end

The code first generates the vector d whose entries will be close to the eigenvalues of
A. This is accomplished by using the scalvec function. The two loops are used to replace
certain adjacent entries of d with repeated entries or clusters of close numbers. The input
parameter posit is a three-row matrix. The entries of the first row of posit determine
locations from which the entries of d will be changed. The second row determines how many
entries of d are changed at each location. The third row determines the width of the cluster
at each location. If the width of some cluster is zero, then we have repeated the entries in d
at that location. The last line of the code makes a similarity transformation of the diagonal
matrix diag(d) with an orthogonal matrix Q. Obviously, since all computations are made in
double precision, the exact eigenvalues of A and the entries of d will not be the same. They
can differ by quantities bounded by max{10k1, 10k2, 10k3}ε, where ε is the unit roundoff.

In this way we have generated three matrices of order 2048. The input matrices posit
are given below:146 402 800 1506

10 10 10 10
0 0 0 0

 ,

150 400 800 1500
10 10 10 10
0 0 0 0

 ,

 150 400 800 1500
30 40 50 40

10−5 10−10 0 10−8

 .

In Figure 7.3 we display the graphs of the off-norm function linked to the same block methods
that we used in past experiments.

From the first graph we see that the asymptotic quadratic convergence occurs when the
diagonal elements associated with a tiny cluster of eigenvalues lie in one diagonal block of
the block-matrix partition. This is in harmony with Theorem 5.7. It seems that this condition
also reduces the total number of cycles. Note that the underlying matrix has clusters of width
smaller than 10−13.

The symmetric matrix linked to the second graph has clusters of width not larger than
10−11, and in the later stage of the process the clusters of mutually close diagonal elements
are not contained in one diagonal block. This slows the process, but ultimately the quadratic
convergence prevails.

From the last graph we see that the process slows down even more when the clusters of
eigenvalues are large and their widths vary largely. In the later stage of the process the diagonal
elements affiliated with one cluster of eigenvalues spread through more than two diagonal
blocks. In this case the process has terminated before the ultimate quadratic convergence has
begun.

We end this section by examining the magnitude of σmin(U
(k)
i(k)i(k)) during the process.

From Proposition 5.1 and relation (5.1) we conclude that the larger the minimum magnitude
of σmin(U

(k)
i(k)i(k)) during one cycle, the better the reduction of the off-norm in that cycle.

Our aim is to numerically investigate what block method delivers the largest minimum of
σmin(U

(k)
i(k)i(k)) over all iterations.
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FIG. 7.3. The graphs of the off-norm function.

So, we have chosen the matrices associated with Figure 7.2, and we slightly modified our
MATLAB functions. The output offs now contains σmin(U

(k)
i(k)i(k)) in the second column

instead of the off-norm of the current matrix. To this end we also changed the value of ndisp
from 20 to 100. Namely, only during the first two or three cycles, the value of σmin(U

(k)
i(k)i(k))

was not in close proximity of 1. So, we displayed only the graphs for the first three cycles.
In Figure 7.4 are displayed the graphs of σmin(U

(k)
i(k)i(k)) for the matrix determined by the

parameters n = 1024, kk = 512, k1 = −3, k2 = 5, k3 = −5.

1 497 993 1489

steps

10-5

100

m
in

(s
vd

(U
11

))

n=1024,  block size = 32,   kk=512,    k1=-3,    k2=5,    k3=-5

bdR1 with initial sorting

bdR2 with initial sorting

bdR1 with no sorting

bdR2 with no sorting

FIG. 7.4. The graphs of the σmin(U
(k)
i(k)i(k)

) function.
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TABLE 7.1
The minimum σmin(U

(k)
i(k)i(k)

).

bdR1-is bdR2-is bdR1-ns bdR2-ns

mink{σmin(U
(k)
i(k)i(k))} 2.771 · 10−2 5.777 · 10−2 6.462 · 10−5 4.633 · 10−10

In Table 7.1 we present the minimum values of σmin(U
(k)
i(k)i(k)) taken over all steps of the

process for each method. In the table, the headers bdR1-is (bdR1-ns) denotes the block Jacobi
method under de Rijk strategy with the initial (i.e., with no) sorting. The same notation is used
for the block methods with the bdR2 strategy.

We can see that the initial ordering of the diagonal elements significantly raises
mink{σmin(U

(k)
i(k)i(k))}. This implies that the block transformation matrices have small off-

diagonal blocks, which has a beneficial impact on the iterative process. By this we mean the
reduction in the total number of cycles and a slightly better accuracy of the output data. In
addition it suggests that a modification of the core algorithm might not be necessary.

8. Conclusion and future work. This paper brings two main messages. First, it shows
that the de Rijk pivot strategy most likely requires a smaller number of cycles than any cyclic
strategy in the simple and block Jacobi method for the Hermitian eigenvalue problem. The
price for this is an additional but altogether small number of swaps of columns and rows. This
makes that pivot strategy a good candidate to be a part of the core algorithm in the block
methods. Second, the problem of the global and quadratic convergence of the Jacobi methods
for symmetric (complex Hermitian) matrices is almost completed. It yet remains to prove
global convergence of the simple and block Jacobi method under a general cyclic strategy.

As for future work, it is tempting to prove similar results for the Jacobi methods that use
other Jacobi-like methods or solve other eigenvalue problems, say, for the J-symmetric [59]
and J-Hermitian Jacobi method [32, 33] or for the Cholesky–Jacobi [25, 27, 31] and Hari–
Zimmermann [25, 26, 29, 46, 50] method, which are direct extensions of the Jacobi method.
They solve the generalized eigenvalue problem.

Acknowledgments. The author is indebted to Vedran Novaković for reading, formatting,
and improving the manuscript. He is especially indebted to the reviewers for commenting on
and improving this long paper.
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[3] E. BEGOVIĆ KOVAČ AND V. HARI, Convergence of the complex block Jacobi methods under the generalized
serial pivot strategies, Linear Algebra Appl., 699 (2024), pp. 421–458.
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[6] J. DEMMEL AND K. VESELIĆ, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal. Appl., 13
(1992), pp. 1204–1245.

[7] P. P. M. DE RIJK, A one-sided Jacobi algorithm for computing the singular value decomposition on a vector
computer, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 359–371.

[8] F. M. DOPICO, J. M. MOLERA, AND J. MORO, An orthogonal high relative accuracy algorithm for the
symmetric eigenproblem, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 301–351.
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[49] V. NOVAKOVIĆ, Accurate complex Jacobi rotations, J. Comput. Appl. Math., 450 (2024), Paper No. 116003,

6 pages.
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