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AN ARROW–HURWICZ-TYPE ITERATION FOR THE THERMALLY COUPLED
INCOMPRESSIBLE MAGNETOHYDRODYNAMICS MODEL WITH GRAD-DIV

STABILIZATION∗

AYTURA KERAM† AND PENGZHAN HUANG†

Abstract. This paper shows that, for the stationary thermally coupled incompressible magnetohydrodynamics
problem, an application of the grad-div stabilization technique and a modification of the Arrow–Hurwicz iteration can
improve the convergence rate of the Arrow–Hurwicz algorithm and remove restrictions on the relaxation parameter α
for this algorithm. Based on the grad-div stabilization method, we design an Arrow–Hurwicz-type iterative finite
element algorithm for solving this problem. A convergence analysis as well as numerical tests show that the proposed
iteration performs better for the considered problem compared to the standard Arrow–Hurwicz iteration.
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1. Introduction. We consider an Arrow–Hurwicz-type iterative finite element algorithm
with grad-div stabilization for approximating solutions of the stationary thermally coupled
incompressible magnetohydrodynamics (STCIMHD) model [28, 29]. On a bounded do-
main Ω ⊂ R2 with a Lipschitz continuous boundary ∂Ω, the non-dimensional form of the
STCIMHD equations reads as

(1.1)

−Re−1∆u + (u · ∇)u +∇p+ sH× curlH = f + βT j, in Ω,

sRm−1curl(curlH)− scurl(u×H) = g, in Ω,

−κ∆T + u · ∇T = γ, in Ω,

div u = 0, div H = 0, in Ω,

with boundary conditions

(1.2)

u|∂Ω = 0, (no-slip condition),

H · n|∂Ω = 0 and n× curlH|∂Ω = 0, (perfectly conducting wall),

T |ΓD
= 0 and ∇T · n|ΓN

= 0, (insulated wall),

where u is the velocity field, H is the magnetic field, p is the pressure, and T is the temperature.
The parameters Re,Rm,κ, s, and β are positive and denote the hydrodynamic Reynolds number,
the magnetic Reynolds number, the thermal conductivity, the coupling number, and the thermal
expansion coefficient, respectively. Besides, n is the outer unit normal vector to ∂Ω, j denotes
a unit vector in the direction opposite to gravity, ΓD = ∂Ω \ ΓN , where ΓN is a regular open
subset of ∂Ω, g represents the known applied current with div g = 0, f is a force term for the
magnetic induction, and γ is a given heat source.
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Although the multi-physical field coupling of the STCIMHD model makes the numer-
ical simulation challenging, an investigation of its numerical properties is important due
to the broad applications of the model. There is a large amount of literature on numerical
investigations of the STCIMHD equations in recent years. For example, the existence and
uniqueness of a weak solution and the convergence analysis of finite element approxima-
tions for the STCIMHD system were discussed in [28, 29]. In [30], a general approach to
stationary, electromagnetically and thermally driven liquid-metal flows was studied by Meir
and Schmidt. Bermúdez et al. [3] proposed and analyzed some existence results of weak
solutions to the stationary magnetohydrodynamics systems of equations including Joule heat-
ing. Moreover, Yang and Zhang [37] proposed three iterative methods with a finite element
discretization in space for the STCIMHD equations. For more extensive investigations we
refer to [2, 5, 7, 17, 24, 25, 27, 33, 34, 38, 39] and their references.

However, due to the existence of incompressibility constraints, many numerical methods
for solving the STCIMHD equations need to solve saddle point systems at each iteration.
Hence, the Arrow–Hurwicz iterative finite element method, which is an inexact version of
the Uzawa method, is proposed to approach this problem [18]. It is an efficient method for
dealing with saddle point problems, and it is applied, for instance, for the steady incompressible
Navier-Stokes equations [8], the stationary magnetohydrodynamics flow [40], the Smagorinsky
model [19], etc. Although the Arrow–Hurwicz algorithm avoids solving saddle point problems
exactly, there exists certain restrictions on the parameter α (see [18, Remark 3.2]), where α > 0
is a relaxation parameter for the pressure which plays an important role in the convergence
of the Arrow–Hurwicz algorithm. Hence, it is natural to ask whether this restriction can be
removed.

As a common and powerful tool for improving the solution quality, the grad-div stabiliza-
tion has been widely studied both analytically and computationally [1, 4, 9, 15, 20, 21, 22,
23, 26, 31, 32, 36, 41]. It adds a penalty term with respect to the continuity equation to the
momentum equation and can mitigate the lack of mass conservation and improve the solution
accuracy by reducing the effect of the pressure on the velocity error [16]. A grad-div enhanced
Arrow–Hurwicz iterative finite element algorithm was recently investigated in [11]. It was
shown that applying the idea of the grad-div stabilization to the Arrow–Hurwicz iteration
can improve convergence. Besides, Takhirov et al. [35] have proposed an improved Arrow–
Hurwicz-type method for approximating the steady-state Navier-Stokes equations, which is
inspired from the artificial compressibility method.

Inspired by [11] and [35], in this paper we propose an Arrow–Hurwicz-type iterative finite
element algorithm with grad-div stabilization for approximating the solution of the STCIMHD
equations. This iterative algorithm improves the convergence rate of the Arrow–Hurwicz
algorithm and eliminates the restriction for the relaxation parameter α of the algorithm. The
remainder of this article is structured as follows. In Section 2, we introduce some basic
notations and results for the problem (1.1)–(1.2) and also recall the finite element method
and its stability. In Section 3, we propose an Arrow–Hurwicz-type iterative algorithm for
the considered problem. Then, the iterative error is analyzed for the presented algorithm.
In Section 4, the relationship between algorithm parameters and iterative linear solutions is
investigated. Some numerical experiments are performed to validate the efficiency of the
proposed algorithm in the final section.

2. Preliminaries. Throughout this paper, (·, ·) and ‖ · ‖0 denote the inner product and
norm on L2(Ω), respectively. Besides, we write H1(Ω) for the usual Sobolev space W 1,2(Ω).
Next, in order to write the variational form of (1.1)–(1.2), we define the following function
spaces:
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X = {v ∈ H1(Ω)2 : v|∂Ω = 0}, W = {B ∈ H1(Ω)2 : B · n|∂Ω = 0}

and

Q = {S ∈ H1(Ω) : S|ΓD
= 0}, M = {q ∈ L2(Ω) : (q, 1) = 0}.

Additionally, we introduce the product space D = X × W, equipped with the norm
‖∇(w,Φ)‖20 = ‖∇w‖20 + ‖∇Φ‖20, for all (w,Φ) ∈ D.

Moreover, we define three continuous bilinear forms a0(·, ·), a1(·, ·), and a2(·, ·) on
Q×Q, X×X, and W ×W, respectively, by

a0(T, S) = κ(∇T,∇S),

a1(u,v) = Re−1(∇u,∇v),

a2(H,B) = sRm−1
(
(curlH, curlB) + (div H,div B)

)
,

and three trilinear forms b0(·, ·, ·), b1(·, ·, ·), and b2(·, ·, ·) on X×Q×Q, X×X×X, and
W ×W ×X, respectively, by

b0(u, T, S) =(u · ∇T, S) + 0.5((div u)T, S) = 0.5(u · ∇T, S)− 0.5(u · ∇S, T ),

b1(u,w,v) =((u · ∇)w,v) + 0.5((div u)w,v) = 0.5((u · ∇)w,v)− 0.5((u · ∇)v,w),

b2(H,B,v) =s(H× curlB,v).

These forms satisfy the following properties [10, 12]:

|b0(u, T, S)| ≤ N0‖∇u‖0‖∇T‖0‖∇S‖0,
|b1(u,w,v)| ≤ N1‖∇u‖0‖∇w‖0‖∇v‖0,
|b2(H,B,v)| ≤ sN2‖∇H‖0‖∇B‖0‖∇v‖0,

(2.1)

for all T, S ∈ Q, u,v,w ∈ X, and H,B ∈ W, where Ni > 0, i = 0, 1, 2, are constants
depending on Ω.

Then, the STCIMHD equations (1.1)–(1.2) can be rewritten as follows:
Find ((u,H), T, p) ∈ D×Q×M such that for all ((v,B), S, q) ∈ D×Q×M

a0(T, S) + b0(u, T, S) = (γ, S),(2.2)
A0 ((u,H), (v,B)) +A1((u,H),(u,H), (v,B))− d((v,B), p)

= (F, (v,B)) +G(T, (v,B)),(2.3)
d((u,H), q) = 0,(2.4)

where

A1 ((u,H), (w,Φ), (v,B)) = b1(u,w,v) + b2(H,Φ,v)− b2(H,B,w),

d((v,B), p) = (div v, p),

A0 ((u,H), (v,B)) = a1(u,v) + a2(H,B),

(F, (v,B)) = (f ,v) + (g,B), and
G(T, (v,B)) = β(T j,v).

In order to discuss the well-posedness of the variational formulation (2.2)–(2.4), we
verify the coercivity and continuity property of A0 ((·, ·), (·, ·)) and the continuity property of
A1 ((·, ·), (·, ·), (·, ·)) .
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LEMMA 2.1 ([18]). For all (u,H), (w,Φ), (v,B) ∈ D, there holds

A0 ((u,H), (v,B)) ≤ cA‖(u,H)‖0‖(v,B)‖0,

A0 ((u,H), (u,H)) ≥ νA‖(u,H)‖20,

A1 ((u,H), (w,Φ), (v,B)) ≤ N‖(u,H)‖0‖(w,Φ)‖0‖(v,B)‖0,

where

cA = max{Re−1, 4sRm−1}, νA = min{Re−1, sRm−1c1}, N =
√

2 max{N1, N2s}.

Now, we establish the following existence and uniqueness results for the problem (1.1)–
(1.2):

THEOREM 2.2 ([28, 29, 37]). Let γ ∈ Q′, F ∈ D′, κ, β, and νA satisfy the following
uniqueness condition:

0 < δ < 1, where δ = δ1 + δ2 with

δ1 := ν−2
A N(‖F‖−1 + κ−1β‖γ‖−1), δ2 := ν−1

A κ−2βN0‖γ‖−1,

‖γ‖−1 = sup
T∈Q,T 6=0

(γ, T )

‖∇T‖0
‖F‖−1 = sup

(u,H)∈D,(u,H)6=0

(F, (u,H))

‖∇(u,H)‖0
.

Then the problem (1.1)–(1.2) admits a unique solution ((u,H), p, T ) ∈ D×M ×Q such that

νA‖∇(u,H)‖0 ≤ ‖F‖−1 + βκ−1‖γ‖−1, κ‖∇T‖0 ≤ ‖γ‖−1.

From now on, let h be a real positive parameter. The conforming finite element subspaces
(Xh,Wh, Qh,Mh) of (X,W, Q,M) are characterized by Kh = Kh(Ω), a partitioning of
Ω into triangles K, assumed to be uniformly regular as h→ 0. Next, we define the product
space Dh = Xh ×Wh. Further, we assume that Dh ×Mh admits the following discrete
inf-sup condition: For each qh ∈Mh, there exists (vh,Bh) ∈ Dh such that [29]

sup
(vh,Bh)∈DDDh,(vh,Bh)6=(0,0)

|d((vh,Bh), qh)|
‖(vh,Bh)‖0

≥ β̃‖qh‖0,(2.5)

where β̃ > 0 is a constant depending on Ω.

Then, according to the above definition of the finite element subspaces, the finite element
approximation for (2.2)–(2.4) is to find ((uh,Hh), Th, ph) ∈ Dh ×Qh ×Mh such that for
all ((v,B), S, q) ∈ Dh ×Qh ×Mh

a0(Th, S) + b0(uh, Th, S) = (γ, S),(2.6)
A0 ((uh,Hh), (v,B)) +A1 ((uh, Hh), (uh,Hh), (v,B))− d((v,B), ph)

= (F, (v,B)) +G(Th, (v,B)),(2.7)
d((uh,Hh), q) = 0.(2.8)

The following results can be found in [29, 37], which describe the stability of the numerical
solutions obtained by (2.6)–(2.8).
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THEOREM 2.3. Let ((uh,Hh), Th, ph) ∈ Dh × Qh ×Mh be a solution of the finite
element discretization (2.6)–(2.8). Then, under the assumptions of Theorem 2.2, there holds

νA‖∇(uh,Hh)‖0 ≤ ‖F‖−1 + βκ−1‖γ‖−1, κ‖∇Th‖0 ≤ ‖γ‖−1.

3. An Arrow–Hurwicz-type iterative algorithm. In this section, we present an Arrow–
Hurwicz-type iterative finite element algorithm with grad-div stabilization for the STCIMHD
model and then show an iterative error estimate of the proposed algorithm.

ALGORITHM 3.1 (Arrow–Hurwicz-type iterative algorithm).
Let ρ > 0 and α > 0 be two relaxation parameters. Then, we find(

(un+1
h ,Hn+1

h

)
, Tn+1
h , pn+1

h ) ∈ Dh ×Qh ×Mh

by the following two steps:
Step I: Choose an initial function pair

(
(u0
h,H

0
h), T 0

h , p
0
h

)
∈ Dh ×Qh ×Mh defined by

solving the following equations:

a0(T 0
h , S) = (γ, S), ∀S ∈ Qh,

A0

(
(u0
h,H

0
h), (v,B)

)
− d((v,B), p0

h) = (F, (v,B)) +G(T 0
h , (v,B)), ∀(v,B) ∈ Dh,

d
(
(u0
h,H

0
h), q

)
= 0, ∀q ∈Mh.

Step II: For n = 1, 2, . . . and given ((unh,H
n
h), Tnh , p

n
h) ∈ Dh ×Qh ×Mh,

find the update
(
(un+1
h ,Hn+1

h ), Tn+1
h , pn+1

h

)
∈ Dh ×Qh ×Mh as solution of

ρ−1Reκ
(
∇Tn+1

h −∇Tnh ,∇S
)

+ a0

(
Tn+1
h , S

)
+ b0

(
unh, T

n+1
h , S

)
= (γ, S) ,(3.1)

ρ−1
(
∇un+1

h −∇unh,∇v
)

+ ρ−1Re a2

(
Hn+1
h −Hn

h,B
)
− d ((v,B), pnh)

+A0

(
(un+1
h ,Hn+1

h ), (v,B)
)

+A1

(
(unh,H

n
h), (un+1

h ,Hn+1
h ), (v,B)

)
+
ρ

α

(
div un+1

h ,div v
)

= (F, (v,B)) +G(Tn+1
h , (v,B)) ,(3.2)

α
(
pn+1
h − pnh, q

)
+ ρd

(
(un+1
h ,Hn+1

h ), q
)

= 0,(3.3)

for all (v,B) ∈ Dh, S ∈ Qh, and q ∈Mh.

REMARK 3.2. The usual Arrow–Hurwicz algorithm is a generalization of the Uzawa
algorithm, where the terms a0(Tn+1, S) and A0

(
(un+1
h , Hn+1

h ), (v,B)
)

in Algorithm 3.1
read a0(Tn, S) and A0 ((unh, H

n
h ), (v,B)) . Although the Arrow–Hurwicz algorithm avoids

solving saddle point problems exactly, there exists a restriction on the parameter α (see [18,
Remark 3.2]).

For convenience, we set

enh = uh − unh, ξnh = Hh −Hn
h, ηnh = ph − pnh, and θnh = Th − Tnh , n ≥ 0.

Firstly, we recall the iterative error estimates of the initial guess in Step 1.
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LEMMA 3.3 ([18]). Let
(
(u0
h,H

0
h), p0

h, T
0
h

)
∈ Dh ×Qh ×Mh be the solution of Step 1.

Then, under the assumptions of Theorem 2.3, we have the following results:

‖∇θ0
h‖0 ≤ β−1δ2

(
‖F‖−1 + βκ−1‖γ‖−1

)
,

‖∇
(
e0
h, ξ

0
h

)
‖0 ≤ ν−1

A δ
(
‖F‖−1 + βκ−1‖γ‖−1

)
,

‖η0
h‖0 ≤ β̃−1δ

(
cAν

−1
A + 1

) (
‖F‖−1 + βκ−1‖γ‖−1

)
.

Secondly, we are going to show that the solution from Algorithm 3.1 is bounded.
THEOREM 3.4. Assume that {(unh,Hn

h), pnh, T
n
h } is the function sequence from Algo-

rithm 3.1. If Re νA > β and the parameter ρ satisfies

ρ ≤ min

{
ν−1
A κδ1,

Re νA − β
Re cA + νAδ1 + κ−1N0‖γ‖−1 − νAδ2

}
,(3.4)

then {(unh,Hn
h), pnh, T

n
h } is uniformly bounded with respect to h and n.

Proof. Subtracting (2.6) from (3.1), we have

a0(θn+1
h , S) + b0(enh,Th, S) + b0(unh, θ

n+1
h , S)

+ ρ−1Reκ
(
∇(θn+1

h − θnh),∇S
)

= 0.
(3.5)

Choosing S = θn+1
h in (3.5) and combining (2.1) with the fact that b0

(
unh, θ

n+1
h , θn+1

h

)
= 0,

we get(
ρ−1Reκ+ κ

)
‖∇θn+1

h ‖20 ≤ ρ−1Reκ‖∇θnh‖0‖∇θn+1
h ‖0 +N0‖∇enh‖0‖∇Th‖0‖∇θn+1

h ‖0,

which, together with Theorem 2.3 and the definition of the norm of the product space D,
yields (

ρ−1Reκ+ κ
)
‖∇θn+1

h ‖0 ≤ ρ−1Reκ‖∇θnh‖0 + κ−1N0‖γ‖−1‖∇ (enh, ξ
n
h) ‖0.(3.6)

Then, subtracting (2.7) from (3.2), we obtain

ρ−1
(
∇
(
en+1
h − enh

)
,∇v

)
+ ρ−1Re a2

(
ξn+1
h − ξnh,B

)
+A0

((
en+1
h , ξn+1

h

)
, (v,B)

)
+A1

(
(unh,H

n
h) ,
(
en+1
h , ξn+1

h

)
, (v,B)

)
+A1 ((enh, ξ

n
h) , (uh,Hh) , (v,B))

− d ((v,B) , ηnh) +
ρ

α

(
div en+1

h ,div v
)

= G
(
θn+1
h , (v,B)

)
.

(3.7)

Setting (v,B) = (en+1
h , ξn+1

h ) in (3.7) and using Lemma 2.1 and Young’s inequality yields(
ρ−1Re νA + νA

)
‖∇
(
en+1
h , ξn+1

h

)
‖20

− d
((

en+1
h , ξn+1

h

)
, ηnh
)

+
ρ

α

(
∇ · en+1

h ,∇ · en+1
h

)
≤ Re cA‖∇ (enh, ξ

n
h) ‖0‖∇

(
en+1
h , ξn+1

h

)
‖0 + β‖θn+1

h ‖−1‖∇
(
en+1
h , ξn+1

h

)
‖0

+N‖∇ (enh, ξ
n
h) ‖0‖∇ (uh,Hh) ‖0‖∇

(
en+1
h , ξn+1

h

)
‖0.

(3.8)

Note that A1

(
(unh,H

n
h) , (en+1

h , ξn+1
h ), (en+1

h , ξn+1
h )

)
= 0.
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Moreover, combining (2.8) with (3.2) gives

α

ρ

(
ηn+1
h − ηnh , q

)
+ d

(
(en+1
h , ξn+1

h ), q
)

= 0.(3.9)

Let q = ηnh in (3.9). Then with help of the polarization identity 2ab = (a+ b)2 − a2 − b2, we
have

α

2ρ

(
‖ηn+1
h ‖20 − ‖ηnh‖20 − ‖ηn+1

h − ηnh‖20
)

+ d
(
(en+1
h , ξn+1

h ), ηnh
)

= 0.(3.10)

Next, in order to estimate the term ‖ηn+1
h − ηnh‖0, we select q = ηn+1

h − ηnh in (3.9) and use
the Cauchy–Schwarz inequality to obtain

‖ηn+1
h − ηnh‖0 ≤ ρα−1‖ div en+1

h ‖0.(3.11)

Hence, using (3.10), (3.11), and Theorem 2.3, we rewrite (3.8) as

(ρ−1Re νA + νA)‖∇(en+1
h , ξn+1

h )‖20 +
α

2ρ
‖ηn+1
h ‖20

≤ α

2ρ
‖ηnh‖20 + (Re cA + νAδ1)‖∇(enh, ξ

n
h)‖0‖∇(en+1

h , ξn+1
h )‖0

+ β‖θn+1
h ‖−1‖∇(en+1

h , ξn+1
h )‖0,

which is combined with (3.6) and Young’s inequality to give(
ρ−1Re νA + νA

)
‖∇(en+1

h , ξn+1
h )‖20

+
α

2ρ
‖ηn+1
h ‖20 + βν−1

A (ρ−1Reκ+ κ)‖∇θn+1
h ‖20

≤ α

2ρ
‖ηnh‖20 + (Re cA + νAδ1) ‖∇(enh, ξ

n
h)‖0‖∇(en+1

h , ξn+1
h )‖0

+ β‖θn+1
h ‖−1‖∇(en+1

h , ξn+1
h )‖0 + βν−1

A ρ−1Reκ‖∇θnh‖0‖∇θn+1
h ‖0

+ βν−1
A κ−1N0‖γ‖−1‖∇(enh, ξ

n
h)‖0‖∇θn+1

h ‖0

≤ α

2ρ
‖ηnh‖20 + (Re cA + νAδ1)

(
‖∇(en+1

h , ξn+1
h )‖20 + ‖∇(enh, ξ

n
h)‖20

)
+ β

(
ρ‖∇θn+1

h ‖20 + ρ−1‖∇(en+1
h , ξn+1

h )‖20
)

+
1

2
βν−1

A ρ−1Reκ
(
‖∇θn+1

h ‖20 + ‖∇θnh‖20
)

+ κ−1N0‖γ‖−1

(
‖∇(enh, ξ

n
h)‖20 + ν−2

A β2‖∇θn+1
h ‖20

)
.

Then, it is easy to obtain that(
ρ−1Re νA + νAδ2 − Re cA − ρ−1β

)
‖∇(en+1

h , ξn+1
h )‖20

+
α

2ρ
‖ηn+1
h ‖20 +

(
1

2
βν−1

A ρ−1Reκ+ βν−1
A κδ1 − ρβ

)
‖∇θn+1

h ‖20

≤ α

2ρ
‖ηnh‖20 +

(
Re cA + νAδ1 + κ−1N0‖γ‖−1

)
‖∇(enh, ξ

n
h)‖20

+
1

2
βν−1

A ρ−1Reκ‖∇θnh‖20.

(3.12)

Under the assumption (3.4) it holds that

ρ−1Re νA + νAδ2 − 2Re cA − ρ−1β − νAδ1 − κ−1N0‖γ‖−1 ≥ 0
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and βν−1
A κδ1 − ρβ ≥ 0. Thus, dropping the nonnegative term in (3.12) gives

(
Re cA + νAδ1 + κ−1N0‖γ‖−1

)
‖∇(en+1

h , ξn+1
h )‖20

+
α

2ρ
‖ηn+1
h ‖20 +

1

2
βν−1

A ρ−1Reκ‖∇θn+1
h ‖20

≤
(
Re cA + νAδ1 + κ−1N0‖γ‖−1

)
‖∇(enh, ξ

n
h)‖20 +

α

2ρ
‖ηnh‖20

+
1

2
βν−1

A ρ−1Reκ‖∇θnh‖20,

which combined with Lemma 3.3 results in

(
Re cA + νAδ1 + κ−1N0‖γ‖−1

)
‖∇(en+1

h , ξn+1
h )‖20

+
α

2ρ
‖ηn+1
h ‖20 +

1

2
βν−1

A ρ−1Reκ‖∇θn+1
h ‖20

≤
(
Re cA + νAδ1 + κ−1N0‖γ‖−1

)
ν−2
A δ2

(
‖F‖−1 + βκ−1‖γ‖−1

)2
+

1

2
βν−1

A ρ−1Reκδ2
2β
−1
(
‖F‖−1 + βκ−1‖γ‖−1

)2
+

α

2ρ
β̃−2δ2

(
cAν

−1
A + 1

)2 (‖F‖−1 + βκ−1‖γ‖−1

)2
.

So, {(unh,Hn
h), pnh, T

n
h } is uniformly bounded, independent of the iterative number n and

the mesh size h.

Now, we are going to develop our convergence rate analysis for the Arrow–Hurwicz-type
iterative algorithm.

THEOREM 3.5. Under assumptions of Theorem 3.4, the following estimate holds:

%1‖∇(en+1
h ,ξn+1

h )‖20 +
α

2ρ
‖ηn+1
h ‖20 + %2‖θn+1

h ‖20

≤ $
(
%1‖∇(enh, ξ

n
h)‖20 +

α

2ρ
‖ηnh‖20 + %2‖θnh‖20

)
,

where

0 < %1 < ρ−1Re νA + νAδ2, 0 < %2 <
1

2
βν−1

A ρ−1Reκ+ βν−1
A κδ1, and 0 < $ < 1

are three generic constants independent of n and h.

Proof. In fact, according to Lemma 3.3 and Theorems 3.4, 2.3, there exists a positive
constant D1 independent of n and h such that

‖∇(unh,H
n
h)‖0 ≤ D1.(3.13)

Then, rewrite (3.7) to find
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d((v,B), ηnh) =
(
ρ−1Re + 1

)
A0

(
(en+1
h , ξn+1

h )
)
, (v,B))−G

(
θn+1
h , (v,B)

)
− ρ−1ReA0 ((enh, ξ

n
h), (v,B))

+A1

(
(unh,H

n
h), (en+1

h , ξn+1
h ), (v,B)

)
+A1 ((enh, ξ

n
h), (uh,Hh), (v,B))

+
ρ

α

(
div en+1

h ,div v
)
.

Applying the discrete inf-sup condition (2.5), Lemma 2.1, (3.13), and Theorem 2.3, we obtain

β̃‖ηnh‖0 ≤
(
ρ−1Re cA + cA +ND1 + ρα−1

)
‖∇(en+1

h , ξn+1
h )‖0 − β‖∇θn+1

h ‖0
+ (ρ−1Re cA + δ1νA)‖∇(enh, ξ

n
h)‖0

≤
(
ρ−1Re cA + cA +ND1 + ρα−1

)
(‖∇(en+1

h , ξn+1
h )‖0 + ‖∇θn+1

h ‖0)

+ (ρ−1Re cA + δ1νA)‖∇(enh, ξ
n
h)‖0

−
(
β + ρ−1Re cA + cA +ND1 + ρα−1

)
‖∇θn+1

h ‖0,

where we notice that ‖∇ · emh ‖0 ≤ ‖∇emh ‖0. Then, by the inequality (a+ b)2 ≤ 2a2 + 2b2,
we get

β̃2‖ηnh‖20 ≤ 2
(
ρ−1Re cA+cA +ND1+ρα−1

)2
(‖∇(en+1

h , ξn+1
h )‖0+‖∇θn+1

h ‖0)2

+ 2

(
(ρ−1Re cA + νAδ1)‖∇(enh, ξ

n
h)‖0

−
(
β + ρ−1Re cA + cA +ND1 + ρα−1

)
‖∇θn+1

h ‖0
)2

≤ 4(ρ−1Re cA+cA+ND1+ρα−1)2(‖∇(en+1
h , ξn+1

h )‖20+‖∇θn+1
h ‖20)

+ 4
(
ρ−1Re cA + νAδ1

)2 ‖∇(enh, ξ
n
h)‖20

+ 4
(
β + ρ−1Re cA + cA +ND1 + ρα−1

)2 ‖∇θn+1
h ‖20.

(3.14)

Furthermore, using the inequality (a+ b)2 ≤ 2a2 + 2b2 again, inequality (3.6) becomes(
ρ−1Reκ+ κ

)2‖∇θn+1
h ‖20

≤ 2ρ−2Re2κ2‖∇θnh‖20 + 2κ−2N2
0 ‖γ‖2−1‖∇(enh, ξ

n
h)‖20.

(3.15)

Next, combining (3.14) and (3.15), we have

β̃2‖ηnh‖20 ≤ 4
(
ρ−1Re cA + cA +ND1 + ρα−1

)2
(‖∇(en+1

h , ξn+1
h )‖20 + ‖∇θn+1

h ‖20)

+ 8

((
ρ−1Re cA + νAδ1

)2
+ (β + ρ−1Re cA + cA +ND1 + ρα−1)2

× (ρ−1Reκ+ κ)−2κ−2N2
0 ‖γ‖2−1

)
‖∇(enh, ξ

n
h)‖20

+ 8

((
β + ρ−1Re cA + cA +ND1 + ρα−1

)2
×
(
ρ−1Reκ+ κ

)−2
ρ−2Re2κ2

)
‖∇θnh‖20.
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Now, arrange the above inequality to get

‖∇(en+1
h , ξn+1

h )‖20 + ‖∇θn+1
h ‖20 ≥ B1‖ηnh‖20 −B2‖∇(enh, ξ

n
h)‖20 −B3‖∇θnh‖20,(3.16)

where

Q1 :=
(
ρ−1Re cA + cA +ND1 + ρα−1

)2
,

Q2 :=
(
ρ−1Re cA + νAδ1

)2
+
(
β + ρ−1Re cA + cA +ND1 + ρα−1

)2 (
ρ−1Reκ+ κ

)−2
κ−2N2

0 ‖γ‖2−1,

Q3 :=
(
β + ρ−1Re cA + cA +ND1 + ρα−1

)2 (
ρ−1Reκ+ κ

)−2
ρ−2Re2κ2,

B1 :=
β̃2

4Q2
1

, B2 :=
2Q2

Q2
1

, and B3 :=
2Q3

Q2
1

.

Further, define

D2 := ρ−1Re νA + νAδ2 − 2Re cA − ρ−1β − νAδ1 − κ−1N0‖γ‖−1,

D3 := βν−1
A κδ1 − ρβ, and Q4 := Re cA + νAδ1 + κ−1N0‖γ‖−1.

Then (3.12) becomes

(Q4 +D2) ‖∇(en+1
h , ξn+1

h )‖20 +
α

2ρ
‖ηn+1
h ‖20

+

(
1

2
βν−1

A ρ−1Reκ+D3

)
‖∇θn+1

h ‖20

≤ Q4‖∇(enh, ξ
n
h)‖20 +

α

2ρ
‖ηnh‖20 +

1

2
βν−1

A ρ−1Reκ‖∇θnh‖20.

(3.17)

Adding and subtracting the terms σ‖∇(en+1
h , ξn+1

h )‖20, σ‖∇θn+1
h ‖20 to (3.17) and using (3.16)

give (
Q4 +D2 − σ

)
‖∇(en+1

h , ξn+1
h )‖20

+
α

2ρ
‖ηn+1
h ‖20 +

(
1

2
βν−1

A ρ−1Reκ+D3 − σ
)
‖∇θn+1

h ‖20

≤ (Q4 + σB2) ‖∇(enh, ξ
n
h)‖20 +

(
α

2ρ
− σB1

)
‖ηnh‖20

+

(
1

2
βν−1

A ρ−1Reκ+ σB3

)
‖∇θnh‖20,(3.18)

where σ > 0 is to be determined. Suppose that the conditions

Q4 +D2 − σ > 0,
α

2ρ
− σB1 > 0, and

1

2
βν−1

A ρ−1Reκ+D3 − σ > 0,

hold. Then one can calculate the parameter σ > 0 such that

Q4 + σB2

Q4 +D2 − σ
=

α
2ρ − σB1

α
2ρ

=
1
2βν

−1
A ρ−1Reκ+ σB3

1
2βν

−1
A ρ−1Reκ+D3 − σ

,

which leads to

a1σ
2 − b1σ + c1 = 0, a1σ

2 − b2σ + c2 = 0,(3.19)
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where

a1 = B1, b1 =
α

2ρ
+D2B1 +B2

α

2ρ
+Q4B1,

b2 =
α

2ρ
+D3B1 +B3

α

2ρ
+

1

2
βν−1

A ρ−1ReκB1,

c1 =
α

2ρ
D2, and c2 =

α

2ρ
D3.

It is easy to verify that b1 > α
2ρ +D2B1 and b2 > α

2ρ +D3B1. According to (3.19), we get

aσ2 − bσ + c = 0,(3.20)

where a = 2a1, b = b1 + b2 >
α
ρ + a1(D2 +D3), and c = c1 + c2 = α

2ρ (D2 +D3), which
leads to

b
2 − 4a c >

(
α

ρ
+ a1 (D2 +D3)

)2

− 4a1α

ρ
(D2 +D3) =

(
α

ρ
− a1(D2 +D3)

)2

≥ 0.

Hence, (3.20) has two real roots σ1,2 = b±
√
b2−4ac
2a , and here we choose σ = b−

√
b2−4ac
2a .

With the parameter σ chosen as above, it follows from (3.18) that

%1‖∇(en+1
h , ξn+1

h )‖20 +
α

2ρ
‖ηn+1
h ‖20 + %2‖θn+1

h ‖20

≤ $
(
%1‖∇(enh, ξ

n
h)‖20 +

α

2ρ
‖ηnh‖20 + %2‖θnh‖20

)
,

where $ = 1− 2ρσB1

α ∈ (0, 1) and

%1 = Q4 +D2 − σ < ρ−1Re νA + νAδ2,

%2 =
1

2
βν−1

A ρ−1Reκ+D3 − σ <
1

2
βν−1

A ρ−1Reκ+ βν−1
A κδ1.

This finishes the proof.
REMARK 3.6. From [18, Remark 3.2], we know that if Q5 < ρ < Q6 and

α >


ρ2

2Re (νA−2cA)−ρ(2Q4−4cA)
, Q5 < ρ ≤ Re ,

ρ2

2Re (νA+2cA)−ρ(2Q4+4cA)
, Re < ρ < Q6

holds, where

Q4 = 2νAδ1 +N2
0κ
−2‖γ‖2−1 + β2, Q5 = max

{
0,

κRe

2κ− 2

}
,

Q6 = min

{
Re (νA + 2cA)

2cA +Q4

,
3κRe

2(κ+ 1)

}
,

then the Arrow–Hurwicz algorithm is convergent for the STCIMHD problem. However, from
Theorem 3.4, we find that Algorithm 3.1 has no such restriction for the parameter α as the
Arrow–Hurwicz algorithm.
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4. Parameter choice. The development of effective solvers for the STCIMHD problem
is an important problem in the study of incompressible fluids. A successful solver needs to
have two fundamental properties: the nonlinear iteration scheme must converge in a small
number of iterations and the linear systems that arise at each iteration must be efficiently
solvable. The Newton and Picard iterations typically converge in a small number of nonlinear
iterations [12] but create nonsymmetric saddle point linear systems that can be difficult to
solve. For the considered problem, other types of nonlinear iteration schemes that lead to
easier linear systems exist, such as iterated penalty (with a small penalty) or Arrow–Hurwicz
methods [13, 18, 40], but they may require a large number of nonlinear iterations to converge.

The grad-div stabilization [32], which was initially studied in [9], is a simple, useful, and
popular technique for incompressible flow problems. The grad-div stabilized schemes are
constructed to mitigate the lack of mass conservation and can improve the numerical accuracy
of the solution, and they help in reducing spurious oscillations for convection-dominated flows.
Hence, this tool has been widely studied for incompressible flows over the past decade. In
particular, for the Oseen equations, de Frutos et al. [6] have proved that adding a grad-div
stabilization term to the Galerkin approximation has a stabilizing effect for small viscosity.
Additionally, the grad-div stabilization is also known to aid in preconditioning the Schur
complement that arises in the associated linear systems, although there is a trade-off because
it makes the solution of the velocity block harder. We notice that it is always a challenge
to find a preconditioner that performs equally well for different mesh sizes and parameter
ranges. In fact, the grad-div stabilization can be seen as a different discretization of the
augmented Lagrangian term, and it shares algebraic properties with an augmented Lagrangian-
type term, which motivated Heister and Rapin [14] to construct a preconditioner with grad-div
stabilization.

However, the parameters of the proposed algorithm affect the performance of both the
linear and nonlinear solvers. Hence, it is important to investigate the relationship between
algorithmic parameters and iterative linear solutions. Next, we consider the matrix represen-
tation of (3.1)–(3.3). Given the nodal basis functions of Dh × Qh ×Mh, let the symbols
−→
U n,
−→
Hn,
−→
T n, and

−→
P n denote the vector representations of the discrete velocity field, the dis-

crete magnetic field, the discrete temperature field, and the discrete pressure field, respectively.
Then, by some simple calculations, we can reformulate the problem (3.1)–(3.3) in matrix form
as follows:


(ρ−1Re + 1)S1 + S2 0 0 0

−S3 Q S5 0
0 ST5 (ρ−1Re + 1)S6 0
0 − ρ

αS7 0 S8



−→
T n+1

−→
U n+1

−→
Hn+1

−→
P n+1



=


ρ−1Re 0 0 0

0 ρ−1Re 0 1
0 0 ρ−1Re 0
0 0 0 1



S1
−→
T n

S4
−→
U n

S6
−→
Hn

S8
−→
P n

+


M1

F
G
0

 ,(4.1)

where Q :=
(
Reρ−1 + 1

)
S4 + S9 + ρ

αS10, F, M1, and G are vector representations of
the body forces f , γ, and g, and where S1–S10 denote matrix representations of the various
discrete terms as given in the following table:
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Symbol denotes matrix representation of
S1 a0(·, ·)
S2 b0(·, ·, ·)
S3 G(·, (·, ·))
S4 a1(·, ·)
S5 b2(·, ·, ·)
S6 a2(·, ·)
S7 (∇ · uh,v)
S8 mass matrix related to ph
S9 b1(·, ·, ·)
S10 (∇ · uh,∇ · v)

For the linear system (4.1), the proper choice of the algorithmic parameters ρ and α
may improve the condition number of the coefficient matrix, and then it can accelerate the
convergence rate of the numerical solvers used. Hence, ρ and α play the role of a preconditioner.
We now turn to investigate the important issue of the relationship between α, ρ, and the iterative
linear solutions. Here the GMRES solver is applied as in the work [14].

Let the computational domain Ω = [0, 1]× [0, 1] and the right-hand side functions f ,g,
and γ be selected such that the exact solutions are given by

u1(x, y) = 0.5x2(x−1)2y(y−1)(2y−1), u2(x, y) = −0.5y2(y−1)2x(x−1)(2x−1),

H1(x, y) = 0.5 sin(πx) cos(πy), H2(x, y) = −0.5 cos(πx) sin(πy),

p(x, y) = 0.5 cos(πx) cos(πy), T (x, y) = u1(x, y) + u2(x, y).

Here, we set the parameters s = Rm = κ = β = 1. We use the MINI-element to approximate
the velocity, pressure, temperature and magnetic field, respectively.

Now, we consider test cases in which the linear systems are solved using the GMRES
solver. If the GMRES solver fails in an iteration, then the result is denoted by an “F”. In
Table 4.1 and 4.2, we list the iteration number for each parameter value of ρ and α, respectively.
From these tables, we find that if the value of α decreases or the value of ρ increases, then
the computational time decreases. In addition, the computational time, the average number
of GMRES iterations, as well as the necessary number of nonlinear iterations for different
values of Re are reported in Table 4.3. From this table, we find that the GMRES solver fails to
converge at large values of Re.

TABLE 4.1
Analysis of the solver performance and the influence of the stabilization on the error with respect to the

parameter choice of ρ with α = 1, h = 1/64, and Re = 1.

ρ 0.001 0.01 0.1 1 2 3 4 5
Outer iterations F 1491 241 31 15 12 13 F
Inner iterations F 116 131 154 140 141 132 F
CPU time F 6205.451 1189.801 210.457 123.570 105.772 110.381 F

5. Numerical tests. The grad-div stabilization can compensate for the lack of mass
conservation and improve the numerical accuracy of the solution. In this section, we mainly
consider this property of the grad-div stabilization and provide some numerical examples
to test the performance of the proposed algorithm. We assess the numerical performance
of Algorithm 3.1 for the STCIMHD equations. We use the MINI-element to approximate
the velocity, pressure, temperature, and magnetic field, respectively. Here, we take the fixed
tolerance 1.0e-6 in these tests.
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TABLE 4.2
Analysis of the solver performance and the influence of the stabilization on the error with respect to the

parameter choice of α with ρ = 1, h = 1/64, and Re = 1.

α 0.0001 0.001 0.01 0.1 1 10 100 1000
Outer iterations F 19 19 19 31 231 1375 F
Inner iterations F 130 133 145 154 129 116 F
CPU time F 142.601 157.771 214.179 210.457 957.610 4524.961 F

TABLE 4.3
The CPU time, the number of nonlinear iterations and average number of GMRES iterations with different

Reynolds numbers (ρ = 3, α = 1, and 1/h = 64).

Re 0.01 0.1 1 10 100 1000
CPU time 375.947 379.571 105.772 359.831 1960.997 F
Nonlinear iterations 63 61 12 49 396 F
Average number of GMRES 199 337 388 303 245 F

5.1. Convergence test. Consider the exact solution in the previous section. In Table 5.1,
we list the number of iterations of Algorithm 3.1 and the Arrow–Hurwicz algorithm with
different ρ. From this table, we find that both algorithms converge with the parameter ρ = 1.
If the parameter ρ increases, then the Arrow–Hurwicz algorithm diverges while Algorithm 3.1
still works well.

TABLE 5.1
Number of iterations with different ρ (α = 1, h = 1/64, Re = 1). “—” means that the number is larger than

1000.

ρ 1 2 3 4 4.5
Algorithm 3.1 31 15 12 12 13
Arrow–Hurwicz algorithm [18] 34 — — — —

TABLE 5.2
Number of iterations with different α (ρ = 1, h = 1/64, Re = 1). “—” means that the iterative number is

larger than 1000.

α 1 0.1 0.01
Algorithm 3.1 31 19 19
Arrow–Hurwicz algorithm [18] 34 — —

Moreover, we list the number of iterations of Algorithm 3.1 and the Arrow–Hurwicz
algorithm for different α in Table 5.2. From this table, we find that the Arrow–Hurwicz
algorithm is divergent with α = 0.1. However, Algorithm 3.1 is convergent for even smaller
α = 0.01.

In Table 5.3, we collect the norms of the divergence of uh. From this table, we find that
Algorithm 3.1 and the Arrow–Hurwicz algorithm run well and keep the optimal convergence
rate with Re = 1. However, for Re = 10, the Arrow–Hurwicz algorithm is not convergent,
but Algorithm 3.1 can still be implemented and optimal convergence order for the divergent
error is obtained.

5.2. Thermal driven cavity problem. In this experiment, we test Algorithm 3.1 for
the thermal driven cavity problem, which is investigated in [37]. The computational domain
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TABLE 5.3
Norm of the divergence and convergence orders by different algorithms (ρ = α = 1).

Arrow–Hurwicz [18] Arrow–Hurwicz [18] Algorithm 3.1 Algorithm 3.1
(Re = 1) (Re = 10) (Re = 1) (Re = 10)

1/h ‖ divun+1
h ‖0 Order ‖ divun+1

h ‖0 ‖ divun+1
h ‖0 Order ‖ divun+1

h ‖0 Order
32 8.115e-4 — Inf. 5.248e-4 — 6.706e-3 —
64 4.217e-4 0.94 Inf. 3.157e-4 0.73 3.423e-3 0.97
128 2.183e-4 0.94 Inf. 1.674e-4 0.91 1.715e-3 0.99
256 1.156e-4 0.91 Inf. 8.498e-5 0.98 8.569e-4 1.00

consists of a square cavity with differentially heated vertical walls, where the left and right
walls are kept at T = 1 and T = 0, respectively. The remaining walls are insulated, and there
is no heat transfer through them. No-slip boundary conditions are imposed for the velocity at
all walls. For the magnetic field, we set H1 = 1, ∂H2

∂n = 0 at the horizontal walls, and H2 = 0,
∂H1

∂n = 0 at the vertical walls.

In the numerical example, the computations are performed on the uniform grid 64× 64.
Here, we set the model parameters s = Re = Rm = 1 and take f = g = 0 and γ = 0. In
Table 5.4, we provide the maximum velocity for different thermal expansion coefficients β
at y = 0.5. From this table, we can see that Algorithm 3.1 requires less CPU time than the
Arrow–Hurwicz algorithm to obtain nearly the same maximum velocity value. In particular,
when the value of the thermal expansion coefficient reaches β = 1000, Algorithm 3.1 still
works well.

TABLE 5.4
Comparisons of the maximum velocity values obtained by different algorithms. “—” means that the iterative

number is larger than 1000.

β = 1 β = 10 β = 100 β = 1000 CPU time(β = 100)
Arrow–Hurwicz algorithm [18] 0.188 0.224 0.576 — 481.867
Algorithm 3.1 0.190 0.224 0.577 3.865 512.812

Furthermore, in Figures 5.1–5.3 below, the numerical velocity streamlines, the magnetic
field, and the isotherms for the considered problem obtained by Algorithm 3.1 and the Arrow–
Hurwicz algorithm are displayed for different thermal expansion coefficients. These figures
show that Algorithm 3.1 can capture the solutions of the large thermal expansion coefficient
problem.
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FIG. 5.2. The magnetic fields obtained by the Arrow–Hurwicz algorithm (the first column) and Algorithm 3.1
(the second column) at β = 1, 10, 100, and 1000 from top to bottom.
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FIG. 5.3. The isotherms obtained by the Arrow–Hurwicz algorithm (the first column) and Algorithm 3.1 (the
second column) at β = 1, 10, 100, and 1000 from top to bottom.
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