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STRUCTURE-PRESERVING DISCONTINUOUS GALERKIN APPROXIMATION
OF A HYPERBOLIC-PARABOLIC SYSTEM∗
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Abstract. We study the numerical approximation of a coupled hyperbolic-parabolic system by a family of discon-
tinuous Galerkin (DG) space-time finite element methods. The model is rewritten as a first-order evolutionary problem
that is treated by a unified abstract solution theory. For the discretization in space, generalizations of the distribution
gradient and divergence operators on broken polynomial spaces are defined. Since their skew-selfadjointness is
perturbed by boundary surface integrals, adjustments are introduced such that the skew-selfadjointness of the discrete
counterpart of the total system’s first-order differential operator in space is recovered. Well-posedness of the fully
discrete problem and error estimates for the DG approximation in space and time are proved.
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1. Introduction. We study the numerical approximation by discontinuous Galerkin (DG)
methods in space and time of solutions to the hyperbolic-parabolic system

ρ∂2
tu−∇ · (Cε(u)) + α∇p = ρf , in Ω× (0, T ] ,(1.1a)

c0∂tp+ α∇ · ∂tu−∇ · (K∇p) = g , in Ω× (0, T ] ,(1.1b)

u(0) = u0 , ∂tu(0) = u1 , p(0) = p0 , in Ω ,(1.1c)

u = 0 , p = 0 , on ∂Ω× (0, T ] .(1.1d)

For this, we rewrite (1.1) as a first-order evolutionary problem in space and time on the
open bounded domain Ω ⊂ Rd, with d ∈ {2, 3}, and for the final time T > 0. The
system (1.1) is investigated as a prototype model problem for poro- and thermoelasticity; cf.,
e.g., [14, 15, 16, 37, 49]. In poroelasticity, equations (1.1a) and (1.1b) describe the conservation
of momentum and mass. The unknowns are the effective solid phase displacement u and the
effective fluid pressure p. The quantity ε(u) := (∇u+ (∇u)>)/2 denotes the symmetrized
gradient or strain tensor. Further, ρ is the effective mass density,C is Gassmann’s fourth-order
effective elasticity tensor, α is Biot’s pressure-storage coupling tensor, c0 is the specific storage
coefficient, and K is the permeability field. For simplicity, the positive quantities ρ > 0,
α > 0, and c0 > 0 are assumed to be constant in space and time. Moreover, the tensors C
andK are assumed to be symmetric and positive definite and independent of the space and
time variables as well. In (1.1a), the effects of secondary consolidation (cf. [40]), described in
certain models by the additional term λ∗δijε(∂tu) in the total stress, are not included here.

Beyond the classical applications of (1.1) in subsurface hydrology and geophysics, for
instance in reservoir engineering, systems like (1.1) have recently attracted reseachers’ interest
in biomedical engineering; cf., e.g., [22, 25, 41]. In thermoelasticity, the system (1.1) describes
the flow of heat through an elastic structure. In this context, p denotes the temperature, c0
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is the specific heat of the medium, and K is the conductivity. The homogeneous Dirichlet
boundary conditions (1.1d) are studied here for simplicity and brevity.

By introducing the variable of unknowns U := (v,σ, p, q)>, with the quantities
v := ∂tu, σ := Cε, and q := −K∇p + αv, we transform the system (1.1) into an ab-
stract evolutionary equation written as the sum of two unbounded first-order differential
operators, one of them involving a first-order differential operator in time and the other one
involving first-order differential operators in space. In the exponentially weighted-in-time
Bochner space Hν(R;H) defined in (2.1), with some weight ν > 0 and the Hilbert space
H := L2(Ω)(d+1)2 , we then obtain the evolutionary equation for U ,

(1.2) (∂tM0 +M1 +A)U = F .

In (1.2), M0 and M1 are bounded linear selfadjoint operators in H , and A is an un-
bounded skew-selfadjoint operator inH . The right-hand side function F in (1.2) depends on
the source terms f and g of (1.1). For (1.2), a solution mechanism developed by R. Picard [42]
can be applied. It is based on the monotonicity of both the sum of the mentioned unbounded
operators together with its adjoint computed in the space-time Hilbert space. For the presen-
tation of the solution theory we refer to [48, Theorem 6.2.1]. The well-posedness criterion
for (1.2) that is summarized in Theorem 2.5 is elementary and general. It can be verified
without dealing with the intricacies of more involved solution methods. This is an appreciable
advantage of Picard’s theorem [42]. A priori, there is no explicit initial condition implemented
in the theory. For (1.2), an initial condition of the form limt↘t0 M0U(t) = M0U0, for
some t0 ∈ R and U ∈ D(A), can be implemented by a distributional right-hand side term
F + δt0M0U0 for some F ∈ Hν(R;H) supported on [t0,∞) and the Dirac distribution δt0
at t0. For details of this we refer to [43, Section 6.2.5] and [48, Chapter 9].

By introducing the four-field formulation for the unknown vector U , the problem size
is increased. However, in poroelasticity the explicit approximation of the flux variable
q = −K∇p is often desirable and of higher importance than the approximation of the fluid
pressure itself. For instance, this holds if the reactive transport of species dissolved in the fluid
is studied further. Simulations then demand for accurate approximations of the flux variable q.
A similar argument applies to the stress tensor σ if this variable is the goal quantity of physical
interest in (1.1) or needs to be post-processed for elucidating phenomena modeled by (1.1).
In implementations, the symmetry of the stress tensor σ can still be exploited to reduce the
problem size.

In this work we propose and analyze fully discrete numerical approximation schemes
that are built for the evolutionary equation (1.2). Their key feature is that they essentially
preserve the abstract evolutionary form (1.2) and the operators’ properties. However, due to
the nonconforming discretization in space that is applied here, the skew-selfadjointness of
the discrete counterpartAh ofA in (1.2) is perturbed by non-vanishing contributions arising
from boundary face integrals. Therefore, a correction term is introduced on the discrete level
to overcome this defect and to ensure that a discrete counterpart of the skew-selfadjointness,
which is essentially used in the analyses, is satisfied. In the design of numerical methods,
structure-preserving approaches ensuring that important properties of differential operators
and solutions to the continuous problem are maintained on the fully discrete level are highly
desirable and important to guarantee a physical realism of the numerical predictions. We focus
on DG discretizations of the space and time variables. DG methods for the space discretization
(cf., e.g., [26, 27, 46]) have shown their high flexibility and accuracy in approximating
reliably solutions to partial differential equations, even solutions with complex structures or
discontinuities, and in anisotropic or heterogeneous media. The application of DG schemes
for the space discretization of (1.2) and the definition of the DG counterpart of A in (1.2)
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to preserve skew-selfadjointness represent the key innovation of this work over a series of
previous ones [8, 32, 33, 34] based on Picard’s theory. For the DG space discretization, the
definition of the distribution gradient and divergence operator is extended to broken polynomial
spaces by penalizing the jumps of the unknowns over interelement surfaces. By still adding
some boundary correction due to the nonconformity of DG methods, the skew-selfadjointness
of A is passed on to its discrete counterpart Ah. This consistent definition and treatment
of the DG gradient and DG divergence operators for the nonconforming approximation is
essential for the overall approach and its analysis. It has not been studied yet. Finally, some
penalization term is incorporated into the discrete scheme to ensure that a weak form of the
Dirichlet boundary condition (1.1d) is satisfied.

For the discretization in time we use the DG method [50]. Variational time discretizations
offer the appreciable advantage of the natural construction of families of schemes with
higher-order members, even for complex coupled systems of equations. There exists a strong
link to Runge–Kutta methods; cf. [3, 4]. DG time discretizations are known to be strongly
A-stable. For elastodynamics and wave propagation they violate the energy conservation
principle of solutions to the continuous problem. This might evoke effects of damping or
dispersion. However, the convergence of the jump terms at the discrete time nodes is ensured;
cf. [33, Theorem 2.3]. Continuous-in-time Galerkin (CG) methods (cf., e.g., [2, 6, 11, 12, 32]
and the references therein) are known to be A-stable only, but they preserve the energy
of solutions [12, Section 6]. These families are more difficult to analyze since they lead
to Galerkin–Petrov methods with trial and test spaces differing from each other. For this
reason and due to computational advantages gained for simulations of the second-order
form (1.1), DG time discretizations are studied here. For studies of CG schemes we refer to,
e.g., [6, 11, 12, 28, 32, 38] and the references therein. For a numerical study of DG and CG
time discretizations of (1.1) we refer to [7].

In [34] and [32], one of the authors of this work studies with his coauthors numerical
schemes based on DG and CG Galerkin methods in time and conforming Galerkin methods in
space for evolutionary problems (1.2) of changing type. By decomposing Ω into three disjoint
sets and definingM0 andM1 setwise, the system (1.2) degenerates to elliptic, parabolic, or
hyperbolic type on these sets. Usually, degenerating problems are difficult to analyze. Due
to the weak assumptions about the operators made in the theory of Picard [42], such type of
problems can be embedded into this framework. The same applies to the concept of perfectly
matched layers in wave propagation; cf., e.g., [13, 23]. They are used to truncate the entire
space Rd or unbounded domains to bounded computational ones and mimic non-reflecting
boundary conditions. The analysis of wave propagation with artificial absorbing layers and
changing equations in either regions becomes feasible as well by the abstract solution theory.

In [24], space-time DG methods for weak solutions of hyperbolic linear first-order
symmetric Friedrichs systems describing acoustic, elastic, or electromagnetic waves are
proposed. For an introduction into the theory of first-order symmetric Friedrichs systems,
we refer to [29, 30, 31] and [26, Chapter 7]. Similarly to this work, in [24] a first-order in
space and time formulation of a second-order hyperbolic problem is used. In contrast to this
work, no coupled system of mixed hyperbolic-parabolic type is considered there. In [24], the
mathematical tools for proving well-posedness of the space-time DG discretization and error
estimates are based on the theory of first-order Friedrichs systems. The theory strongly differs
from Picard’s theorem [42] that is used here. The differences of either approaches still require
elucidation. In deriving space-time DG methods and proving error estimates, differences
become apparent in the norms with respect to which convergence is proved. In [24], stability
and convergence estimates are provided with respect to a mesh-dependent DG norm that
includes the L2-norm at the final time; cf. also [9].
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Here, convergence of the fully discrete approximation U τ,h of (1.2) is proved in Theo-
rem 4.1 with respect to the natural and induced norm of the exponentially weighted Bochner
space Hν(R;H), with the product spaceH = L2(Ω)(d+1)2 equipped with the L2-norm. For
the full discretization U τ,h of the solution U to (1.2), we show that

(1.3) sup
t∈[0,T ]

〈M0(U−U τ,h))(t), (U−U τ,h))(t)〉H +‖U−U τ,h‖2ν ≤ C(τ2(k+1) +h2r) ,

where ‖ · ‖ν is the exponentially weighted natural norm associated with Hν(R;H). Further, k
and r denote the piecewise polynomial degrees in time and space, respectively.

The paper is organized as follows. In Section 2 the evolutionary form (1.2) of (1.1) is
derived, and its well-posedness is shown. The space-time discretization of (1.2) by the DG
method is presented in Section 3. Its error analysis is addressed in Section 4. In Section 5, we
illustrate our error estimate by numerical experiments for the scalar wave equation, studied for
brevity and simplicity. In Section 6, we end with a summary and outlook.

2. Evolutionary formulation and its well-posedness. In this section we formally rewrite
the coupled hyperbolic-parabolic problem (1.1) as an evolutionary problem (1.2) by introduc-
ing auxiliary variables. For the evolutionary problem we present a result of well-posedness
that is based on Picard’s theorem; cf. [42] and [48, Theorem 6.2.1]. Therein, the evolutionary
problem is investigated on the whole time axis, for t ∈ R, in the exponentially weighted
Bochner space Hν(R;H) introduced in Definition 2.1. Throughout, we use the usual notation
for standard Sobolev spaces. Vector- and tensor-valued functions and their spaces are written
in bold.

DEFINITION 2.1. LetH be a real Hilbert space with associated norm ‖ · ‖H . For ν > 0,
we set

(2.1) Hν(R;H) :=
{
f : R→H :

∫
R
‖f(t)‖2H e−2νt dt

}
.

The space Hν(R;H), equipped with the inner product

(2.2) 〈f , g〉ν :=

∫
R
〈f(t), g(t)〉H e−2νt dt , for f , g ∈ Hν(R;H) ,

is a Hilbert space. The norm induced by the inner product (2.2) is denoted by ‖ · ‖ν . Moreover,
we define ∂t to be the closure of the operator

∂t : C∞c (R;H) ⊂ Hν(R;H)→ Hν(R;H) ,

φ→ φ′ ,

where C∞c (R;H) is the space of infinitely differentiable H-valued functions on R with
compact support. The domain of the time-derivative of order s, denoted by ∂st , is the space
Hs
ν(R;H). Before rewriting (1.1) in the form (1.2), we need to introduce differential operators

with respect to the spatial variables.
DEFINITION 2.2. Let Ω ⊂ Rd, for d ∈ N, be an open non-empty set. Then we define

L2(Ω)d×dsym :=
{

(φij)i,j=1,...,d ∈ L2(Ω)d×d : φij = φji ∀ i, j ∈ {1, . . . , d}
}
.

DEFINITION 2.3. Let Ω ⊂ Rd, for d ∈ N, be an open non-empty set. We let

grad0 : H1
0 (Ω) ⊂ L2(Ω)→ L2(Ω)d ,

φ→ (∂jφ)j=1,...,d ,
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and

Grad0 : H1
0 (Ω)d ⊂ L2(Ω)d → L2(Ω)d×dsym ,

(φj)j=1,...,d →
1

2
(∂lφj + ∂jφl)j,l=1,...,d .

(2.3)

Moreover, we let

div : D(div) ⊂ L2(Ω)d → L2(Ω) ,

div := −(grad0)∗ ,
(2.4)

and

Div : D(Div) ⊂ L2(Ω)d×dsym → L2(Ω)d ,

Div := −(Grad0)∗ .
(2.5)

We note that Grad0 u = ε(u) for u ∈ H1
0 (Ω)d. The operator div in (2.4) assigns each

L2-vector field its distributional divergence with maximal domain, that is,

D(div) =

{
φ ∈ L2(Ω)d :

d∑
i=1

∂iφi ∈ L2(Ω)

}
.

Similarly, the operator Div in (2.5) assigns each L2(Ω)d×dsym tensor field its distributional
divergence with maximal domain, that is,

D(Div) =

φ ∈ L2(Ω)d×dsym :

(
d∑
i=1

∂iφij

)
j=1,...,d

∈ L2(Ω)d

 .

To rewrite (1.1) formally as a first-order evolutionary problem, we introduce the set of
new unknowns

(2.6) v := ∂tu , σ := Cε, and q := −K∇p .

Using (2.6) and differentiating the second definition in (2.6) with respect to the time variable,
we recast (1.1a) and (1.1b) as the first-order-in-space-and-time system

ρ∂tv −Divσ + α grad0 p = ρf ,(2.7a)

S∂tσ −Grad0 v = 0 ,(2.7b)

c0∂tp+ α div v + div q = g ,(2.7c)

K−1q + grad0 p = 0 ,(2.7d)

where S denotes the positive definite, fourth-order compliance tensor of the inverse stress-
strain relation of Hook’s law of linear elasticity,

ε = Sσ .
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In matrix-vector notation the system (2.7) reads as

(2.8)

∂t

ρ 0 0 0
0 S 0 0
0 0 c0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 K−1



+


0 −Div α grad0 0

−Grad0 0 0 0
α div 0 0 div

0 0 grad0 0




v
σ
p
q

 =


ρf
0
g
0

 .
To further simplify the spatial differential operator in (2.8), we introduce the total flux variable

q := q + αv

and then recast (2.8) as the evolutionary problem∂t

ρ 0 0 0
0 S 0 0
0 0 c0 0
0 0 0 0

+


−α2K−1 0 0 −αK−1

0 0 0 0
0 0 0 0

−αK−1 0 0 K−1



+


0 −Div 0 0

−Grad0 0 0 0
0 0 0 div
0 0 grad0 0




v
σ
p
q

 =


ρf
0
g
0

 .
Finally, we put

(2.9) U := (v,σ, p, q)> and F := (ρf ,0, g,0)> .

We define the operators

(2.10)

M0 :=


ρ 0 0 0
0 S 0 0
0 0 c0 0
0 0 0 0

 , M1 :=


−α2K−1 0 0 −αK−1

0 0 0 0
0 0 0 0

−αK−1 0 0 K−1

 ,

A :=


0 −Div 0 0

−Grad0 0 0 0
0 0 0 div
0 0 grad0 0

 .
Then we obtain the following evolutionary problem:

PROBLEM 2.4 (Evolutionary problem). LetH denote the product space

(2.11) H := L2(Ω)d × L2(Ω)d×dsym × L2(Ω)× L2(Ω)d ,

equipped with the L2-inner product of L2(Ω)(d+1)2 . Let M0, M1 : H → H , and
A : D(A) ⊂H →H , with

(2.12) D(A) := H1
0 (Ω)d ×D(Div)×H1

0 (Ω)×D(div) ,

be defined by (2.10).
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For a given F ∈ Hν(R;H) according to (2.9), find U ∈ Hν(R;H) such that

(2.13) (∂tM0 +M1 +A)U = F ,

where U is defined by (2.9) along with (2.6).
Well-posedness of (2.13) is ensured by the following abstract result; cf. [42] and [48,

Theorem 6.2.1]:
THEOREM 2.5 (Well-posedness). Let H denote a real Hilbert space. Let M0,

M1 : H → H be bounded linear selfadjoint operators and A : D(A) ⊂ H → H
skew-selfadjoint. Moreover, suppose that there exists some ν0 > 0 such that

(2.14) ∃ γ > 0 ∀ν ≥ ν0 , x ∈H : 〈(νM0 +M1)x,x〉H ≥ γ〈x,x〉H .

Then, for each ν ≥ ν0 and each F ∈ Hν(R;H), there exist a unique solutionU ∈ Hν(R;H)
such that

(2.15) (∂tM0 +M1 +A)U = F ,

where the closure is taken in Hν(R;H). Moreover, there holds the stability estimate

(2.16) ‖U‖ν ≤
1

γ
‖F ‖ν .

If F ∈ Hs
ν(R;H) for some s ∈ N, then the inclusion U ∈ Hs

ν(R;H) is satisfied, and the
evolutionary equation is satisfied properly such that

(∂tM0 +M1 +A)U = F .

COROLLARY 2.6 (Well-posedness of Problem 2.4). Problem 2.4 is well-posed. In
particular, there exists a unique solution U ∈ Hν(R;H) in the sense of (2.15).

Proof. For Problem 2.4, the assumptions of Theorem 2.5 are fulfilled due to the conditions
that the constants ρ, α, and c0 in (2.10) are strictly positive and the compliance tensor S and
the matrix K are symmetric and positive definite. The skew-selfadjointness of A directly
follows from (2.4) and (2.5), respectively. Therefore, Theorem 2.5 proves the assertion of this
corollary.

REMARK 2.7.
• By a version of the Sobolev embedding theorem (cf. [43, Lemma 3.1.59]), we have

that

(2.17) H1
ν (R;H) ↪→ Cν(R;H) ,

where

Cν(R;H) :=

{
f : R→H : f is continuous , sup

t∈R
‖f(t)‖H e−νt <∞

}
.

• For F ∈ H1
ν (R;H) there holds that U ∈ H1

ν (R;H) and, consequently, that

(2.18) AU = F − ∂tM0U −M1U ∈ Hν(R;H) .

Therefore, we have that U(t) ∈ D(A) for almost every t ∈ R. Moreover, for
F ∈ H2

ν (R;H) it follows that U ∈ H2
ν (R;H), and, taking the time-derivative of

the equation in (2.18), that U ∈ H1
ν (R;D(A)). By the embedding result (2.17), it

then follows that U ∈ Cν(R;D(A)).
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• The condition (2.14) of positive definiteness is assumed to hold uniformly in ν ≥ ν0.
This ensures the causality of the solution operator Sν := (∂tM0 +M1 +A)

−1

to (2.15); cf. [48, Theorem 6.2.1]. Further, it holds that SνF = SηF , for ν, η ≥ ν0

and F ∈ Hν(R;H) ∩Hη(R;H).
• Initial value problems for (2.13) are studied by a generalization of the solution

theory to certain distributional right-hand sides; cf. [48, Theorem 9.4.3] and [43,
Theorem 6.2.9]. Let F ∈ Hν(R;H) be supported on [t0,∞), for some t0 ∈ R, and
U0 ∈ D(A) be given. Then, the evolutionary equation

(2.19) (∂tM0 +M1 +A)U = F + δt0M0U0

has a unique solution U ∈ H−1
ν (R;H) satisfying MU(t+0 ) = M0U0 in

H−1(D(A)), where δt0 denotes the delta distribution at t = t0. For t ∈ (0,∞), the
evolutionary equation (∂tM0 +M1 +A)U = F is satisfied in the sense of dis-
tributions for test functions ϕ ∈H1

ν(R;H) ∩Hν(R;D(A)) supported on [t0,∞).
The distribution on the right-hand side of (2.19) can still be avoided by reformulating
the initial value problem for (2.5) into the evolutionary equation

(∂tM0 +M1 +A)W = ∂−1
t F +Ht0U0

for W := ∂−1
t U , where Ht0 denotes the Heaviside function with jump in t = t0;

cf. [32, Corollary 1.1] and [43, p. 446]. Then, it follows that

U = ∂t(∂tM0 +M1 +A)
−1
∂−1
t (F + δt0U0) .

3. DG discretization and well-posedness. Here we derive a family of fully discrete
schemes for Problem 2.4. Space and time discretization are based on DG approaches. Well-
posedness of the discrete problem is shown. We assume that the weight ν in (2.1) is chosen
such that the assumptions of Theorem 2.5 are satisfied.

3.1. Notation and auxiliaries. For the time discretization, we decompose I = (0, T ] into
N subintervals In = (tn−1, tn], n = 1, . . . , N , with 0 = t0 < t1 < · · · < tN−1 < tN = T ,
such that I =

⋃N
n=1 In. We put τ := maxn=1,...,N τn, with τn = tn − tn−1. Further, the set

Mτ := {I1, . . . , IN} is called the time mesh. For any k ∈ N0 and some Banach spaceB, we
let

Pk(In;B) :=

{
wτ : In → B : wτ (t) =

k∑
j=0

W jtj ∀t ∈ In , W j ∈ B ∀j
}

denote the space ofB-valued polynomials of degree at most k defined on In. For a Hilbert
spaceH , the space Pk(In;H), equipped with the exponentially weighted inner product

(3.1) 〈vτ ,wτ 〉ν,n :=

∫ tn

tn−1

〈vτ (t),wτ (t)〉H e−2ν(t−tn−1) dt ,

is a Hilbert space. The semidiscretization in time of (2.13) by Galerkin methods is done in

(3.2) Y k
τ,ν(B) :=

{
wτ ∈ Hν(0, T ;B) : wτ |In ∈ Pk(In;B),∀In ∈Mτ ,wτ (0) ∈ B

}
.

For any function w : I → B that is piecewise sufficiently smooth with respect to the time
meshMτ , for instance for w ∈ Y kτ (B), we define the right-hand sided and left-hand sided
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limit at a mesh point tn by

w+(tn) := lim
t→tn+0

w(t), for n < N ,

w−(tn) := lim
t→tn−0

w(t), for n > 0 .
(3.3)

In the discrete scheme, a quadrature formula is applied for the evaluation of the time
integrals. For the discontinuous-in-time finite element method, a natural choice is to con-
sider the (k + 1)-point right-sided Gauss–Radau quadrature formula on each time interval
In = (tn−1, tn]. Here, we use a modification of the standard right-sided Gauss–Radau quadra-
ture formula that is defined by

(3.4) Qn,ν(w) :=
τn
2

k∑
µ=0

ω̂µw(tn,µ) ≈
∫
In

e−2ν(t−tn−1) w(t) dt ,

where tn,µ = Tn(t̂µ), for µ = 0, . . . , k, are the quadrature points on In and ω̂µ the corre-
sponding weights. Here, Tn(t̂ ) := (tn−1 + tn)/2 + (τn/2)t̂ is the affine transformation from
the reference interval Î = (−1, 1] to In, and t̂µ, for µ = 0, . . . , k, are the quadrature points of
the weighted Gauss–Radau formula on Î (cf. [44]) such that for all polynomials p ∈ P2k(Î;R)
there holds ∫

Î

e−ντn(t̂+1) p(t̂ ) dt̂ =

k∑
µ=0

ω̂µp(t̂µ) .

Then, for polynomials p ∈ P2k(In;R) we have that

(3.5) Qn,ν(p) =

∫
In

e−2ν(t−tn−1) p(t) dt .

Finally, we introduce the time-mesh dependent quantities

Qn[w]ν := Qn,ν(w) , Qn[v,w]ν := Qn,ν(〈v,w〉H) ,(3.6a)

|w|2τ,ν,n := Qn[w]ν , |w|2τ,ν :=

N∑
n=1

Qn[w]ν e−2νtn−1 ,(3.6b)

‖w‖2τ,ν,n := Qn[w,w]ν , ‖w‖2τ,ν :=

N∑
n=1

Qn[w,w]ν e−2νtn−1 ,(3.6c)

where the nonnegativity of w is assumed in (3.6b). Throughout, this will be satisfied below.
For the nodes tn,µ ∈ (tn−1, tn], for µ = 0, . . . , k and n = 1, . . . , N , of the weighted

Gauss–Radau formula (3.4), we define the global Lagrange interpolation operator
Iτ : C([0, T ];B)→ Y kτ (B) by

(3.7) Iτf(0) = f(0) , Iτf(tn,µ) = f(tn,µ) , µ = 0, . . . , k , n = 1, . . . , N .

For the Lagrange interpolation (3.7), on each In there holds that (cf. [36, Theorem 1])

(3.8) ‖w − Iτw‖C(In;B) ≤ cτ
k+1
n ‖∂k+1

t w‖C(In;B) .
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Moreover, we need the Lagrange interpolation operator Î k+1
τ : C([0, T ];B) → Xk+1

τ (B)
with respect to the Gauss–Radau quadrature points tn,µ, for µ = 0, . . . , k, and tn−1, for
n = 1, . . . , N , which is defined by

(3.9)
Î k+1
τ f(tn,µ) = f(tn,µ) , for µ = 0, . . . , k ,

Î k+1
τ f(tn−1) = f(tn−1) , for n = 1, . . . , N .

Then, for Î k+1
τ there holds that (cf. [36, Theorem 2])

(3.10) ‖∂st (w − Î k+1
τ w)‖C(In;B) ≤ cτ

k+2−s
n ‖∂k+2

t w‖C(In;B) , for s ∈ {0, 1} .

For the space discretization, let the mesh Th = {K} denote a decomposition of the polyhe-
dron Ω into quadrilateral or hexahedral elementsK with mesh size h = max{hK : K ∈ Th},
for hK := diam(K). The mesh is assumed to be conforming (matching) and shape-regular;
cf., e.g., [46]. The assumptions about Th are sufficient to derive inverse and trace inequali-
ties; cf. [26, Chapter 1]. Further, optimal polynomial approximation properties in the sense
of [26, Definition 1.55] are satisfied; cf., e.g., [46, Theorem 2.6]. Simplicial triangulations can
be considered analogously. For more general mesh concepts in the context of DG methods,
we refer to [26, Section 1.4] or [27, Section 2.3.2].

For any K ∈ Th we denote by nK the outward unit normal to the faces (edges for d = 2)
ofK. Further, we let Eh be the union of the boundaries of all elements of Th. Let E ih = Eh\∂Ω
be the set of interior faces (edges if d = 2) and E∂h = Eh\E ih denote the union of all boundary
faces.

For any r ∈ N, the space of continuous piecewise polynomial functions is denoted by

Xr
h := {wh ∈ C(Ω) | wh|K ∈Wr(K) ∀K ∈ Th} ∩H1

0 (Ω) ,

where the local space Wr(K) is defined by mapped versions of Qr; cf. [45, Section 3.2]. For
any r ∈ N0, we denote the space of broken polynomials by

Y rh := {wh ∈ L2(Ω) | wh|K ∈Wr(K) ∀K ∈ Th} .

For the spatial approximation of Problem 2.4 we consider using

(3.11) Hh ∈ {Hhy
h ,H

dg
h } , with Hh ⊂H ,

where the finite element product spacesHhy
h andHdg

h are given by

Hhy
h := (Xr

h)d ×
(
(Y rh )d×d ∩ L2(Ω)d×dsym

)
×Xr

h × (Y rh )d ,(3.12a)

Hdg
h := (Y rh )d ×

(
(Y rh )d×d ∩ L2(Ω)d×dsym

)
× Y rh × (Y rh )d .(3.12b)

Discretizations of Problem 2.4 in either spaces,Hhy
h andHdg

h , are studied simultaneously. The
reason for considering also the hybrid spaceHhy

h is that continuous andH1
0(Ω)-conforming

finite element methods lead to lower computational cost than discontinuous ones. H(div; Ω)-
conforming approximations in the framework of Picard’s theory have been studied in [34]
for scalar-valued problems of changing type. These families of schemes can be applied
analogously to the approximation of σ and q in Problem 2.4. Since DG methods offer high
flexibility combined with implementational advantages, DG methods are attractive and studied
here.
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In Section 4 we need the L2-orthogonal projection of functions w ∈H onto the broken
polynomial spaceHdg

h of (3.12b), which is very simple, even on more general meshes than
studied here. For the L2-orthogonal projection Πh : H → Hdg

h , v ∈ H and Πhv ∈ Hdg
h ,

with

(3.13) 〈Πhv,wh〉H = 〈v,wh〉H , for all wh ∈Hdg
h ,

there holds for all s ∈ {0, . . . , r + 1} and all w ∈Hs(K) that

(3.14) |w −Πhw|Hm(K) ≤ Capph
s−m
K |w|Hs(K) , for m ∈ {0, . . . , s} ,

where Capp is independent of both K and h; cf. [26, Lemma 1.58], [46, Theorem 2.6].
In (3.14), we denote by | · |Hm(K) the seminorm of the Sobolev space Hm(K). Also, the
L2-orthogonal projection satisfies

‖w −Πhw‖L2(e) ≤ C ′apph
s−1/2
K |w|Hs(K) , for s ≥ 1 ,(3.15a)

‖∇(w −Πhw)|K · ne‖L2(e) ≤ C ′′apph
s−3/2
K |w|Hs(K) , for s ≥ 2 ,(3.15b)

where C ′app and C ′′app are independent of both K and h and ne is the unit outer normal vector
to the face e ∈ ∂K; cf. [26, Lemma 1.59].

3.2. Gradient and divergence on broken function spaces. To define our DG discretiza-
tion schemes we need to recall some general concepts for the definition of the gradient and
divergence operator on broken function spaces with respect to the triangulation Th. For further
details and concepts of broken function spaces, we refer to, e.g., [26]. On the triangulation Th,
let Yh = Yh(Th) and Zh = Zh(Th) denote piecewise (broken) spaces of scalar- and vector-
valued functions, respectively. On the set of (inner and outer) boundaries Eh, let Ŷh = Ŷh(Eh)

and Ẑh = Ẑh(Eh) be piecewise (broken) spaces of scalar- and vector-valued functions on Eh,
respectively. We put Ỹh := Yh × Ŷh and Z̃h := Zh × Ẑh. We denote the dual spaces of Ỹh
and Z̃h by Ỹ ∗h and Z̃

∗
h. In these spaces we define the following derivatives of the DG method;

cf. [35]:
DEFINITION 3.1 (DG derivatives). Let ỹh = (yh, ŷh) ∈ Ỹh and z̃h = (zh, ẑh) ∈ Z̃h.

The DG gradient graddg : Yh → Z̃
∗
h and the DG divergence divdg : Zh → Ỹ ∗h are defined

by

〈graddg yh, z̃h〉 := 〈gradh yh, zh〉 −
∑
K∈Th

〈yh, ẑh · nK〉∂K ,
∀yh ∈ Yh ,
∀z̃h ∈ Z̃h ,

(3.16a)

〈divdg zh, ỹh〉 := 〈divh zh, yh〉 −
∑
K∈Th

〈zh · nK , ŷh〉∂K ,
∀zh ∈ Zh ,

∀ỹh ∈ Ỹh .
(3.16b)

Here, 〈·, ·〉S denotes the inner product of L2(S), where we drop the index S if S = Ω.
Further, gradh and divh are the broken gradient and divergence, respectively; cf. [26, Sec-
tions 1.2.5 and 1.2.6]. By nK we denote the unit outer normal vector assigned to ∂K. We
recall that on the usual Sobolev spaces, the broken gradient coincides with the distribution
gradient; cf. [26, Lemma 1.22]. The same applies to the broken divergence; cf. [26, Sec-
tion 1.2.6]. The dual operators of graddg and divdg are denoted by grad∗dg : Z̃h → Y ∗h and
divdg : Ỹh → Z∗h. Then, there holds that

〈grad∗dg z̃h, yh〉 = 〈z̃h, graddg yh〉 , ∀z̃h ∈ Z̃h ,∀yh ∈ Yh ,(3.17a)

〈div∗dg ỹh, zh〉 = 〈ỹh,divdg zh〉 , ∀ỹh ∈ Ỹh ,∀zh ∈ Zh .(3.17b)
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The DG derivatives graddg and −divdg are conditionally dual with each other; cf. [35].
To demonstrate this link, we deduce from (3.16) and (3.17) that

〈− div∗dg ỹh, zh〉 = −〈ỹh,divdg zh〉

= 〈gradh yh, zh〉+
∑
K∈Th

〈ŷh − yh, zh · nK〉∂K ,(3.18a)

〈graddg yh, z̃h〉 = 〈gradh yh, zh〉 −
∑
K∈Th

〈yh, ẑh · nK〉∂K ,(3.18b)

and

〈grad∗dg z̃h, yh〉 = 〈z̃h, graddg yh〉

= −〈divh zh, yh〉+
∑
K∈Th

〈(zh − ẑh) · nK , yh〉∂K ,(3.19a)

−〈divdg zh, ỹh〉 = −〈divh zh, yh〉+
∑
K∈Th

〈zh · nK , ŷh〉∂K .(3.19b)

The identities (3.18) and (3.19) directly imply the following conditional duality between
graddg and divdg under the assumption that ŷh = 0 on E∂h ; cf. also [35, Lemma 2.1]:

LEMMA 3.2. Let ŷh = 0 on E∂h . For the DG derivatives (3.16) there holds the duality

divdg = −(graddg)∗ ,

if one of the following conditions is satisfied:

i) zh · nK |Eh = ẑh · nK ;(3.20a)

ii) yh|Eh = ŷh ;(3.20b)

iii) ẑh · nK =
1

2
(z+
h + z−h ) · nK and ŷh =

1

2
(y+
h + y−h ) .(3.20c)

In (3.20c), we let y±h := yh|∂K± and z±h := zh|∂K± for two adjacent elements K+ and
K− with common face e ∈ E ih and outer unit normal vector nK± to ∂K±. We note that
graddg yh = grad yh for yh ∈ H1

0 (Ω) and divdg zh = div zh for zh ∈H(div,Ω) since the
second terms on the right-hand side of (3.16) yield that∑

K∈Th

〈yh, ẑh · nK〉∂K =
∑
e∈Eih

〈yh, ẑh · (nK+ + nK−)〉e = 0 ,

∑
K∈Th

〈zh · nK , ŷh〉∂K =
∑
e∈Eih

〈z+
h · nK+ + z−h · nK− , ŷh〉e = 0 .

The matrix- and vector-valued operators Grad0 and Div, introduced in (2.3) and (2.5), respec-
tively, are defined on broken function spaces similarly to (3.16).

3.3. Gradient and divergence on broken polynomial spaces and the operator Ah.
Now we specify the broken spaces Ŷh and Ẑh of Definition 3.1 for the finite element
spaces (3.11) and (3.12) that we consider for the approximation of Problem 2.4. In light
of Lemma 3.2, we put

ŷh :=
1

2
(y+
h + y−h ) and ẑh · ne :=

1

2
(z+
h + z−h ) · ne , for e ∈ E ih ,(3.21a)

ŷh := yh , and ẑh · ne := zh · ne, for e ∈ E∂h .(3.21b)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

DISCONTINUOUS GALERKIN APPROXIMATION OF A HYPERBOLIC-PARABOLIC SYSTEM 13

For (3.21), the definitions of the DG gradient graddg : Y rh → ((Y rh )d)
∗ in (3.16a) and the DG

divergence divdg : (Y rh )d → (Y rh )∗ in (3.16b) of Definition 3.1 then read as follows:
DEFINITION 3.3 (DG derivatives for single-valued functions). The DG gradient operator

graddg : Y rh → ((Y rh )d)
∗

and the DG divergence operator divdg : (Y rh )d → (Y rh )∗ are
defined by

〈graddg yh, zh〉 :=〈gradh yh, zh〉−
∑
e∈Eih

〈[[yh]], {{zh}} · ne〉e−
∑
e∈E∂h

〈yh, zh · ne〉e ,(3.22a)

〈divdg zh, yh〉 :=〈divh zh, yh〉−
∑
e∈Eih

〈[[zh]] · ne, {{yh}}〉e−
∑
e∈E∂h

〈zh · ne, yh〉e ,(3.22b)

for all yh ∈ Y rh and zh ∈ (Y rh )d, where standard notation (cf. [26]) is used for the averages
and jumps

{{w}}e :=
1

2
(w+ + w−) and [[w]]e := w+ − w− .

On the usual Sobolev spaces, the DG gradient and DG divergence of (3.22) coincide
with the distribution gradient and divergence, respectively, since for functions in H1

0 (Ω), the
jump terms [[yh]] on e ∈ E ih and the traces on the boundary faces e ∈ E∂h vanish in (3.22);
cf. [26, Lemma 1.22 and 1.24]. Similarly, for functions in H(div; Ω), the jumps [[zh]] · ne
for e ∈ E ih vanish as well; cf. [26, Lemma 1.22 and 1.24]. The assumption of Lemma 3.2
that ŷh = 0 for e ∈ E∂h is not fulfilled for the DG space (3.11) with (3.12b). This leads to a
perturbation of the skew-selfadjointness of graddg and divdg which is shown now.

LEMMA 3.4 (DG skew-selfadjointness). For all yh ∈ Y rh and zh ∈ (Y rh )d there holds
that

〈graddg yh, zh〉+
∑
e∈E∂h

〈yh, zh · ne〉e = 〈−div∗dg yh, zh〉 ,(3.23a)

〈divdg zh, yh〉+
∑
e∈E∂h

〈yh, zh · ne〉e = 〈− grad∗dg zh, yh〉(3.23b)

and

(3.24) 〈graddg yh, zh〉+ 〈divdg zh, yh〉 = −
∑
e∈E∂h

〈yh, zh · ne〉e .

Proof. The identity (3.23) is a direct consequence of (3.18) and (3.19) along with the
definition (3.21) of the broken spaces Ŷh and Ẑh on Eh. From (3.23b) we then get that

〈graddg yh,zh〉+ 〈divdg zh, yh〉

= 〈grad∗dg zh, yh〉+ 〈divdg zh, yh〉

= −〈divdg zh, yh〉 −
∑
e∈E∂h

〈yh, zh · ne〉e + 〈divdg zh, yh〉

= −
∑
e∈E∂h

〈yh, zh · ne〉e .

This proves (3.24).
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For multi-valued functions, the DG derivatives Graddg : (Y rh )d→
(
(Y rh )d×d∩L2(Ω)d×dsym

)∗
and Divdg : (Y rh )d×d ∩ L2(Ω)d×dsym →

(
(Y rh )d

)∗
are defined as follows:

DEFINITION 3.5 (DG derivatives for multi-valued functions). For multi-valued functions,
the DG gradient operator Graddg : (Y rh )d →

(
(Y rh )d×d ∩ L2(Ω)d×dsym

)∗
and DG divergence

operator Divdg : (Y rh )d×d ∩ L2(Ω)d×dsym →
(
(Y rh )d

)∗
are given by

〈Graddg yh, zh〉 := 〈Gradh yh, zh〉

−
∑
e∈Eih

〈[[yh]], {{zh}} · ne〉e −
∑
e∈E∂h

〈yh, zh · ne〉e ,(3.25a)

〈Divdg zh,yh〉 := 〈Divh zh,yh〉

−
∑
e∈Eih

〈[[zh]] · ne, {{yh}}〉e −
∑
e∈E∂h

〈zh · ne,yh〉e ,(3.25b)

for all yh ∈ (Y rh )d and zh ∈ (Y rh )d×d ∩ L2(Ω)d×dsym .
In (3.25), the operators Gradh and Divh are the broken symmetrized gradient and the

broken divergence that extend the distributional gradient in (2.3) and the divergence in (2.5) to
broken polynomial spaces; cf. [26, Definition 1.21]. On the usual Sobolev spaces, the broken
gradient Graddg and divergence Divdg coincide with the distributional symmetrized gradient
and divergence of (2.3) and (2.5), respectively. Similarly to Lemma 3.4, for DG spaces there
holds for yh ∈ (Y rh )d and zh ∈ (Y rh )d×d ∩ L2(Ω)d×dsym that

〈Graddg yh, zh〉+
∑
e∈E∂h

〈yh, zh · ne〉e = 〈−Div∗dg yh, zh〉 ,(3.26a)

〈Divdg zh,yh〉+
∑
e∈E∂h

〈yh, zh · ne〉e = 〈−Grad∗dg zh,yh〉 ,(3.26b)

and

(3.27) 〈Graddg yh, zh〉+ 〈Divdg zh,yh〉 = −
∑
e∈E∂h

〈yh, zh · ne〉e .

Now, we are able to define a discrete counterpart Ah : Hh → H∗h of the differential
operatorA : D(A) ⊂H →H introduced in (2.10).

DEFINITION 3.6 (Discrete operatorAh). For the DG differential operators introduced
in (3.22) and (3.25), respectively, the operatorAh : Hh →H∗h is defined by

(3.28) Ah :=


0 −Divdg 0 0

−Graddg 0 0 0
0 0 0 divdg

0 0 graddg 0

 ,
such that for Y ,Z ∈Hh there holds

(3.29)
〈AhY ,Z〉 =− 〈Divdg Y 2,Z1〉 − 〈Graddg Y 1,Z2〉

+ 〈divdg Y 4, Z3〉+ 〈graddg Y3,Z4〉 .

REMARK 3.7. From (3.24) and (3.27) we conclude that for Y ∈Hh there holds

(3.30) 〈AhY ,Y 〉 =
∑
e∈E∂h

〈Y 1,Y 2 · ne〉e −
∑
e∈E∂h

〈Y3,Y 4 · ne〉e .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

DISCONTINUOUS GALERKIN APPROXIMATION OF A HYPERBOLIC-PARABOLIC SYSTEM 15

By (3.23) and (3.26), the operatorAh is not skew-selfadjoint onHdg
h , as defined in (3.12b),

due to perturbations by boundary face integrals. Consequently, the inner product 〈AhY ,Y 〉
does no longer vanish as in the continuous case. However, the control of the latter term is
essential for our analysis. Therefore, some correction term, defined in (3.32) below, will be
introduced in the fully discrete scheme. Finally, we note that skew-selfadjointness is preserved
for the hybrid spaceHhy

h of (3.12a).

3.4. Fully discrete problem with structure-preserving nonconforming approximation.
For the discretization of Problem 2.4 in the spaceHh, defined in (3.11) and (3.12), we then
consider the following family of fully discrete nonconforming approximation schemes:

PROBLEM 3.8 (Fully discrete problem). Let Hh be given by (3.11) and (3.12). For
the operators M0 and M1 of (2.10), Ah of (3.28), and given data F ∈ H1

ν (0, T ;H) and
U0,h ∈ Hh, where U0,h ∈ Hh denotes an approximation of the initial value U0 ∈ H
according to (2.9), find U τ,h ∈ Y kτ (Hh) with

(3.31)

Qn[(∂tM0 +M1 +Ah)U τ,h,V τ,h]ν

+Qn[J∂(U τ,h,V τ,h) + Jγ(U τ,h,V τ,h)]ν

+ 〈M0[[U τ,h]]n−1,V
+,n−1
τ,h 〉H = Qn[F ,V τ,h]ν

for all V τ,h ∈ Y kτ (Hh) and n ∈ {1, 2, . . . , N}, where

J∂(U τ,h,V τ,h) := −
∑
e∈E∂h

〈U (2)
τ,h · ne,V

(1)
τ,h〉e +

∑
e∈E∂h

〈U (4)
τ,h · ne,V

(3)
τ,h〉e ,(3.32)

Jγ(U τ,h,V τ,h) :=
∑
e∈E∂h

1

h

(
γ1〈U (1)

τ,h,V
(1)
τ,h〉e + γ2〈U (3)

τ,h, V
(3)
τ,h 〉e

)
(3.33)

with parameters γi > 0, for i ∈ {1, 2}, and

[[U τ,h]]n−1 :=

{
U+
τ,h(tn−1)−U−τ,h(tn−1) , for n ∈ {2, . . . , N} ,

U+
τ,h(tn−1)−U0,h , for n = 1 ,

for U τ,h,V τ,h ∈ Y kτ (Hh), with V +,n−1
τ,h := V +

τ,h(tn−1) being defined by (3.3).

REMARK 3.9.

• The algorithmic (or penalization) parameters γi > 0, for i ∈ {1, 2}, in (3.33) have to
be chosen sufficiently large; cf. [46]. The contribution Jγ , defined in (3.33), enforces
a weak form of the homogeneous Dirichlet boundary conditions in (2.12). In the
error estimation below, the term Jγ is further used in an essential way for absorption
arguments and deriving convergence order estimates. Contributions to the upper
bound of the discrete error are absorbed.

• In (3.31), the mathematical structure of the evolutionary problem (2.13) is essentially
preserved, with the discrete operatorAh replacingA. The perturbation of the skew-
selfadjointness ofAh, resulting from (3.23) and (3.26), is compensated in the analysis
below by the additional (boundary) correction Qn[J∂(U τ,h,V τ,h)]ν in (3.31), along
with the penalization induced by Qn[Jγ(U τ,h,V τ,h)]ν .
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• A stronger penalization is obtained by further adding the term

Jδ(U τ,h,V τ,h)

:=
∑
e∈Eih

1

h

(
γ3

〈
[[U

(1)
τ,h]], [[V

(1)
τ,h]]
〉
e

+ γ4

〈
]]U

(3)
τ,h]], [[V

(3)
τ,h ]]

〉
e

)
+
∑
e∈Eih

1

h

(
γ5

〈
[[U

(4)
τ,h · ne]], [[V

(2)
τ,h · ne]]

〉
e

+ γ6

〈
]]U

(4)
τ,h · ne]], [[V

(3)
τ,h · ne]]

〉
e

)

to the left-hand side of (3.31), with constants γi > 0, for i ∈ {3, . . . , 6}. The term
Jδ penalizes the jumps of the variables over interior faces. For brevity, we do not
include Jδ into our error analysis below since the presence of Jδ does not change the
arguments and final results in an essential way. The nonnegativity of Jδ(V τ,h,V τ,h)
yields an error control for the jumps of the variables over interelement faces.
• Problem 3.8 yields a global-in-time formulation. For computations of space-time

finite element discretizations, we propose using a temporal test basis that is supported
on the subintervals In; cf. [5, 8]. Then, a time-marching process is obtained. For
Problem 3.8, this amounts to assuming that the trajectory U τ,h has been computed
before, for all t ∈ [0, tn−1], starting with an approximation U τ,h(t0) := U0,h of
U0 ∈ D(A). On In = (tn−1, tn], for given U τ,h(tn−1) ∈ Hh, we consider then
finding U τ,h ∈ Pk(In,Hh) such that (3.31) is satisfied for all V τ,h ∈ Pk(In,Hh).

• In (3.31), there holds that

(3.34)

〈AhUτ,h,V τ,h〉H =

〈
−DivdgU

(2)
τ,h

−GraddgU
(1)
τ,h

divdgU
(4)
τ,h

graddg U
(3)
τ,h

 ,

V

(1)
τ,h

V
(2)
τ,h

V
(3)
τ,h

V
(4)
τ,h


〉
H

=

〈
U

(2)
τ,h

−GraddgU
(1)
τ,h

U
(4)
τ,h

graddg U
(3)
τ,h

 ,

−Div∗dg V

(1)
τ,h

V
(2)
τ,h

div∗dg V
(3)
τ,h

V
(4)
τ,h


〉
H

.

By (3.23a) and (3.26a), the operators −Div∗dg and div∗dg in (3.34) are transformed
into the DG gradients Graddg and graddg, respectively, applied to the test functions,
and additional sums of boundary face integrals. This can be exploited in the assembly
process and error analysis.

THEOREM 3.10 (Well-posedness of fully discrete problem). There exists a unique
solution Uτ,h ∈ Y kτ,h(Hh) of Problem 3.8.

Proof. The proof follows the ideas of [34, Proof of Proposition 3.2]. To keep this work
self-contained and due to adaptations of the proof required by the perturbation of the skew-
selfadjointness, we briefly present it. Since Problem 3.8 is finite-dimensional, it suffices to
prove uniqueness of solutions to (3.31) for n ∈ {1, . . . , N}. The existence of solutions then
directly follows from their uniqueness. By means of the first of the items in Remark 3.9 and
an induction argument, it suffices to prove the uniqueness of solutions to (3.31) on a fixed
subinterval In.
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For this, let Ũ τ,h ∈ Pk(In,Hh) and Û τ,h ∈ Pk(In,Hh) be two solutions of (3.31).
Then, their difference U τ,h := Ũ τ,h − Û τ,h satisfies for all V τ,h ∈ Pk(In,Hh)

(3.35)
Qn[(∂tM0 +M1 +Ah)U τ,h,V τ,h]ν +Qn[J∂(U τ,h,V τ,h) + Jγ(U τ,h,V τ,h)]ν

+ 〈M0U
+
τ,h(tn−1) .V +,n−1

τ,h 〉H = 0 .

Next, we recall an argument of [34, Proof of Proposition 3.2]. We note that

∂t : Pk(In,H)→ Pk(In,H) ,

wτ 7→ ∂twτ

and

δn−1 : Pk(In,H)→H ,

wτ 7→ δn−1wτ := w+
τ (tn−1)

are bounded linear operators with respect to the norm of Pk(In,H) induced by the inner
product (3.1). Consequently, the mapping

Pk(In,H)→ R ,
wτ 7→ 〈z, δn−1wτ 〉H

is linear and bounded for each z ∈H . Then, by the Riesz representation theorem, there exists
a unique Ψτ (z) ∈ Pk(In;H) such that

(3.36) 〈Ψτ (z),wτ 〉ν,n = 〈z, δn−1wτ 〉H .

The mapping Ψτ : H → Pk(In,H) is linear and bounded since for z ∈H there holds that

‖Ψτ (z)‖2ν,n = 〈Ψτ (z),Ψτ (z)〉ν,n = 〈z, δn−1Ψτ (z)〉H ≤ ‖z‖H‖δn−1‖‖Ψτ (z)‖ν,n .

Now, using integration by parts along with (3.36), we have or all vτ ∈ Pk(In;H) that

〈∂tM0vτ ,vτ 〉ν,n

=
1

2
〈∂tM0vτ ,vτ 〉ν,n +

1

2

∫ tn

tn−1

〈M0∂tvτ (t),vτ (t)〉H e−2ν(t−tn−1) dt

=
1

2
〈∂tM0vτ ,vτ 〉ν,n −

1

2

∫ tn

tn−1

〈M0∂tvτ (t),vτ (t)〉H e−2ν(t−tn−1) dt

+ ν

∫ tn

tn−1

〈M0vτ (t),vτ (t)〉H e−2ν(t−tn−1) dt

+
1

2
〈M0vτ (tn),vτ (tn)〉H e−2ντn −1

2
〈v+
τ (tn−1),M0v

+
τ (tn−1)〉H

≥ ν〈M0vτ ,vτ 〉ν,n −
1

2
〈Ψτ (M0δn−1vτ ),vτ 〉ν,n .(3.37)

Using (3.36), we rewrite (3.35) as

(3.38)
Qn[(∂tM0 +M1 +Ah)U τ,h,V τ,h]ν +Qn[J∂(U τ,h,V τ,h) + Jγ(U τ,h,V τ,h)]ν

+ 〈Ψτ (M0δn−1U τ,h),V τ,h〉H = 0 .
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In (3.38), we choose V τ,h = U τ,h. By (3.30) along with (3.32) we have for Z ∈Hh that

〈AhZ,Z〉+ J∂(Z,Z) =
∑
e∈E∂h

〈Z1,Z2 · ne〉e −
∑
e∈E∂h

〈Z3,Z4 · ne〉e

−
∑
e∈E∂h

〈Z2 · ne,Z1〉e +
∑
e∈E∂h

〈Z4 · ne, Z3〉e = 0 .(3.39)

From (3.38) we deduce by (3.37), (3.39), and the nonnegativity of Jγ(U τ,h,U τ,h), which
follows from (3.33), that

0 = Qn[(∂tM0 +M1 +Ah)U τ,h,U τ,h]ν

+Qn[J∂(U τ,h,U τ,h) + Jγ(U τ,h,U τ,h)]ν + 〈Ψτ (M0δn−1U τ,h),U τ,h〉H

≥ 〈∂tM0U τ,h,U τ,h〉ν,n + 〈M1U τ,h,U τ,h〉ν,n + 〈Ψτ (M0δn−1U τ,h),U τ,h〉ν,n

≥ 〈(νM0 +M1)U τ,h,U τ,h〉ν,n +
1

2
〈Ψτ (M0δn−1U τ,h),U τ,h〉ν,n

≥ γ〈U τ,h,U τ,h〉ν,n ,(3.40)

where the nonnegativity of 〈Ψτ (M0δn−1U τ,h),U τ,h〉ν,n is ensured by

〈Ψτ (M0δn−1U τ,h),U τ,h〉ν,n = 〈M0U τ,h(t+n−1),U τ,h(t+n−1)〉H ≥ 0 .

The latter inequality follows from the assumption (2.14). From (3.40) we directly conclude
the uniqueness of solutions to (3.31) and, thereby, the assertion of this lemma.

4. Error estimation for the structure-preserving nonconforming approximation.
Here we prove an error estimate for the solution U τ,h of Problem 3.8. For brevity, the proof is
done only for the full DG approximation in space, corresponding to the choice Hh = Hdg

h

in (3.11), with r ∈ N0 in (3.12b). The adaptation of the proof to the hybrid caseHh = Hhy
h

in (3.11) is straightforward.
THEOREM 4.1 (Error estimate for the fully discrete problem). LetH be defined by (2.11).

For the solution U of Problem 2.4, suppose that the regularity condition

(4.1) U ∈ Hk+3
ν (R;H) ∩H2

ν

(
R;Hr+1(Ω)(d+1)2

)
is satisfied. Let the discrete initial value U0,h ∈ Hh in Problem 3.8 be chosen such that
‖U0 −U0,h‖ ≤ chr holds.

Then, for the numerical solution U τ,h of Problem 3.8 there holds that

(4.2)
sup
t∈[0,T ]

〈M0(U −U τ,h)(t), (U −U τ,h)(t)〉+ e2νT ‖U −U τ,h‖2τ,ν

≤ C(1 + T ) e2νT (τ2(k+1) + h2r) .

Proof. We split the error U −U τ,h into the two parts

(4.3) U −U τ,h = Z +Eτ,h with Z := U − IτΠhU , Eτ,h := IτΠhU −U τ,h ,

where Iτ and Πh are defined in (3.7) and (3.13), respectively. The errors Z and Eτ,h are
estimated in Lemma 4.2–4.5 below. By means of the triangle inequality, the splitting (4.3)
along with these lemmas then proves (4.2).
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For the error Z in (4.3) there holds the following estimate:
LEMMA 4.2 (Estimation of the error Z). Let U ∈ Hk+2

ν (R;H) ∩H1
ν (R;Hs(Ω)(d+1)2)

be satisfied for some s ∈ {0, . . . , r + 1}. For the error Z = U − IτΠhU there holds that

(4.4) sup
t∈[0,T ]

〈M0Z(t),Z(t)〉H + e2νT ‖Z‖2τ,ν ≤ C(1 + T ) e2νT (τ2(k+1) + h2s) .

Proof. We split the error Z into the two parts

(4.5) Z = U − IτΠhU = (U −ΠhU) + (ΠhU − IτΠhU) .

From (4.5) along with the commutativity of Πh and Iτ and the boundedness ofM0 and Πh,
we get that

(4.6)
〈M0Z(t),Z(t)〉H ≤ C‖Z(t)‖2H = C‖U(t)− IτΠhU(t)‖2H

≤ C
(
‖U(t)−ΠhU(t)‖2H + ‖U(t)− IτU(t)‖2H

)
.

Using (3.8) and (3.14), we obtain from (4.6) that

(4.7) 〈M0Z(t),Z(t)〉H ≤ C
(
τ2(k+1) sup

t∈In
‖∂k+1
t U‖2H + h2s sup

t∈In
‖U‖2Hs(Ω)

)
for t ∈ In. We note that the norms on the right-hand side of (4.7) remain finite under the
assumptions aboutU ; cf. (2.17). This shows the first of the estimates in (4.4). By the definition
of ‖ · ‖τ,ν in (3.6c), the second of the estimates in (4.4) follows from (4.6) along with (3.8)
and (3.14).

For the error Eτ,h in (4.3) the following estimate holds:
LEMMA 4.3 (Estimation of the error Eτ,h). For the error Eτ,h = IτΠhU −U τ,h there

holds

(4.8)

〈M0E
−
τ,h(tN ),E−τ,h(tN )〉H + e2νT (‖Eτ,h‖2τ,ν + |Jγ(Eτ,h,Eτ,h)|2τ,ν)

≤C e2νT

(
〈M0E

−
τ,h(t0),E−τ,h(t0)〉H + ‖∂tM0(U − Î k+1

τ ΠhU)‖2τ,ν

+ ‖M1Z‖2τ,ν + ‖AhZ‖2τ,ν + |Jγ(Z,Z)|2τ,ν + |Jn
∂ (Z,Z)|2τ,ν

+ T max
1≤n≤N

{
‖M0(ΠhU

+(tn−1)− IτΠhU
+(tn−1))‖2H e−2νtn−1

})
,

where, with Z being defined in (4.3),

(4.9) Jn
∂ (Z,Z) :=

∑
e∈E∂h

h
(
〈Z2 · ne,Z2 · ne〉e + 〈Z4 · ne,Z4 · ne〉e

)
.

Proof. Essentially, the proof follows [34, Theorem 3.8] for the semidiscretization in time.
In [34, Theorem 3.8] the skew-selfadjointness of the continuous operator is a key ingredient
for proving the error estimate. To keep this work self-contained, we summarize in Appendix A
the proof of (4.8) for the setting of Problem 4.3 and the perturbed skew-selfadjointness ofAh,
depicted by Lemma 3.4 and (3.26).
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For the error Eτ,h in (4.3) we further have the following improved estimate:
LEMMA 4.4 (Improved estimation of the error Eτ,h). For the error Eτ,h in (4.3) there

holds that

(4.10)

sup
t∈[0,T ]

〈M0Eτ,h(t),Eτ,h(t)〉H

≤ C
(
〈M0E

−
τ,h(t0),E−τ,h(t0)〉H

+ ‖∂tM0(U − Î k+1
τ ΠhU)‖2τ,ν + ‖M1Z‖2τ,ν + ‖AhZ‖2τ,ν

+ |Jγ(Z,Z)|2τ,ν + |Jn
∂ (Z,Z)|2τ,ν

+ T max
1≤n≤N

{
‖M0(ΠhU

+(tn−1)−IτΠhU
+(tn−1))‖2H e−2νtn−1

})
.

Proof. The proof follows the lines of [34, Theorem 3.12] for the semidiscretization in
time. Again, to keep this work self-contained, we summarize the proof for the setting of
Problem 3.8 in Appendix B.

Next, we estimate the terms on the right-hand side of (4.8) and (4.10), respectively, one
by one.

LEMMA 4.5. For s ∈ {1, . . . , r + 1}, let U ∈ Hk+3
ν (R;H) ∩H2

ν (R;Hs(Ω)(d+1)2) be
satisfied. With Z = U − IτΠhU there holds that

‖∂tM0(U − Î k+1
τ ΠhU)‖2τ,ν + ‖M1Z‖2τ,ν ≤ CT (τ2(k+1) + h2s) ,(4.11a)

‖AhZ‖2τ,ν + |Jγ(Z,Z)|2τ,ν + |Jn
∂ (Z,Z)|2τ,ν ≤ CTh2(s−1) ,(4.11b)

max
1≤n≤N

{
‖M0(ΠhU

+(tn−1)− IτΠhU
+(tn−1))‖2H e−2νtn−1

})
≤ Cτ2(k+1) .(4.11c)

Proof. Using a splitting as in (4.5) and commutation properties of the operators show that

(4.12)
‖∂tM0(U(t)− Î k+1

τ ΠhU(t))‖H ≤ ‖M0Πh∂t(U(t)− Î k+1
τ U(t))‖H

+ ‖M0(∂tU(t)−Πh∂tU(t))‖H .

By (3.10) and (3.14) along with the boundedness of M0 and Πh, we conclude from (4.12) that

‖∂tM0(U(t)− Î k+1
τ ΠhU(t))‖H ≤ C

(
τk+1 sup

t∈In
‖∂k+2
t U‖H + hs sup

t∈In
‖∂tU‖Hs(Ω)

)
.

Recalling the definition of the norm ‖ ·‖τ,ν in (3.6c), this directly proves the first of the bounds
in (4.11a). The estimate of ‖M1Z‖τ,ν in (4.11a) and inequality (4.11c) follow similarly.

It remains to prove (4.11b). By (3.9), the interpolation operator Î k+1
τ acts as the identity

at the Gauss–Radau points tn,µ. Thus, for µ = 0, . . . , k, we get that

‖AhZ(tn,µ)‖H = ‖Ah(U −ΠhU)(tn,µ)‖H ,(4.13a)

|Jγ(Z(tn,µ),Z(tn,µ))|τ,ν = |Jγ((U −ΠhU)(tn,µ), (U −ΠhU)(tn,µ))|τ,ν ,(4.13b)

|Jn
∂ (Z,Z)|τ,ν = |Jn

∂ ((U −ΠhU)(tn,µ), (U −ΠhU)(tn,µ))|τ,ν .(4.13c)
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Setting Θn
µ := (U − ΠhU)(tn,µ), using (3.34), and recalling the duality relations (3.23a)

and (3.26a), we get for the right-hand side of (4.13a) that

(4.14)

〈AhΘ
n
µ,Y h〉 = 〈Θn

µ,2,−Div∗dg Y h,1〉 − 〈Graddg Θn
µ,1,Y h,2〉

+ 〈Θn
µ,4,div∗dg Yh,3〉+ 〈graddg Θn

µ,3,Y h,4〉

= 〈Θn
µ,2,Graddg Y h,1〉+

∑
e∈E∂h

〈Θn
µ,2 · ne,Y h,1〉e

− 〈Graddg Θn
µ,1,Y h,2〉 − 〈Θn

µ,4, graddg Yh,3〉

−
∑
e∈E∂h

〈Θn
µ,4 · ne, Yh,3〉e + 〈graddg Θn

µ,3,Y h,4〉 ,

for all Y h ∈ Hdg
h . Next, we bound the right-hand side of (4.14) term by term. We start

with the last term in (4.14). By (3.22a), the definition of graddg, and the Cauchy–Schwarz
inequality, it follows that

〈graddgΘn
µ,3,Y h,4〉

= 〈gradh Θn
µ,3,Y h,4〉 −

∑
e∈Eih

〈[[Θn
µ,3]], {{Y h,4}} · ne〉e −

∑
e∈E∂h

〈Θn
µ,3,Y h,4 · ne〉e

≤
∑
K∈Th

‖∇Θn
µ,3‖L2(K)‖Y h,4‖L2(K) +

∑
e∈Eih

‖[[Θn
µ,3]]‖L2(e)‖{{Y h,4}} · ne‖L2(e)(4.15)

+
∑
e∈E∂h

‖Θn
µ,3‖L2(e)‖Y h,4 · ne‖L2(e) .

Using (3.14) with m = 1, (3.15a), and the inverse relation (cf. [26, Lemma 1.46])

(4.16) h
1/2
K ‖wh‖L2(e) ≤ Cinv‖wh‖L2(K) , for e ⊂ K , w ∈ Qdr ,

we obtain from (4.15) that

(4.17) 〈graddg Θn
µ,3,Y h,4〉 ≤ Chs−1‖U‖Hs(Ω)

( ∑
K∈Th

‖Y h,4‖2L2(K)

)1/2

.

For the fourth and fifth term on the right-hand side of (4.14) we have that

〈Θn
µ,4, graddg Yh,3〉+

∑
e∈E∂h

〈Θn
µ,4 · ne, Yh,3〉e

= 〈Θn
µ,4, gradh Yh,3〉 −

∑
e∈Eih

〈{{Θn
µ,4}} · ne, [[Yh,3]]〉e .

From this, we find that

(4.18)

〈Θn
µ,4, graddg Yh,3〉 ≤

∑
K∈Th

‖Θn
µ,4‖L2(K)‖∇Yh,3‖L2(K)

+ C
∑
e∈Eih

‖{{Θn
µ,4}} · ne‖L2(e)‖[[Yh,3]]‖L2(e) .
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Using (3.14) with m = 0, bounding ‖∇Yh,3‖L2(K) by the the H1-L2 inverse inequality, and
applying (3.15a) and (4.16), we deduce from (4.18) that

(4.19) 〈Θn
µ,4, graddg Yh,3〉 ≤ Chs−1‖U‖Hs(Ω)

( ∑
K∈Th

‖Yh,3‖2L2(K)

)1/2

.

The first three terms on the right-hand side of (4.14) can be treated similarly. Since

‖AhW ‖H = sup
Y h∈Hdg

h \{0}

〈AhW ,Y h〉H
‖Y h‖H

, for W ∈ D(A) +Hdg
h ,

combining (4.14) with (4.17) and (4.19) and their counterparts for the first and the second
term on the right-hand side of (4.14) proves for (4.13) that

(4.20) ‖Ah(U(tn,µ)−ΠhU(tn,µ))‖2H ≤ Ch2(s−1) , for µ = 1, . . . , k .

Applying the temporal quadrature formula (3.4) to (4.20), summing up the resulting inequality
from n = 1 to N and recalling the definition in (3.6c) yields the error bound for ‖AhZ‖2τ,ν
in (4.11b). The bound for |Jγ(Z,Z)|2τ,ν follows similarly. Using (3.15a) we get that

(4.21) Jγ(Θn
µ,Θ

n
µ) ≤ C

h
h2s−1

(
‖U (1)‖2Hs(Ω) + ‖U (3)‖2Hs(Ω)

)
.

Applying the temporal quadrature formula (3.4) to (4.21), summing up the resulting inequality
from n = 1 toN and recalling the definition in (3.6b) yields the error bound for |Jγ(Z,Z)|2τ,ν
in (4.11b). The term |Jn

∂ (Z,Z)|2τ,ν in (4.9) is bounded by the same arguments. This completes
the proof of (4.11).

Theorem 4.1 proves convergence of the error measured in the time-mesh dependent norm
‖ · ‖τ,ν defined in (3.6c). Using a result of [33, Theorem 2.5], convergence with respect to the
norm ‖ · ‖ν induced by the inner product (2.2) of the continuous function space Hν(R;H)
can still be ensured.

COROLLARY 4.6. Under the assumptions of Theorem 4.1, there holds that

(4.22) ‖U −U τ,h‖2ν ≤ C(1 + T ) e2νT (τ2(k+1) + h2r) .

Proof. We split the error into the parts

(4.23) ‖U −U τ,h‖ν ≤ ‖U − IτU‖ν + ‖IτU −U τ,h‖ν .

For the first of the terms on the right-hand side of (4.23), we deduce from the interpolation
error estimate proved in [33, Theorem 2.5] that

‖U − IτU‖2ν ≤ Cτ2(k+1) .

For the second of the terms on the right-hand side of (4.23), we get, by the exactness (3.5) of
the quadrature in time for all p ∈ P2k(In;R) along with (4.2), that

(4.24)
‖IτU −U τ,h‖2ν = ‖IτU −U τ,h‖2τ,ν = ‖U −U τ,h‖2τ,ν

≤ C(1 + T ) e2νT (τ2(k+1) + Th2r) .

Together, (4.23) to (4.24) prove the assertion (4.22).
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By Theorem 4.1 and Corollary 4.6, the main result (1.3) of this work is thus proved. We
still comment on the optimality of this error estimate.

REMARK 4.7. The error estimates (4.2) and (4.22) are of optimal order for the time
discretization, but they are of suboptimal order for the space discretization with respect to the
approximation properties of the discrete spaces defined in (3.11) and (3.12). The numerical
evaluation of the first-order approach, presented in Section 5, argues for sharpness of the error
bounds. In the error analysis, the loss of one order of convergence in space is due to the
occurrence of the term ‖AhZ‖τ,ν , for instance in the upper error bounds in (4.8) and (4.10),
involving first-order derivatives of the interpolation error Z defined in (4.3). We did not
succeed in proving sharper bounds for the quantities estimated from above by ‖AhZ‖τ,ν .

The abstract solution theory of Picard [42] relies on weak assumptions on the operators of
the evolutionary problem only (cf. Theorem 2.5), which is considered to be advantageous for
problems that are of interest in practice. However, stability of the solution is then guaranteed in
L2 only; cf. (2.16). As a consequence, the error estimates (4.2) and (4.22) ensure convergence
in the L2-norm in space only, and absorption arguments, which are often useful in error
analyses, are difficult to apply in this context. Due to the identity (A.3), which preserves the
skew-selfadjointness of Ah on the discrete level by the addition of the correction term J∂ ,
no stricter error control than in the L2-norm is obtained by our analysis in the evolutionary
framework. In this respect, the error analysis of this work differs strongly from standard error
analyses of DG methods for first- and second-order (in space) problems. They are based
on stability estimates for the spatial differential operator and lead to stricter error control in
the DG energy norm, cf., e.g., [20, Section 5.2]. For such error analyses of DG methods,
we refer in particular to [18, 20] and also to [26, 46]. At the current state, the feasibility of
optimal-order error bounds for the space discretization thus remains an open problem and is
left as a work for the future. A redesign of the interelement fluxes (penalization terms) might
also enable improved error estimates.

For error estimates and numerical investigations of the system (1.1), based on approxima-
tions of the second-order in space formulation with the native unknowns u, v = ∂tu, and p,
we also refer to [7, 8, 11].

5. Numerical experiments. Here we present some results of our performed numerical
experiments to illustrate the error estimates (4.2) and (4.22). For simplicity and brevity, the
scalar-valued wave equation is considered only. In first-order form, this equation reads as

(5.1)
(
∂t

[
I 0

0 I

]
+

[
0 div

grad0 0

])[
u

v

]
=

[
∂−1
t f

0

]
,

where I ∈ R1,1 and I ∈ Rd,d, with d > 1, denote the identity matrix. Applying the
DG discretization of Section 3.4 to (5.1) and following the error analysis of Section 4, the
error estimates (4.2) and (4.22) continue to hold for the discrete solution of (5.1). For this
reason, we study the simplified model (5.1) only. Moreover, the weight ν in (2.1) and in the
quadrature formula (3.4) is chosen as ν = 0, for simplicity. More sophisticated numerical
studies of the discrete scheme (3.31), also in three space dimensions, will be considered
in a forthcoming work. They do not become feasible for (3.31) without an efficient linear
solver and preconditioner that still need to be developed for (3.31). For this, we also refer
to [8], where an iterative solver is presented and evaluated for the second-order in space
formulation (1.1). Our implementation was done in an in-house frontend for the deal.II
library [1].

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

24 M. BAUSE, S. FRANZ, AND M. ANSELMANN

We study (5.1) for Ω = (0, 1)2 and I = (0, T ], with T = 1, and the prescribed solution

u(x, y) =
1

4
sin (2tω1)

(
sin

(
2ω2

(
x− 1

4

))
+ 1

)(
sin

(
2ω2

(
y − 1

4

))
+ 1

)
,(5.2a)

v(x, y) =

[ 1
4 cos (2tw1) cos

(
2ω2

(
x− 1

4

)) (
sin
(
2ω2

(
y − 1

4

))
+ 1
)

1
4 cos (2tω1) cos

(
2ω2

(
y − 1

4

)) (
sin
(
2ω2

(
x− 1

4

))
+ 1
)
]
,

(5.2b)

with ω1 = ω2 = π. The norm of L∞(I;L2) is approximated by

‖w‖L∞(I;L2) ≈ max{‖w|In(tn,m)‖ : m = 1, . . . ,M , n = 1, . . . , N} , with M = 100 ,

and the Gauss quadrature nodes tn,m of In. We investigate the space-time convergence of
the scheme in Problem 3.8 applied to (5.1) in order to study the sharpness of (4.2) and (4.22).
For this, the domain Ω is decomposed into a sequence of successively refined meshes of
quadrilateral finite elements. The spatial and temporal mesh sizes are halved in each of
the refinement steps. The step sizes of the coarsest mesh are h0 = 1/2

√
2 and τ0 = 0.2.

We choose the polynomial degree in time k and in space r as k = r = 1, k = r = 2, and
k = r = 3 such that a solution (uτ,h,vτ,h) ∈ Y kτ,0(Hdg

h )×
(
Y kτ,0(Hdg

h )
)2

is obtained; cf. (3.2)
and (3.12b) for the definition of the discrete spaces. The calculated errors and corresponding
experimental orders of convergence are summarized in Table 5.1. For k = r = 1 and
k = r = 3, the computed errors nicely confirm the results of Theorem 4.1 and Corollary 4.6.
In particular, the suboptimality of the convergence in space is illustrated. For k = r = 2,
optimal-order approximation properties with respect to the space-time L2(L2)-norm are
ensured for the DG scheme of Problem 3.8 applied to (5.1). This difference needs further
elucidation in future work. It might be due to effects of superconvergence in space on the
highly structured grids used in the convergence tests. For the analysis of superconvergence
in the discrete time nodes of variational discretizations in time to the wave equation, we also
refer to [12] and the discussion and references therein.

6. Summary and outlook. In this work we presented and analyzed the numerical
approximation of a prototype hyperbolic-parabolic model of dynamic poro- or thermoelasticity
that was rewritten as a first-order evolutionary system in space and time such that the abstract
solution theory of Picard [42, 48] in exponentially weighted Bochner spaces became applicable.
A family of DG schemes in space and time was studied where the innovation came through
the DG discretization in space of the first-order formulation. By a consistent definition of
the first-order spatial differential operators on broken polynomials spaces and the addition
of boundary correction terms, the mathematical evolutionary structure was inherited by the
discrete system from the continuous one. Well-posedness of the fully discrete problem and
error estimates for its solution were proved. For the discretization in time, optimal order
of convergence was ensured in the analysis. For the discretization in space, suboptimality
was obtained only. Numerical experiments performed for a simplified hyperbolic model
problem indicate sharpness of the presented error estimation. Numerical studies for more
complex problems, involving strong heterogeneities and anisotropies, and the comparison with
approximations based on the second-order-in-space problem formulation are also in our scope
of interest. However, such numerical studies require efficient iterative solver tailored to the
first-order system structure and remain as a work for the future.
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TABLE 5.1
L2(L2) and L∞(L2) errors and experimental orders of convergence (EOC) for (5.2).

τ h ‖u− uτ,h‖L2(L2) EOC ‖v − vτ,h‖L2(L2) EOC ‖u− uτ,h‖L∞(L2) EOC ‖v − vτ,h‖L∞(L2) EOC

τ0/2
0 h0/2

0 5.3194992212e-02 – 4.5002473555e-02 – 4.7295130546e-02 – 6.5759571453e-02 –
τ0/2

1 h0/2
1 2.3727189278e-02 1.16 1.7391785239e-02 1.37 2.4542534222e-02 0.95 3.1747780152e-02 1.05

τ0/2
2 h0/2

2 1.1501095599e-02 1.04 8.2761888911e-03 1.07 1.2881433392e-02 0.93 1.5750496027e-02 1.01
τ0/2

3 h0/2
3 5.7478425626e-03 1.00 4.1880359747e-03 0.98 6.5079886919e-03 0.99 8.2527298893e-03 0.93

τ0/2
4 h0/2

4 2.8804514083e-03 1.00 2.1087518836e-03 0.99 3.2684508287e-03 0.99 4.2300827636e-03 0.96
τ0/2

5 h0/2
5 1.4431961280e-03 1.00 1.0587306355e-03 0.99 1.6558549975e-03 0.98 2.1319495371e-03 0.99

k = r = 1

τ h ‖u− uτ,h‖L2(L2) EOC ‖v − vτ,h‖L2(L2) EOC ‖u− uτ,h‖L∞(L2) EOC ‖v − vτ,h‖L∞(L2) EOC

τ0/2
0 h0/2

0 4.7374720709e-03 – 4.3371374886e-03 – 6.0899775976e-03 – 5.7444903854e-03 –
τ0/2

1 h0/2
1 3.1848403311e-04 3.89 3.4698808171e-04 3.64 2.0092654075e-04 4.92 2.7491608725e-04 4.39

τ0/2
2 h0/2

2 3.4399296400e-05 3.21 4.0798369154e-05 3.09 1.0462351708e-05 4.26 1.5873381996e-05 4.11
τ0/2

3 h0/2
3 4.1449361940e-06 3.05 5.0350201039e-06 3.02 6.4029326291e-07 4.03 9.7645179146e-07 4.02

τ0/2
4 h0/2

4 5.1338358092e-07 3.01 6.2747015866e-07 3.00 3.9831928910e-08 4.01 6.0803199465e-08 4.01

k = r = 2

τ h ‖u− uτ,h‖L2(L2) EOC ‖v − vτ,h‖L2(L2) EOC ‖u− uτ,h‖L∞(L2) EOC ‖v − vτ,h‖L∞(L2) EOC

τ0/2
0 h0/2

0 5.4568232110e-04 – 4.7831874231e-04 – 4.3042613140e-04 – 6.1497828029e-04 –
τ0/2

1 h0/2
1 6.8748757804e-05 2.99 5.2596282338e-05 3.18 7.6944178401e-05 2.48 9.9985648321e-05 2.62

τ0/2
2 h0/2

2 9.2647645044e-06 2.89 7.0737321746e-06 2.89 1.2948270810e-05 2.57 1.6227622934e-05 2.62
τ0/2

3 h0/2
3 1.1623900524e-06 2.99 9.0027150466e-07 2.97 1.6899479588e-06 2.94 2.0259945045e-06 3.00

τ0/2
4 h0/2

4 1.4429510473e-07 3.01 1.1253393808e-07 3.00 2.1124349485e-07 3.00 2.5324931306e-07 3.00

k = r = 3

Appendix A. Proof of Lemma 4.3.
To keep this work self-contained, we present the proof of Lemma 4.3.
Proof. Let U τ,h ∈ Y kτ (Hdg

h ) be the solution of Problem 3.8 and IτΠhU ∈ Y kτ (Hdg
h ) its

approximation in Y kτ (Hdg
h ) by combined interpolation and projection. Under the regularity

assumption (4.1), there holds for the solution U ∈ Hν(R;D(A)) of Problem 2.4 that

(∂tM0 +M1 +A)U(t) = F (t) , for t ∈ [0, T ] ,

such that, for n ∈ {1, . . . , N},

(A.1)
Qn[(∂tM0 +M1 +Ah)U ,V τ,h]ν +Qn[J∂(U ,V τ,h) + Jγ(U ,V τ,h)]ν

+ 〈M0[[U ]]n−1,V
+,n−1
τ,h 〉 = Qn[IτΠhF ,V τ,h],

for all V τ,h ∈ Y kτ (Hdg
h ). In (A.1),Ah is the natural extension of Definition 3.6 to D(A) with

〈graddg y,vh〉 := 〈grad0 y,vh〉 , ∀y ∈ H1
0 (Ω) ,∀vh ∈ (Y rh )d ,

〈divdg z, yh〉 := 〈div z, yh〉 −
∑
e∈E∂h

〈z · ne, yh〉e , ∀z ∈ D(div) ,∀vh ∈ Y rh ,

〈Graddg y,vh〉 := 〈Grad0 y,vh〉 ,
∀y ∈ H1

0 (Ω)d ,

∀vh ∈ (Y rh )d×d ∩ L2(Ω)d×dsym ,

〈Divdg z,yh〉 := 〈Div z,yh〉 −
∑
e∈E∂h

〈z · ne, yh〉e ,
∀z ∈ D(Div) ∩ L2(Ω)d×dsym ,

∀vh ∈ (Y rh )d .
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For (A.1), we note that by (3.29) and (3.32), there holds for V h ∈Hdg
h that

〈AhU ,V h〉+ J∂(U ,V h)

= −〈DivdgU
2,V

(1)
h 〉 − 〈GraddgU

(1),V
(2)
h 〉

+ 〈divdgU
(4), V

(3)
h 〉+ 〈graddg U

(3),V
(4)
h 〉

−
∑
e∈E∂h

〈U (2) · ne, V (1)
τ,h 〉e +

∑
e∈E∂h

〈U (4) · ne, V (3)
τ,h 〉e

= −〈DivU2,V
(1)
h 〉 − 〈Grad0U

(1),V
(2)
h 〉

+ 〈divU (4), V
(3)
h 〉+ 〈grad0 U

(3),V
(4)
h 〉

= 〈AU ,V h〉.

Further, we have that Jγ(U ,V τ,h) = 0 for U ∈ D(A). Under the assumption (4.1),
[[U ]]n−1 = 0 is satisfied. The identity Qn[F ,V τ,h] = Qn[IτΠhF ,V τ,h] follows from (3.4),
(3.7), and (3.13). Subtracting now (3.31) from (A.1) yields, with the splitting (4.3), the error
equation

(A.2)

Qn[(∂tM0 +M1 +Ah)Eτ,h,V τ,h]ν +Qn[J∂(Eτ,h,V τ,h) + Jγ(Eτ,h,V τ,h)]ν

+ 〈M0[[Eτ,h]]n−1,V
+,n−1
τ,h 〉

= −Qn[(∂tM0 +M1 +Ah)Z, Vτ,h]ν −Qn[J∂(Z,V τ,h)

+ Jγ(Z,V τ,h)]ν − 〈M0[[Z]]n−1,V
+,n−1
τ,h 〉,

for all V τ,h ∈ Y kτ (Hdg
h ) and n = 1, . . . , N . Choosing V τ,h = Eτ,h and recalling that

(A.3) 〈AhEτ,h,Eτ,h〉+ J∂(Eτ,h,Eτ,h) = 0 ,

by the arguments of (3.39), we get that

(A.4)

Qn[(∂tM0 +M1)Eτ,h,Eτ,h]ν

+Qn[Jγ(Eτ,h,Eτ,h)]ν + 〈M0[[Eτ,h]]n−1,E
+,n−1
τ,h 〉

= −Qn[(∂tM0 +M1 +Ah)Z,Eτ,h]ν −Qn[J∂(Z,Eτ,h)

+ Jγ(Z,Eτ,h)]ν − 〈M0[[Z]]n−1,E
+,n−1
τ,h 〉 =: Eni ,

for n = 1, . . . N and E+,n−1
τ,h := E+

τ,h(tn−1) by the definition in (3.3).
By [34, Lemma 3.5] for the left-hand side of (A.4), there holds that

(A.5)

Qn[(∂tM0 +M1)Eτ,h,Eτ,h]ν

+Qn[Jγ(Eτ,h,Eτ,h)]ν + 〈M0[[Eτ,h]]n−1,E
+,n−1
τ,h 〉

≥ γ‖Eτ,h‖2τ,ν,n + |Jγ(Eτ,h,Eτ,h)|2τ,ν,n

+
1

2

[
〈M0E

−
τ,h(tn),E−τ,h(tn)〉 e−2ντn −〈M0E

−
τ,h(tn−1),E−τ,h(tn−1)〉

+ 〈M0[[Eτ,h]]n−1, [[Eτ,h]]n−1〉
]
,
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for n = 1, . . . , N , where E−τ,h(t0) = ΠhU0 − U0,h. Multiplying (A.5) with the weight
e−2νtn−1 , combining this with (A.4), summing up the resulting equation, and neglecting the
positive jump terms yield that

(A.6)

〈M0E
−
τ,h(tN ),E−τ,h(tN )〉 e−2νT +γ‖Eτ,h‖2τ,ν + |Jγ(Eτ,h,Eτ,h)|2τ,ν

≤ C
(
〈M0E

−
τ,h(t0),E−τ,h(t0)〉+

N∑
n=1

e−2νtn−1 Eni

)
.

To bound Eni in (A.6), we need auxiliary results. Recalling the exactness of the quadrature
formula (3.4) for all w ∈ P2k(In;R), along with (3.1), and using integration by part, we get
that

Qn[∂tM0IτΠhU ,Eτ,h]ν = 〈∂tM0IτΠhU ,Eτ,h〉ν,n

= 〈e−2ν(t−tn−1)M0IτΠhU ,Eτ,h〉H
∣∣∣tn
tn−1︸ ︷︷ ︸

=:a

−〈M0IτΠhU , ∂tEτ,h〉ν,n

= a−Qn[M0IτΠhU , ∂tEτ,h]ν = a−Qn[M0Î
k+1
τ ΠhU , ∂tEτ,h]ν

= a− 〈M0Î
k+1
τ ΠhU , ∂tEτ,h〉ν,n

= a+ 〈∂tM0Î
k+1
τ ΠhU ,Eτ,h〉ν,n − 〈e−2ν(t−tn−1)M0Î

k+1
τ ΠhU ,Eτ,h〉H

∣∣∣tn
tn−1︸ ︷︷ ︸

=:b

= a− b+Qn[∂tM0Î
k+1
τ ΠhU ,Eτ,h]ν .

From this, along with the definition of Iτ and Î k+1
τ in (3.7) and (3.9), respectively, we

conclude that

(A.7)
Qn[∂tM0IτΠhU ,Eτ,h]ν + 〈M0[[IτΠhU ]]n−1,E

+,n−1
τ,h 〉H

= Qn[∂tM0Î
k+1
τ ΠhU ,Eτ,h]ν .

By the inequalities of Cauchy–Schwarz and Cauchy–Young, there holds that

(A.8) |J∂(Z,Eτ,h)| ≤ CJn∂ (Z,Z) + βJγ(Eτ,h,Eτ,h),

for any β > 0; cf. (3.33) and (4.9). Then, for the errors Eni in (A.6), defined by (A.4), we
obtain by (A.7) and (A.8) and the inequalities of Cauchy–Schwarz and Cauchy–Young that

(A.9)

N∑
n=1

e−2νtn−1 |Eni |

≤ C
(
‖∂tM0(U − Î k+1

τ ΠhU)‖2τ,ν

+ ‖M1Z‖2τ,ν + ‖AhZ‖2τ,ν + |Jn∂ (Z,Z)|2τ,ν + |Jγ(Z,Z)|2τ,ν

+ T max
1≤n≤N

{
‖M0(ΠhU

+(tn−1)− IτΠhU
+(tn−1))‖2H e−2νtn−1

})
+ β1‖Eτ,h‖2τ,ν + β2|Jγ(Eτ,h,Eτ,h)|2τ,ν ,
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for any β1, β2 > 0. Finally, combining (A.6) with (A.9) and choosing β1 and β2 sufficiently
small, proves the assertion (4.8).

Appendix B. Proof of Lemma 4.4.
To keep this work self-contained, we present the proof of Lemma 4.4.
Proof. Using an idea of [2, Corollary 2.1], for Eτ,h ∈ Y kτ (Hdg

h ), we define the local
interpolant

Êτ,h := Inτ Φ , with Φ :=
τn

t− tn−1
Eτ,h , for t ∈ In , n = 1, . . . , N ,

where the local Lagrange interpolation operator Inτ : C(In;B) → Pk(In;B), for
n ∈ {1, . . . , N}, satisfies

Inτ f(tn,µ) = f(tn,µ) , for µ = 0, . . . , k ,

for the quadrature nodes tn,µ ∈ In, for µ = 0, . . . , k, of the (non-weighted) Gauss–Radau
formula on In. Then, there holds that

(B.1)
〈M0Êτ,h(tn,µ), Êτ,h(tn,µ)〉H =

τ2
n

(tn,µ − tn−1)2
〈M0Eτ,h(tn,µ),Eτ,h(tn,µ)〉H

≥ 〈M0Eτ,h(tn,µ),Eτ,h(tn,µ)〉H .

By [34, Lemma 3.10], based on [2, Lemma 2.1], along with (B.1), we obtain that

(B.2)
Qn[∂tM0Eτ,h, 2Êτ,h]ν + 〈M0E

+
τ,h(tn−1), 2Ê

+

τ,h(tn−1)〉H

≥ 1

τn
Qn[M0Êτ,h, Êτ,h]ν ≥

1

τn
Qn[M0Eτ,h, Eτ,h]ν .

By the norm equivalence

sup
t∈[0,t]

|w(t))| ≤ Ce‖w‖L1((0,1);R) , for w ∈ Pk([0, 1];R) ,

along with the transformation of [tn−1, tn] to [0, 1], we have that

(B.3)

sup
t∈Im
〈M0Eτ,h(t),Eτ,h(t)〉H ≤

Ce
τn

e2ντn Qn[M0Eτ,h,Eτ,h]ν

≤ C

τn
Qn[M0Eτ,hEτ,h]ν ,

with C := Ce e2νT ≥ maxn=1,...,N{e2ντn}Ce. Further, by (3.30) and (3.32) we have that

(B.4)

Qn[AhEτ,h, 2Êτ,h]ν +Qn[J∂(Eτ,h, 2Êτ,h)]ν

=
τn
2

k∑
µ=0

ω̂µ
2τn

tn,µ − tn−1

(
〈AhEτ,h(tn,µ),Eτ,h(tn,µ)〉H

+ J∂(Eτ,h(tn,µ),Eτ,h(tn,µ))
)

= 0 .
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Combining (B.3) with (B.2) and then using (B.4), it follows that

(B.5)

sup
t∈Im
〈M0Eτ,h(t),Eτ,h(t)〉H

≤ C
(
Qn[∂tM0 +M1 +Ah)Eτ,h, 2Êτ,h]ν +Qn[J∂(Eτ,h, 2Êτ,h)

+ Jγ(Eτ,h, 2Êτ,h)]ν + 〈M0[[Eτ,h]]n−1, 2Ê
+

τ,h(tn−1)〉H

−Qn[M1Eτ,h, 2Êτ,h]ν −Qn[Jγ(Eτ,h, 2Êτ,h)]ν

+ 〈M0E
−
τ,h(tn−1), 2Ê

+

τ,h(tn−1)〉H
)
.

Using the error equation (A.2) with test function V τ,h = 2Êτ,h, we deduce from (B.5) that

(B.6)

sup
t∈Im
〈M0Eτ,h(t),Eτ,h(t)〉H

≤ C
(
−Qn[∂tM0 +M1 +Ah)Z, 2Êτ,h]ν −Qn[J∂(Z, 2Êτ,h)

+ Jγ(Z, 2Êτ,h)]ν − 〈M0[[Z]]n−1, 2Ê
+

τ,h(tn−1)〉H

−Qn[M1Eτ,h, 2Êτ,h]ν −Qn[Jγ(Eτ,h, 2Êτ,h)]ν

+ 〈M0E
−
τ,h(tn−1), 2Ê

+

τ,h(tn−1)〉H
)
.

Next, we bound the right-hand side in (B.6). For this, we use the boundedness of M1

and that 〈M0Z
−(tn−1), Ê

+

τ,h(tn−1)〉H = 0 by the definition of Z in (4.3) and Iτ in (3.7).
Further, by the non-negativity and selfadjointness ofM0, there holds for u,v ∈H that

〈M0u,v〉H = 〈M1/2
0 u,M

1/2
0 v〉H ≤ 〈M1/2

0 u,M
1/2
0 u〉H〈M1/2

0 v,M
1/2
0 v〉H .

Similarly to (A.9), we then get from (B.6) that

(B.7)

sup
t∈In
〈M0Eτ,h(t),Eτ,h(t)〉H

≤ C
(
‖∂tM0(U − Î k+1

τ ΠhU)‖2τ,ν,n + ‖M1Z‖2τ,ν,n + ‖AhZ‖2τ,ν,n

+ |Jn
∂ (Z,Z)|τ,ν,n + |J∂(Z,Z)|τ,ν,n + ‖M0Z

+(tn−1)‖2H
)

+ α1〈M0E
−
τ,h(tn−1),E−τ,h(tn−1)〉H + α2‖M1‖2‖Eτ,h‖2τ,ν,n

+ α3|Jγ(Eτ,h,Eτ,h)|τ,ν,n + β1〈2M0Ê
+

τ,h(tn−1), 2Ê
+

τ,h(tn−1)〉H

+ β2Qn[2Êτ,h, 2Êτ,h]ν + β3Qn[Jγ(2Êτ,h, 2Êτ,h)]ν ,

with some constants αi, βi > 0, for i = 1, 2, 3. In (B.7), the term

Gn(Eτ,h) := α1〈M0E
−
τ,h(tn−1),E−τ,h(tn−1)〉H + α2‖M1‖2‖Eτ,h‖2τ,ν,n

+ α3|Jγ(Eτ,h,Eτ,h)|τ,ν,n
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is bounded by means of (4.8), which still holds if E−τ,h(tN ) is replaced by E−τ,h(tn), for
n = 1, . . . , N − 1. Further, noting that (cf. [51, Corollary 1.5])

τn
tn,µ − tn−1

≤ τn
tn,0 − tn−1

≤ 1

δ
, for n ∈ {1, . . . , N} ,

for some δ > 0 depending on ν and T only, we have that

Qn[Êτ,h, Êτ,h]ν ≤
1

δ2
‖Eτ,h‖2τ,ν,n ,(B.8a)

Qn[Jγ(Êτ,h, Êτ,h)]ν ≤
1

δ2
|Jγ(Eτ,h,Eτ,h)|2τ,ν,n,(B.8b)

〈M0Ê
+

τ,h(tn−1), Ê
+

τ,h(tn−1)〉H ≤
1

δ2
sup
t∈In
〈M0Eτ,h(t),Eτ,h(t)〉H .(B.8c)

Finally, combining (B.7) for a sufficiently small choice of β1 to β3 with (B.8) and using (4.8)
proves the assertion (4.10).
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