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OPERATOR-DEPENDENT PROLONGATION AND RESTRICTION FOR
THE PARAMETER-DEPENDENT MULTIGRID METHOD USING

LOW-RANK TENSOR FORMATS∗

LARS GRASEDYCK† AND TIM A. WERTHMANN†

Abstract. Iterative solution methods, such as the parameter-dependent multigrid method, solve linear systems
arising from partial differential equations that depend on parameters. When parameters introduce non-smooth
dependencies, such as jumping coefficients, the convergence of the parameter-dependent multigrid method declines or
even results in divergence. The goal is to enhance robustness of this multigrid method to enable effective solutions of
problems involving jumping coefficients.

An operator-dependent prolongation and restriction, inspired by block Gaussian elimination, is derived that
fulfills the approximation property under exact arithmetic, thereby enhancing the method’s robustness. Using an
approximation of this prolongation and restriction directly in a low-rank tensor format is a trade-off between computa-
tional cost and guaranteed convergence. Numerical experiments provide empirical support for the effectiveness of the
method, even when using a lower accuracy to compute the approximation within the low-rank format. The proposed
operator-dependent prolongation and restriction improves the convergence of the parameter-dependent multigrid
method in the presence of jumping coefficients.

Key words. multigrid, transfer operators, partial differential equations, iterative solvers, low-rank tensor format,
jumping coefficients
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1. Introduction. Modern scientific problems are frequently addressed through the for-
mulation of partial differential equations (PDEs), where it becomes mandatory to incorporate
dependencies on parameters or uncertainties. In many instances, the consideration of such
dependencies enhances the model’s ability to reflect real-world complexities. This motivates us
to focus on solving parameter-dependent linear systems, exemplified through the exploration
of the following well-established model PDE:

(1.1)
−∇ · (σ(x, p)∇u(x, p)) = f(x), x ∈ Ω,

u(x, p) = 0, x ∈ ∂Ω.

In (1.1), the diffusion σ(x, p) depends on some parameters p := (p(1), . . . , p(d)), where each
p(ν) takes only nν discrete values, i.e., p(ν) ∈ {p(ν)(1), p(ν)(2), . . . , p(ν)(nν)} =: P(ν) for
all ν = 1, . . . , d. After employing a suitable discretization (e.g., a finite-element method
(FEM) discretization, even though our arguments are invariant to the discretization method
chosen), we obtain a linear system

(1.2) A(p)u(p) = f

for each combination of parameters p ∈×d

ν=1
P(ν) =: P . As there are nν different, discrete

values for every p(ν), applying classical methods means that we need to solve
∏d
ν=1 nν ≈ nd

linear systems with n := maxnν . The corresponding exponential scaling in the arithmetic
and storage costs renders classical methods infeasible.

Low-rank tensor formats are one way to represent the operator and the right-hand side
of (1.2) in a data-sparse way. This allows us to represent all nd linear systems simultaneously
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with a complexity linear in d. Further, in our manuscript [16], we used the multigrid method
to solve linear systems inside low-rank tensor formats and derived an approximate Jacobi
smoother. For continuous σ(x, p), the standard linear prolongation and restriction was used to
achieve fast multigrid convergence for parameter-dependent problems.

We focus on jumping parameters, such as random or high-contrast variations. For
instance, the function σ(x, p) is discontinuous at internal boundaries within the domain
Ω. Following [11], as a consequence,∇u(x, p) is discontinuous, too. Using standard linear
interpolation for the prolongation and restriction is inaccurate and the convergence rate of
the multigrid method declines. Therefore, the question arises how to deal with these jumping
parameters in the parameter-dependent multigrid method.

To answer this question, in Section 2, we summarize the parameter-dependent multigrid
theory, including parameter-dependent smoothers and linear interpolation. Then, in Section 3,
we address data-sparse representation in low-rank tensor formats and introduce exponential
sums crucial for approximating the inverse of a low-rank tensor operator. This sets the stage
for our main problem in Section 4: Addressing jumping coefficients in (1.1) and explaining
why linear interpolation falls short in such cases. In Section 5, we motivate the derivation of
an operator-dependent prolongation and restriction based on block Gaussian elimination.

In Section 6, the first part of our main contribution is the derivation of an operator-
dependent prolongation and restriction independent of the chosen data-sparse representation,
for which we prove the approximation property. The second part of our main contribution is a
low-rank tensor format representation of this operator-dependent prolongation and restriction,
which we derive using an approximation based on exponential sums.

Using our operator-dependent prolongation and restriction yields a fast convergence
of the low-rank tensor format multigrid method for discontinuous parameters. Numerical
experiments, in Section 7, for one- and two-dimensional geometries with three parameters,
support our theoretical results. Section 8 places our results within the broader context of
related work, and the conclusion is presented in Section 9.

2. The parameter-dependent multigrid method. The subsequent section draws, for
ease of presentation, upon our previous discussion of multigrid methods in [16]. The multigrid
method is a solver for linear systems, with a complexity that often scales linearly or quasi-
linearly in the grid size. This makes it particularly effective for handling large linear systems
of equations. The fundamental concept is to obtain a smooth approximation for the error of
a given estimate for the fine grid solution on a coarser grid. By solving the linear system on
coarser grids with fewer computations, this recursive approach to error correction defines the
essence of the multigrid method. Consequently, the method solves the system on a sequence
of grids, progressing from a coarse grid to progressively finer grids. At each level of the
hierarchy, a combination of relaxation techniques (smoothers) and grid transfers (prolongation
and restriction) is employed to iteratively refine a solution. Thus, the method smoothes errors
on a fine grid and corrects them on coarse grids, enabling rapid convergence to an accurate
solution.

In our manuscript [16], we transferred the parameter-independent case of the convergence
theory of this iterative method to the case of parameter-dependent problems. Our results are
based on the matrix theory established by Hackbusch and others; for a comprehensive overview
of the matrix results, see [19]. To summarize the main results, we define the following notation.

Let X` denote the grid of level ` ∈ N with grid size h` > 0, and let A`(p) denote the
parameter-dependent matrix corresponding to this grid. Analogously, let us denote by X`−1
the next coarser grid with corresponding matrix A`−1(p). Further, let P`(p) : X`−1 → X`

denote a parameter-dependent prolongation and R`(p) : X` → X`−1 a parameter-dependent
restriction, as well as S`(p) a parameter-dependent iteration matrix of the smoother corre-
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sponding to the grid of level `. Then the parameter-dependent iteration matrix of the two-grid
method (TGM) including ν1 ∈ N pre-smoothing steps and ν2 ∈ N0 post-smoothing steps is
given by

(2.1) M
TGM(ν1,ν2)
` (p) = Sν2` (p)

[
Id−P`(p)(A`−1(p))

−1
R`(p)A`(p)

]
Sν1` (p).

For convenience, we will choose ν1 = ν and ν2 = 0 in the following theoretical analysis of
the method. We also assume that A`(p) is symmetric positive definite for all p ∈ P .

The convergence analysis of Hackbusch is based on the splitting of the iteration matrix
from (2.1) into two factors:

(2.2) ‖MTGM(ν,0)
` (p)‖2 ≤ ‖(A`(p))−1 − P`(p)(A`−1(p))

−1
R`(p)‖2 ‖A`(p)Sν` (p)‖2.

The first factor on the right-hand side of (2.2) reflects the grid transfer process. Con-
sequently, our objective is to ensure that the error on the coarse grid serves as a reliable
approximation of the error on the fine grid. This property is referred to as the approximation
property.

DEFINITION 2.1 (Approximation property). The approximation property is given by

‖(A`(p))−1 − P`(p)(A`−1(p))
−1
R`(p)‖2 ≤

CA
‖A`(p)‖2

for all ` ∈ N and p ∈ P , with a constant CA > 0 independent of ` and uniform for all p ∈ P .
In the case of continuous coefficients, one can use a linear interpolation as grid transfer,

e.g., for a one-dimensional geometry Ω ⊆ R such an interpolation is given by the stencil[
0.5 1 0.5

]
. This has the advantage that it can, in the case of continuous coefficients, be

used for all parameters and is therefore parameter-independent. Our main contribution will be
to derive a parameter-dependent prolongation that fulfills the approximation property even for
more complex problems, like discontinuous coefficients.

The second factor on the right-hand side of (2.2) corresponds to the relaxation techniques.
Therefore, our aim is to guarantee that the approximation of the fine grid error is sufficiently
smooth to be approximated on the coarser grid. This property is denoted as the smoothing
property.

DEFINITION 2.2 (Smoothing property). For an iteration with parameter-dependent
iteration matrix S`(p), the smoothing property is defined as

‖A`(p)Sν` (p)‖2 ≤ η(ν)‖A`(p)‖2

for all 0 ≤ ν ≤ ν(h`), p ∈ P , and ` ∈ N0, with functions η and ν satisfying

lim
ν→∞

η(ν) = 0, lim
h→0

ν(h) =∞, or ν(h) =∞

independent of the level ` and uniform for all p ∈ P .
In our manuscript [16], we transferred the smoothing property of the parameter-independ-

ent method to the damped parameter-dependent Jacobi method, defined as
S`(p) := Id−ω(p)(D`(p))

−1
A`(p), and presented an approximation of this smoother using

exponential sums within low-rank tensor formats to approximate the parameter-dependent
inverse diagonal (D`(p))

−1 := (diag(A`(p)))
−1. Section 3 provides a brief introduction to

exponential sums and their underlying concept, as we rely on their ability to approximate a
tensor inverse within the low-rank format. As the error of the exponential sums approximation
decays exponentially fast, for a sufficient accuracy the smoothing property therefore holds
when using an approximation by few summands.
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By combining the smoothing and approximation properties, one directly obtains the
convergence of the two-grid method.

THEOREM 2.3. Assume that the smoothing property of Definition 2.2 with ν(h) = ∞
and the approximation property of Definition 2.1 are fulfilled. For a given 0 < ζ < 1, there
exists a lower bound ν ∈ N0, such that

‖MTGM(ν,0)
` (p)‖2 ≤ CAη(ν) ≤ ζ

holds for all ν ≥ ν , ` ∈ N, and p ∈ P .
This theory then leads to Algorithm 1, where the parameter-dependent multigrid pseudo-

code is given for ν1 pre-, ν2 post-smoothing steps, and γ coarse grid corrections. We call the
multigrid method with γ = 1 the V-cycle, and for γ = 2 the W-cycle.

Algorithm 1 u`(p)← multigrid(u`(p), f`(p), `)

if ` = 0 then
u`(p)← solve A`(p)u`(p) = f`(p)

else
u`(p)← Sν1` (p)(u`(p), f`(p))
d`−1(p)← R`(p)(f`(p)−A`(p)u`(p))
e`−1(p)← 0
for 1 to γ do
e`−1(p)← multigrid(e`−1(p), d`−1(p), `− 1)

end for
u`(p)← u`(p) + P`(p)e`−1(p)
u`(p)← Sν2` (p)(u`(p), f`(p))

end if

Algorithm 1 outlines the process. We start by smoothing the current solution approxima-
tion u`(p). Next, we restrict the current residual to a coarser grid, recursively applying the
method. Afterward, we prolongate the information from the coarse grid back to the current
fine grid and perform smoothing again. On the coarsest level ` = 0, a method is needed to
solve the linear system, for which we use the chosen smoother S`(p).

This underlines that we need to represent the smoother, the operator, the right-hand side,
the prolongation, and the restriction in a parameter-dependent way. To achieve this, we use
low-rank tensor formats.

3. Low-rank tensor formats. We revisit low-rank formats, based on [16, 31], as they
are instrumental in capturing the parameter dependency.

We consider that the operator, as expressed in (1.2), has an affine-linear form, i.e.,
A(p) := A(0) +

∑d
k=1 p

(k)A(k). Utilizing the Kronecker product to represent this operator in
a data-sparse way, we obtain

(3.1)

A = Id⊗ · · · ⊗ Id⊗A(0) + Id⊗ · · · ⊗ Id⊗diag(p
(1)
1 , . . . , p(1)n1

)⊗A(1)

+ · · ·+ diag(p
(d)
1 , . . . , p(d)nd )⊗ · · · ⊗ Id⊗ Id⊗A(d)

=

d∑
k=0

d⊗
ν=0

Akν with Akν =


A(k), if ν = d,

diag(p
(ν)
1 , . . . , p

(ν)
nν ), if ν + k = d and ν 6= 0,

Id, otherwise.
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This data-sparse representation reduces the storage cost from O(nd) to O(ndr), employing
the so-called CANDECOMP/PARAFAC (CP) decomposition, introduced in [8, 25].

DEFINITION 3.1 (CP decomposition). A CP representation of a tensor B ∈ Rn1×···×nd ,
with representation rank r ∈ N0, is defined as

(3.2) B =

r∑
k=1

d⊗
`=1

b
(`)
k with b(`)k ∈ Rn` ,

where each ` ∈ D := {1, . . . , d} is termed a mode, and d is the dimension. The minimal
r, making (3.2) hold, is referred to as the CP rank of B. In this case, (3.2) is called the CP
decomposition of B. We call a tensor of the form (3.2) a CP vector. Tensors of the form⊗d

`=1 b
(`) 6= 0, i.e., of rank 1, are called elementary tensors. A CP representation of a linear

tensor operator A from Rn1×···×nd to Rn1×···×nd , with representation rank r and dimension
d, is defined as

(3.3) A =

r∑
k=1

d⊗
`=1

A
(`)
k with A(`)

k ∈ Rn`×n` .

We call a tensor of the form (3.3) a CP operator.
It is important to note that b(`)k in (3.2) are vectors and the A(`)

k in (3.3) are matrices.
Using the CP format, one can derive a data-sparse representation of the operator and the

right-hand side of (1.2). Therefore, we are capable of representing the operator and right-hand
side in a parameter-dependent way.

To employ the parameter-dependent multigrid method for solving, it is essential to express
the smoother in a data-sparse form. However, directly finding an inverse operator within the
CP format poses a challenging problem, and deriving a smoother for the multigrid method
becomes a complex task.

An effective approach for achieving this involves employing exponential sums. Given
appropriate assumptions, we can express 1/x =

∫∞
0

exp(−tx) dt, and through a suitable
numerical integration formula, we can derive 1/x ≈

∑r
k=1 αk exp(−tkx). Employing this

method allows for variable separation, resulting in an approximate direct inverse in the CP
format:

1

x+ y
≈

r∑
k=1

αk exp(−tk(x+ y)) =

r∑
k=1

αk exp(−tkx) · exp(−tky),

and for commuting operators A and B:

(A+B)
−1 ≈

r∑
k=1

αk exp(−tk(A+B)) =

r∑
k=1

αk exp(−tkA)⊗ exp(−tkB).

It is important to note that the error of the exponential sums approximation can be bounded
based on r; see [22]. However, the stringent assumptions required for applying exponential
sums make their use impractical for arbitrary operators in the CP format. In [16], we developed
a method to apply exponential sums to the diagonal of affine-linear operators in the form
of (1.2). This allowed us to derive an approximate Jacobi smoother directly in the CP format,
with a proven smoothing property.

The task of finding a prolongation and restriction that fulfills the approximation property
and can be represented within a low-rank format is challenging. In [16], we opted for the
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{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

FIG. 3.1. A dimension tree for dimension d = 4. FIG. 3.2. Visual representation of a matriciz-
ation for dimension d = 3.

standard linear prolongation and restriction, represented in the CP format by Id⊗ · · ·⊗ Id⊗P .
For problems with smooth σ in (1.2), we observed for this parameter-independent prolongation
and restriction a rapid multigrid convergence. The derivation of an operator-dependent and
parameter-dependent prolongation and restriction is our main contribution.

Since we have to perform arithmetic operations in the CP format, an issue arises due to
the resulting rank growth. For example, the addition of CP tensors results in a CP tensor whose
rank is the sum of the ranks of the tensors being added. Given computational constraints that
limit the acceptable approximation rank, we need a method to compute an approximation with
lower rank. Further, to ensure the convergence of the multigrid method, or any other iterative
solver, this approximation needs to be error-controlled; cf. [23]. The complication arises from
the fact that the set of the CP format with rank r is not closed [10]. Consequently, obtaining
an error-controlled approximation with lower rank is an ill-posed problem in the CP format;
cf. [10]. To address this, we will briefly introduce the hierarchical Tucker format; proposed
in [24] and further analyzed in [14].

The idea of the hierarchical Tucker format is to establish a hierarchy among the modes
D = {1, . . . , d}. This is achieved by defining a dimension tree; analogously to [14, Definition
3.3]. An example for d = 4 is shown in Figure 3.1.

DEFINITION 3.2 (Dimension tree). A dimension tree T for dimension d ∈ N is rep-
resented as a binary tree. Nodes within this tree are labeled with non-empty subsets of D.
The root node is labeled with D, each leaf node is labeled with a single-element subset
z = {`} ⊆ D, and each inner node is labeled with the disjoint union of its two children. We
will identify a node with its label z and hence write z ∈ T .

The labels within dimension trees give rise to the associated matricization, a concept that
we define as in [14, Definition 3.3].

DEFINITION 3.3 (Matricization and vectorization). Let B ∈ Rn1×···×nd , z ⊆ D with
z 6= ∅, and g := D\z. The matricization of B corresponding to z is defined as B(z) ∈ Rnz×ng ,
where nz :=

∏
`∈z n` and ng :=

∏
`∈g n`, with B(z)[(ij)j∈z, (ij)j∈g] := B[i1, . . . , id] for

all i = (ij)j∈D. In particular, B(D) ∈ Rn1···nd holds, which can also be interpreted as the
vectorization of B.

A matricization can be visualized as an unfolding of the tensor as illustrated in Figure 3.2.
Drawing upon the notion of matricizations, the hierarchical Tucker rank is defined in

accordance with [14, Definition 3.4].
DEFINITION 3.4 (Hierarchical Tucker rank). Let B ∈ Rn1×···×nd and T be a dimension

tree. The hierarchical Tucker rank of B is defined as rankT (B) := (rz)z∈T , where rz :=

rank(B(z)) denotes the matrix rank of the matricization B(z) for all z ∈ T .
The set of tensors with hierarchical Tucker rank node-wise bounded by (rz)z∈T is defined

asH -Tucker(T , (rz)z∈T ) := {F ∈ Rn1×···×nd | rank(F (z)) ≤ rz for all z ∈ T }.
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TABLE 3.1
Operations and their costs in the hierarchical Tucker format, where d is the dimension, n is the mode size, and

r is the rank.

Operation Cost Reference

Storage O(dr3 + dnr) [14, Lemma 3.7]
Orthonormalization O(dnr2 + dr4) [20, (13.16b)]
Addition O(dnr2 + dr4) [20, 13.1.4]
Evaluation O(dr3) [20, 13.2.3]
Inner product/Norm O(dnr2 + dr4) [20, Lemma 13.7]
Operator application O(dn2r) [20, 13.9.1]
Truncation O(dr2n+ dr4) [20, (11.46c)]
Maximum O(d2 log2(n)nr2 + d2 log2(n)r6) [15, (7.4)]

Using the dimension tree, the concept of matricization, and the hierarchical Tucker
rank, one can define the representation of a tensor within the hierarchical Tucker format;
cf. [14, Definition 3.6]. The memory required for a hierarchical Tucker representation,
with dimension tree T and representation rank (rz)z∈T , of a tensor B ∈ Rn1×···×nd for
n = max`∈D n` and r = maxz∈T rz is given by O(rdn + r3d); cf. [14, Lemma 3.7]. The
existence of a truncation method of a low-rank tensor B ∈ H -Tucker(T , (rz)z∈T ) down to
lower rank (r̃z)z∈T with an arithmetic cost inO(r2dn+r4d) was proven in [14]. The resulting
approximation B̃ := truncate(B) ∈ H -Tucker(T , (r̃z)z∈T ) fulfills the quasi-optimal error
estimation

‖B − B̃‖ ≤
√

2d− 3 inf
F∈H -Tucker(T ,(r̃z)z∈T )

‖B − F‖.

Moreover, we can transfer a CP representation of a tensor with CP rank r into a hierarchical
Tucker representation with rank node-wise bounded by r; cf. [20, Theorem 11.17]. Subse-
quently, we can express both the operator and the right-hand side in the hierarchical Tucker
format. A summary of several arithmetic operations feasible within the hierarchical Tucker
format is presented in Table 3.1.

Utilizing these arithmetic operators we can now numerically approximate the solution of
a parameter-dependent linear system within the hierarchical Tucker format. This is applicable
when the tensor operatorA is positive definite and symmetric, employing the multigrid method
outlined in Algorithm 1. An observation from Table 3.1 reveals that, for small ranks r, the
majority of operations required for the multigrid method exhibit linear scaling with both the
dimension d and mode size n. Consequently, this presents an efficient approach for solving
parameter-dependent linear systems using low-rank tensor formats.

4. Motivation for operator-dependent prolongation and restriction. In this section,
we motivate the challenges posed by discontinuous coefficients, even in the context of para-
meter-independent problems. To illustrate this, we use an insightful example from the lit-
erature [9, 11]. Let u` be the approximate solution of A`u` = f` and u be the continuous
solution. We consider the error equation r` = A`e`, where r` = f` −A`u` is the residual and
e` = u− u` is the corresponding error.

After applying the smoothing step from the multigrid method, the residual r` is also
smoothed. The key difference when dealing with a smooth σ versus a non-smooth σ now
occurs:

• If σ is continuous, the error e` is smoothed and thus well approximated by standard
linear interpolation of a coarse grid function, as visualized in Figure 4.1. So in this
case, the multigrid method works as expected also using low-rank formats.
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xi−3 xi−2 xi−1 xi xi+1

O(h2)

u
(x
,p

)

true solution
linear interpolation

FIG. 4.1. Using linear interpolation on a
function with continuous gradient yields an error
ofO(h2).

xi−3 xi−2 xi−1 xi xi+1

O(h)

u
(x
,p

)

true solution
linear interpolation

FIG. 4.2. Using linear interpolation on a func-
tion with discontinuous gradient can yield an error
ofO(h) instead ofO(h2).

• However, near a discontinuity point of the diffusion coefficient, a smooth residual r`
corresponds to an error e` with discontinuous gradient. For this reason, the canonical
linear interpolation of a coarse grid function no longer adequately captures the error,
resulting in a reduction in approximation accuracy. As a result, the error induced by
linear interpolation is of O(h) instead of O(h2), as depicted in Figure 4.2.

Consequently, in the case of discontinuous coefficients, linear interpolation fails to provide a
sufficiently accurate approximation of the function on the fine grid. This leads to a decrease
in the convergence rate of the multigrid method or even divergence; cf. [1]. So we need
alternative prolongations and restrictions.

To address this problem in the classical parameter-independent multigrid method, a vast
number of operator-dependent prolongation and restrictions were employed as seen, e.g.,
in [1, 12, 26]. However, these approaches often rely on fixed parameter combinations and
the local entry-wise combination of operator entries. Implementing such a strategy for all
parameter combinations independently of each other is infeasible because of the exponential
scaling in the arithmetic and storage cost.

Therefore, as a first problem, we need an ansatz capable of computing an operator-
dependent prolongation and restriction simultaneously for all parameters. Additionally, these
prolongations and restrictions should fulfill the approximation property for all p ∈ P . As a
second problem, we also need a method to compute and represent these prolongations and
restrictions in a parameter-dependent way using low-rank formats.

5. A block Gaussian idea. In this section, we discuss the derivation of a general concept
of an operator-dependent prolongation and restriction that fulfills the approximation property.
We shall transition from a geometric perspective of the multigrid method to an algebraic point
of view. This shift in perspective will result in several modifications, including a different
derivation of the coarse grid operator as a Schur complement. This derivation will be conducted
within the tensor format, which facilitates the computation of an approximation. The objective
is to derive a prolongation and restriction from the algebraic approach for arbitrary parameter-
dependent problems. To facilitate the computations, it is necessary to approximate them within
the low-rank tensor format.

We adapt, for ease of presentation, the motivation of our idea from the matrix case,
presented in [28], to the parameter-dependent case. Consider the parameter-dependent linear
system at level ` ∈ N,

(5.1) A`(p)u`(p) = f`.
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This system is given for all p in the parameter space P .
Let uF

`(p) represent the unknowns on Ω` \ Ω`−1, i.e., the unknowns that only live on the
fine grid. Further, let uC

` (p) denote the unknowns on the next coarser grid Ω`−1. Furthermore,
we partition both the operator and the right-hand side based on the distinction between
fine and coarse grids. Here, this partitioning relies entirely on the geometry. Further, this
article does not address or require the consideration of algebraic partitioning, as encountered
in algebraic multigrid methods. In our context, all the necessary geometric information
is readily available as the parameters do not change the geometry. We define K`(p) :=
Id−P`(p)A−1`−1(p)R`(p)A`(p) as the coarse-level correction operator.

The idea is to choose the prolongation and restriction in such a way that the multi-
grid method degenerates into a direct solver, e.g., it holds that K`(p)S

ν
` (p) = 0 or that

Sν` (p)K`(p) = 0. To achieve this, we aim to choose the prolongation and restriction such that
we separate the equations for uF

`(p) and uC
` (p) using block Gaussian elimination. To do so,

we rewrite (5.1) in the following block form:

(5.2)
[
AFF
` (p) AFC

` (p)

ACF
` (p) ACC

` (p)

] [
uF
`(p)

uC
` (p)

]
=

[
fF
`

fC
`

]
.

Then, using exact block Gaussian elimination, i.e.,[
Id −(AFF

` (p))
−1
AFC
` (p)

0 Id

]> [
AFF
` (p) AFC

` (p)

ACF
` (p) ACC

` (p)

] [
Id −(AFF

` (p))
−1
AFC
` (p)

0 Id

]

=

[
AFF
` (p) 0

0 ACC
` (p)−ACF

` (p)(AFF
` (p))

−1
AFC
` (p)

]
,

we get a separated representation of the operator. Therefore, our operator-dependent prolonga-
tion, which provides a separation of the fine grid and coarse grid, is given by

(5.3) P`(p) =

[
−(AFF

` (p))
−1
AFC
` (p)

Id

]
.

One benefit of (5.3) is that it enables a highly accurate representation of the parameter-
dependent prolongation in the low-rank format using exponential sums. We remark that the
error using those exponential sums decays with an exponential rate for ε→ 0. Consequently,
this algebraic perspective yields a low-rank prolongation that is well suited for discontinuous
diffusion coefficients.

REMARK 5.1. It should be noted that utilizing this highly accurate representation has the
potential to result in high ranks in the tensor format. To address this, a rougher approximation
employing some truncation would be preferable. However, such an approach requires some
additional modification of the operator, e.g., a scaling, to prove multigrid convergence; see,
e.g., [30]. As this task is non-trivial within the tensor format, it is thus beyond the scope of
this article.

If we envision a (maybe hypothetical) smoother designed to exclusively solve the fine grid
equations for uF

`(p), our above choice of the prolongation and restriction becomes optimal.
This is because the remaining unknowns uC

` (p) on the coarse grid are solved by A−1`−1(p), and,
due to the separation of the problem, there is no interference between these components. If
A−1` (p) and A−1`−1(p) exist and it holds that

Sν` (p) =
[
0 P`(p)

]
=

[
0 P FC

` (p)

0 PCC
` (p)

]
,
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then K`(p)S
ν
` (p) = 0 as K`(p)P`(p) = 0, i.e., the resulting multigrid method is a direct

solver.
If we then define P FC

` (p) = −AFF
` (p)

−1
AFC
` (p), i.e., define the prolongation by solving

AFF
` (p)eF

` +AFC
` (p)eC

` = 0 for eF
` , then it holds that

(5.4) Sν` (p) =

[
0 −(AFF

` (p))
−1
AFC
` (p)

0 Id

]
.

Using this Sν` (p) corresponds to solving the F-equations for uF
`(p), i.e., AFF

` (p)uF
`(p) +

AFC
` (p)uC

` (p) = fF
` , or in terms of the error,

(5.5) eF
`(p) = −(AFF

` (p))
−1
AFC
` (p)eC

` .

For this choice of P FC
` (p) the Galerkin operator is the Schur complement, i.e.,

A`−1(p) = P>(p)A`(p)P (p) := ACC
` (p)−ACF

` (p)(AFF
` (p))

−1
AFC
` (p),

and is regular if A`(p) and AFF
` (p) are regular.

LEMMA 5.2. Let A`(p) and AFF
` (p) be regular and let Sν` (p) be defined by (5.4). Then

the following are true:
• If P FC

` (p) = −(AFF
` (p))

−1
AFC
` (p) then A−1`−1(p) exists and K`(p)S

ν
` (p) = 0.

• The Galerkin operator is just the Schur complement corresponding to (5.2), i.e.,
A`−1(p) = ACC

` (p)−ACF
` (p)(AFF

` (p))
−1
AFC
` (p).

We observe that R`(p)A`(p)e` = A`−1(p)eC
` holds for all e` = (eF

` , e
C
` ). From this and

R`(p)A`(p)K`(p) = 0 it follows that the application of the coarse-level correction operator
K`(p) yields error vectors e` with eC

` = 0 and therefore, due to (5.5), post-smoothing reduces
the total error to 0. If we specify the prolongation and restriction following these ideas, we
obtain a direct method.

As a next step, using the choice of the operator-dependent prolongation and restriction as
outlined above, we prove that this fulfills the approximation property in case of exact arithmetic.
Additionally, we must address our second problem: How to compute or approximate these
operator-dependent prolongations and restrictions within low-rank formats.

6. Our operator-dependent prolongation and restriction. Following our motivation
from Section 5, we define the following operator-dependent prolongation and restriction.

DEFINITION 6.1. Let A`(p)u`(p) = f` be a parameter-dependent linear system such
that [

AFF
` (p) AFC

` (p)

ACF
` (p) ACC

` (p)

] [
uF
`(p)

uC
` (p)

]
=

[
fF
`

fC
`

]
holds, where uF

`(p) represent the unknowns on Ω` \ Ω`−1 and uC
` (p) denote the unknowns on

the next coarser grid Ω`−1.
Then, we define the operator-dependent prolongation

P`(p) =

[
−(AFF

` (p))
−1
AFC
` (p)

Id

]
and the operator-dependent restriction

R`(p) =
[
−ACF

` (p)(AFF
` (p))

−>
Id
]
.
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We prove that the selection of the prolongation and restriction, as in Definition 6.1,
fulfills the approximation property under the constraint of exact arithmetic. In the parameter-
independent matrix case, this proof is known, but for ease of presentation we present a
parameter-dependent version.

THEOREM 6.2. Let σ(x, p) in (1.1) be uniformly bounded from above and below for all
p ∈ P . Further, we assume CAλmin(AFF

` (p)) ≥ λmax(A`(p)) holds for each, fixed p ∈ P .
Then, for the parameter-dependent and operator-dependent prolongation and restriction

in Definition 6.1, the approximation property from Definition 2.1 holds.
Proof. In the proof, we refrain from explicitly stating the dependency on p.
We calculate for fixed, but arbitrary, p and `:

A`−1

= R`A`P`

=
[
−(AFC

` )
>

(AFF
` )
−>

Id
] [AFF

` AFC
`

ACF
` ACC

`

][
−(AFF

` )
−1
AFC
`

Id

]

=
[
−(AFC

` )
>

(AFF
` )
−>
AFF
` +ACF

` −(AFC
` )
>

(AFF
` )
−>
AFC
` +ACC

`

] [−(AFF
` )
−1
AFC
`

Id

]
= ((AFC

` )
>

(AFF
` )
−>
AFF
` −ACF

` )(AFF
` )
−1
AFC
` − (AFC

` )
>

(AFF
` )
−>
AFC
` +ACC

`

= ACC
` −ACF

` (AFF
` )
−1
AFC
` =: M.

Using the Schur complement we calculate

A−1` =

[
AFF
` AFC

`

ACF
` ACC

`

]−1
=

[
(AFF

` )
−1

+ (AFF
` )
−1
AFC
` M

−1ACF
` (AFF

` )
−1 −(AFF

` )
−1
AFC
` M

−1

−M−1ACF
` (AFF

` )
−1

M−1

]

Using (AFF
` )
−1

= (AFF
` )
−> and (AFC

` )
>

= ACF
` we calculate

‖A−1` − P`A
−1
`−1R`‖2

= ‖A−1` − P`(R`A`P`)
−1
R`‖2

=

∥∥∥∥∥A−1` −
[
−(AFF

` )
−1
AFC
`

Id

]
M−1

[
−(AFC

` )
>

(AFF
` )
−>

Id
]∥∥∥∥∥

2

=

∥∥∥∥∥A−1` −
[

(AFF
` )
−1
AFC
` M

−1(AFC
` )
>

(AFF
` )
−> −(AFF

` )
−1
AFC
` M

−1

−M−1(AFC
` )
>

(AFF
` )
−>

M−1

]∥∥∥∥∥
2

=

∥∥∥∥∥A−1` −
[

(AFF
` )
−1
AFC
` M

−1ACF
` (AFF

` )
−1 −(AFF

` )
−1
AFC
` M

−1

−M−1ACF
` (AFF

` )
−1

M−1

]∥∥∥∥∥
2

=

∥∥∥∥[(AFF
` )
−1

0
0 0

]∥∥∥∥
2

≤ CA
‖A`‖2

for a constant CA > 0 independent of `. As we choose p and ` to be arbitrary, the statement
follows.
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For this reason, P`(p) as in (5.3) is an optimal prolongation that fulfills the approximation
property.

The assumption CAλmin(AFF
` (p)) ≥ λmax(A`(p)) <∞ can be proven for Laplace-like

problems as in our guiding problem (1.1) using, e.g., a suitable discretization such that the
constant CA depends only on the bounds of the diffusion coefficients, see [2].

REMARK 6.3. The choice to employ the prolongation and restriction as in Definition 6.1,
coupled with the use of the Schur complement as the coarse grid matrix, introduces an
inconsistency between the defined smoothing property and the employed smoothers. While
our employed smoothers do indeed smooth the error, they do not align with Definition 2.2.
Changing the definition for our smoother in the parameter-dependent way is beyond the scope
of this work and merits further detailed investigation in future research.

This leads to our second problem: How to invert AFF
` (p) or how to approximate the

operator-dependent prolongation and restriction from Definition 6.1 within the low-rank
format. To delve into this, we talk about different structured forms of AFF

` (p) and (AFF
` (p))

−1.

Prolongation and restriction using low-rank formats. For a one-dimensional geometry
Ω ⊆ R in (1.1), the AFF

` (p) part is a diagonal operator; see [28]. In the case of parameter-
independent problems based on classical methods, inverting it is straightforward since only
a diagonal matrix requires inversion. However, for parameter-dependent problems using
low-rank formats, this becomes a non-trivial task. As demonstrated in [16], one can employ
exponential sums to approximate the inverse. As exploiting the diagonal structure allows for
the application of exponential sums within the CP format, this results in an error-controlled
approximation of this part of the operator.

For more complex geometries Ω, such as the two-dimensional case in (1.1), the inversion
of AFF

` (p) becomes non-trivial even in the parameter-independent scenario. In the two-
dimensional case Ω ⊆ R2, the AFF

` (p) part is no longer a diagonal operator, and its inversion
could result in a full matrix. Consequently, various approximations of this optimal choice of
the prolongation have been proposed even for the matrix case. For example in [27, 32], they
suggested to use an approximation[

ÃFF
` (p) ÃFC

` (p)

ÃCF
` (p) ACC

` (p)

]
for

[
AFF
` (p) AFC

` (p)

ACF
` (p) ACC

` (p)

]
such that:

• ÃFF
` (p) is easy to invert,

• −(ÃFF
` (p))

−1
ÃFC
` (p) is an approximation of −(AFF

` (p))
−1
AFC
` (p), and

•
[
−(ÃFF

` (p))
−1
ÃFC
` (p) Id

]
is a local, i.e., sparse, operator.

In the parameter-dependent scenario, the sparsity of the operator becomes less crucial for us, as
we work with a data-sparse format. Instead, the emphasis is on the ease of approximating the
inversion of ÃFF

` (p) without resorting to additional linear solvers. To do so, our focus narrows
down to approximating the upper-left block operator. Therefore, we opt not to approximate the
other two proposed parts of the operator at this stage, deferring this aspect to future work. We
further defer many of the other proposed approximations from [27, 32] to further work, which
boils down to an entry-wise normalization that is unknown within low-rank tensor formats.

Instead, we focus on two approaches: Our first straightforward approach to solve this
problem is to invert only the diagonal of ÃFF

` (p) as an approximation. As we are then back
in the case of approximating a parameter-dependent diagonal operator within the low-rank
format, we achieve this using our previous work in [16]. Such an approximation is also
proposed for the matrix case in [27, Section 2.2].
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Our second approach is based on our work in [18], where we directly applied exponential
sums for the approximated inverse of an operator in the hierarchical Tucker format. This
enables us to compute an approximation of the inverse in a direct manner. Despite the potential
for a higher rank growth due to numerous operator applications, the use of a truncation allows
us to consistently compute a rough approximation of the inverse. This approximation aligns
with the recommendations from the literature for prolongation and restriction shown above.

In this context, employing a rough accuracy during the inversion in the low-rank format
ensures that ÃFF

` (p) is computationally inexpensive to invert. Additionally, by controlling

the truncation error, we can guarantee a bound on the error such that −(ÃFF
` (p))

−1
ÃFC
` (p)

provides a reliable approximation of −(AFF
` (p))

−1
AFC
` (p). Utilizing only a rough truncation

accuracy ensures that the operator is data-sparse. However, a too inaccurate approximation
could lead to a decrease in the convergence, leading to a trade-off between arithmetic effort
and guaranteed convergence.

As the next step, we talk about the representation of the operator-dependent prolongation
using low-rank formats in the case of a parameter-dependent problem. Here, the operator
A` is represented as a tensor operator using the hierarchical Tucker format; cf. Section 3.
Additionally, both the solution U` and the right-hand side F` are represented as tensor vectors
using the hierarchical Tucker format, as detailed in Section 3.

To precompute the operator-dependent prolongation and restriction for the parameter-
dependent problem within low-rank tensor formats, our initial step involves splitting the opera-
tor into the desired block form. Given that the operator is of the form A`(x1, x2, p1, . . . , pd)
and represents a multilinear mapping, it directly inherits the fine and coarse grid splitting from
the splitting of the parameter-independent A(ν)

` for all ν ∈ {0, . . . , d}, i.e.,

A
(ν)
` =

[
(A

(ν)
` )FF (A

(ν)
` )FC

(A
(ν)
` )CF (A

(ν)
` )CC

]
.

THEOREM 6.4. Assume A`(p) is given as an affine-linear operator with a CP representa-
tion A` as in (3.1) or a hierarchical Tucker representation.

Then we can split A` into

A` =

[
AFF
` AFC

`

ACF
` ACC

`

]
,

where AFF
` , AFC

` , ACF
` , and ACC

` have the same format as A`, i.e., for a CP representation

AFF
` = Id⊗ · · · ⊗ Id⊗ (A`

(0))FF + Id⊗ · · · ⊗ Id⊗diag(p
(1)
1 , . . . , p(1)n1

)⊗ (A`
(1))FF

+ · · ·+ diag(p
(d)
1 , . . . , p(d)nd )⊗ · · · ⊗ Id⊗ Id⊗ (A`

(d))FF

=

d∑
k=0

d⊗
ν=0

Akν with Akν =


(A`

(k))FF, if ν = d,

diag(p
(ν)
1 , . . . , p

(ν)
nν ), if ν + k = d and ν 6= 0,

Id, otherwise,

and likewise for AFC
` , ACF

` , and ACC
` .

After the splitting in Theorem 6.4, we next approximate the inverse of AFF
` (p) using

exponential sums. Using this approximation, we get the following result that motivates why
a rough approximation of the optimal prolongation could still lead to an operator-dependent
prolongation and restriction that fulfills the approximation property.
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THEOREM 6.5. Let us define an operator-dependent prolongation through

P̃`(p) =

[
−(ÃFF

` (p))−1AFC
` (p)

Id

]
,

with (ÃFF
` (p))−1 an approximation of (AFF

` (p))−1.
Then for[
Id

P̃`(p)
0

]> [
AFF
` (p) AFC

` (p)

ACF
` (p) ACC

` (p)

] [
Id

P̃`(p)
0

]

=

[
Id −(ÃFF

` (p))
−1
AFC
` (p)

0 Id

]> [
AFF
` (p) AFC

` (p)

ACF
` (p) ACC

` (p)

][
Id −(ÃFF

` (p))
−1
AFC
` (p)

0 Id

]

=

[
AFF
` (p) ÃFC

` (p)

ÃCF
` (p) ÃCC

` (p)

]
,

it holds that

ÃFC
` (p) =

(
(ÃFF

` (p))
−1 − (AFF

` (p))
−1
)
AFF
` (p)AFC

` (p),

ÃCF
` (p) = ACF

` (p)AFF
` (p)

(
(ÃFF

` (p))
−1 − (AFF

` (p))
−1
)
,

and

ÃCC
` (p) = ACC

` (p)−ACF
` (p)(ÃFF

` (p))
−1
AFC
` (p)

+ACF
` (p)(ÃFF

` (p))
−1
AFF
` (p)

(
(ÃFF

` (p))
−1 − (AFF

` (p))
−1
)
AFC
` (p).

Proof. We start with the claim and compute:[
Id −(ÃFF

` (p))
−1
AFC
` (p)

0 Id

]> [
AFF
` (p) AFC

` (p)

ACF
` (p) ACC

` (p)

][
Id −(ÃFF

` (p))
−1
AFC
` (p)

0 Id

]

=

[
Id 0

−ACF
` (p)(ÃFF

` (p))
−>

Id

][
AFF
` (p) −AFF

` (p)(ÃFF
` (p))

−1
AFC
` (p) +AFC

` (p)

ACF
` (p) −ACF

` (p)(ÃFF
` (p))

−1
AFC
` (p) +ACC

` (p)

]

=

[
AFF
` (p) ÃFC

` (p)

ÃCF
` (p) ÃCC

` (p)

]
,

with

ÃFC
` (p) := AFC

` (p)−AFF
` (p)(ÃFF

` (p))
−1
AFC
` (p),

ÃCF
` (p) := ACF

` (p)−ACF
` (p)(ÃFF

` (p))
−1
AFF
` (p),

and

ÃCC
` (p) := ACC

` (p)− 2ACF
` (p)(ÃFF

` (p))
−1
AFC
` (p)

+ACF
` (p)(ÃFF

` (p))
−1
AFF
` (p)(ÃFF

` (p))
−>
AFC
` (p).
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As it now holds that

(ÃFF
` (p))

−1
AFF
` (p) = (ÃFF

` (p))
−1
AFF
` (p)−AFF

` (p)
−1
AFF
` (p) +AFF

` (p)
−1
AFF
` (p)

=
(

(ÃFF
` (p))

−1 −AFF
` (p)

−1
)
AFF
` (p) + Id

and also

AFF
` (p)(ÃFF

` (p))
−1

= AFF
` (p)

(
(ÃFF

` (p))
−1 −AFF

` (p)
−1
)

+ Id,

the claim follows.

As an approximation in Theorem 6.5 using exponential sums can be made arbitrarily
accurate, it holds that

(6.1) ‖(AFF
` (p))

−1 − (ÃFF
` (p))−1‖ ≤ ε.

Now for ε → 0 in (6.1), Theorem 6.5 gives us a prolongation and restriction that separate
the fine and coarse grids according to our motivation from Section 5. So if we were to
compute in exact arithmetic, this approximation would fulfill, according to Theorem 6.2, the
approximation property. Using such a high accuracy in the non-diagonal case could lead to a
possible rapid rank growth, therefore, Theorem 6.5 should be understood as a motivation why
the rough approximation works so well in practice. Further, it is evident that utilizing a rougher
approximation would lead to the necessity for some changes to the operator to guarantee the
convergence, e.g., a scaling of the operator. Consequently, this work can be regarded as a
preliminary investigation, as such a scaling is non-trivial in the low-rank tensor case.

7. Numerical experiments. We now present numerical experiments that support the
findings from the preceding sections. As a general setting, we compute to a relative residual
of 1× 10−3 and truncate to a relative accuracy of 1× 10−4. The smoother employed is an
approximated Jacobi method with ν1 = ν2 = 2 pre- and post-smoothing iterations.

In our first experiment, we compare the relative residual of a one-dimensional Laplace
operator with d = 3 parameters. The geometric mode size is 16 with three multigrid levels
in Figure 7.1 and 32 with four multigrid levels in Figure 7.2. The parameter mode size is
101 with a step size of 1× 10−2. Figures 7.1 and 7.2 display log–linear plots of the relative
residual as a function of the number of multigrid steps.

In Figure 7.1, one observes that the multigrid method utilizing the operator-dependent
prolongation and restriction exhibits a fast convergence rate, while using standard linear
interpolation results in decreased convergence.

Figure 7.2 reinforces this observation, showing that the proposed method maintains a fast
convergence rate, whereas the standard linear interpolation diverges. In this one-dimensional
case, AFF

` is a diagonal matrix and therefore the optimal operator-dependent prolongation and
restriction can be approximated within the CP format with an exponentially fast decaying
error, ensuring the approximation property for ε→ 0. Conversely, with a relatively large grid
size and jumping (discontinuous) parameters, the standard linear interpolation fails to meet
the approximation property, leading to divergence. This underscores the necessity of robust
operator-dependent prolongation and restriction for parameter-dependent multigrid methods
using low-rank tensor methods.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LOW-RANK TENSOR PROLONGATION AND RESTRICTION FOR MULTIGRID 203

0 5 10 15 20

10−3

10−2

10−1

100

Multigrid step

R
el

at
iv

e
re

si
du

al

Standard
Operator

FIG. 7.1. Comparison of a standard linear prolongation and restriction with our operator-dependent prolon-
gation and restriction for the parameter-dependent multigrid method for a one-dimensional Laplace operator with
d = 3 parameters with a geometric mode size of 16 and a parameter mode size of 101.
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FIG. 7.2. Comparison of a standard linear prolongation and restriction with our operator-dependent prolon-
gation and restriction for the parameter-dependent multigrid method for a one-dimensional Laplace operator with
d = 3 parameters with a geometric mode size of 32 and a parameter mode size of 101.
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FIG. 7.3. Comparison of a standard linear prolongation and restriction, with a diagonal approximation, and our
operator-dependent prolongation and restriction for the parameter-dependent multigrid method for a two-dimensional
Laplace operator with d = 3 parameters with a geometric mode size of 32× 32 and a parameter mode size of 101.
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FIG. 7.4. Comparison of different accuracy value ε in (6.1) for our operator-dependent prolongation and
restriction for the parameter-dependent multigrid method for a one-dimensional Laplace operator with d = 3
parameters with a geometric mode size of 32 and a parameter mode size of 101.
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Moving to more complex geometries, our next experiment involves a two-dimensional
Laplace operator with d = 3 parameters. We select a geometric mode size of 32× 32 with
four multigrid levels and a parameter mode size of 101 with a step size of 1× 10−2. In the
log–linear plot of Figure 7.3, the relative residual is shown as a function of the number of
multigrid steps, evaluating the standard linear prolongation and restriction against a directly
computed approximation of the operator-dependent prolongation and restriction within the
hierarchical Tucker format, as well as a diagonal approximation of the upper-left block.

Once again, Figure 7.3 illustrates the fast multigrid convergence of the method employing
the approximated operator-dependent prolongation and restriction. The linear interpolation
method diverges, and the diagonal approximation, while convergent, exhibits slower conver-
gence. This suggests that relying solely on a diagonal approximation of the upper-left block
may not be sufficient for achieving fast convergence.

To delve deeper into the insufficiency of a diagonal approximation, we conduct a further
experiment comparing different truncation accuracies when computing the operator-dependent
prolongation and restriction within the low-rank format. Here, we use a one-dimensional
Laplace operator with three parameters, opting for a geometric mode size of 32 with three
multigrid levels. The parameter mode size remains at 101 with a step size of 1 × 10−1. In
the log–linear plot of Figure 7.4, the relative residual is given as a function of the number of
multigrid steps for various truncation accuracies.

Figure 7.4 indicates that, up to a relatively rough accuracy, the approximated operator-
dependent prolongation and restriction maintain fast multigrid convergence. The experiment
implies that the error allowed in practice could be rather high, so that it results in a fast method,
as such a rough approximation is relatively cheap to compute.

8. Related and future work. The combination of the multigrid method with low-rank
tensor formats was discussed by Hackbusch in [21]. There he emphasized the use of the
Richardson method as smoother in combination with the standard linear interpolation for
prolongation and restriction, coupled with the low-rank tensor arithmetic. Further, Hackbusch
addressed the challenge of selecting an efficient smoother within the low-rank format, as the
inversion of even the diagonal within the format is a complex task.

In the context of computing the stationary distribution of Markov chains [6, 7], the multi-
grid method was employed together with an alternating least-squares-based approximation
of the smoother. Notably, this approach needs the solution of a linear system as part of the
smoothing step, a distinction from our method, wherein the inverse part can be precomputed.

In [16], we presented the approximation of the Jacobi method in the CP format as smoother.
Furthermore, we presented numerical experiments illustrating that our method leads to the
standard multigrid convergence rates. Building on this, in [18] we extended the method to
compute the approximation of the inverse directly within the hierarchical Tucker format.

Exploring low-rank representations for linear systems, such as those expressed in (1.1),
and their solution was the focus of several articles; see [3, 17] for an overview. In [4],
an iterative method based on soft thresholding was employed, presenting an alternative to
truncation methods. The theory derived there could potentially improve the error and rank
guarantees of our proposed method and is therefore a promising avenue for future work.

Krylov-based methods [5, 13, 29] have been used in solving similar systems. A potential
application of our proposed multigrid method would be as a preconditioner in those methods,
as a good precondition is often needed to ensure fast convergence. Building on the well-known
combination of the conjugate gradient method with the multigrid method as smoother in
the matrix case, a future direction could involve the investigation of the efficiency of the
parameter-dependent multigrid method using a coarse truncation accuracy.
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9. Conclusion. Expanding upon our prior research in [16], where we derived an ap-
proximation of the parameter-dependent Jacobi method as smoother, this article expands the
robustness of the multigrid method for parameter-dependent problems. Our investigation,
however, unveils a critical challenge when dealing with jumping coefficients in the parameter-
dependent multigrid method. The use of the standard linear interpolation in this context results
in diminishing convergence rates or outright divergence.

To address this issue, we derive an operator-dependent prolongation and restriction based
on the concept of block Gaussian elimination. Notably, building on our previous work, we
compute this operator-dependent prolongation and restriction directly within the low-rank
format. In the case of exact arithmetic, we prove that it fulfills the approximation property.

Furthermore, in numerical experiments involving truncation, we present the effectiveness
of our approach.
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