
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 62, pp. 138–162, 2024.
Copyright © 2024, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol62s138

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR ALGEBRAIC
RICCATI EQUATIONS∗

CHRISTIAN BERTRAM† AND HEIKE FAßBENDER†

Abstract. A class of (block) rational Krylov-subspace-based projection methods for solving the large-scale
continuous-time algebraic Riccati equation (CARE) 0 = R(X) := AHX + XA + CHC −XBBHX with a
large, sparse A, and B and C of full low rank is proposed. The CARE is projected onto a block rational Krylov
subspace Kj spanned by blocks of the form (AH − skI)

−1CH for some shifts sk, k = 1, . . . , j. The considered
projections do not need to be orthogonal and are built from the matrices appearing in the block rational Arnoldi
decomposition associated to Kj . The resulting projected Riccati equation is solved for the small square Hermitian
Yj . Then the Hermitian low-rank approximation Xj = ZjYjZ

H
j to X is set up where the columns of Zj span Kj .

The residual norm ‖R(Xj)‖F can be computed efficiently via the norm of a readily available 2p× 2p matrix. We
suggest reducing the rank of the approximate solution Xj even further by truncating small eigenvalues from Xj . This
truncated approximate solution can be interpreted as the solution of the Riccati residual projected to a subspace of
Kj . This gives us a way to efficiently evaluate the norm of the resulting residual. Numerical examples are presented.

Key words. algebraic Riccati equation, large-scale matrix equation, (block) rational Krylov subspace, projection
method

AMS subject classifications. 15A24, 65F15

1. Introduction. The numerical solution of large-scale algebraic Riccati equations

(1.1) 0 = R(X) := AHX +XA+ CHC −XBBHX

with a large, sparse matrix A ∈ Cn×n, and matrices B ∈ Cn×m and C ∈ Cp×n, is of interest
in a number of applications, as noted in [8, 22, 31] and references therein. As usual, we are
interested in finding the stabilizing solution X; that is, the Hermitian positive semidefinite
solution X = XH such that the spectrum of the closed loop matrix (A−BBHX) lies in the
open left half-plane C−. This solution exists and is unique [12, 21] when (A,B) is stabilizable
(that is, rank[A− zI,B] = n for each value of z in the closed right half-plane) and (A,C) is
detectable (that is, (AH , CH) is stabilizable). These conditions are generically fulfilled and are
assumed to hold in the remainder of this paper. For our discussion, it is further assumed that
B and C have full column and row rank, respectively, with m, p� n. Then it is well known
that the sought-after solution X will often have a low numerical rank (that is, its numerical
rank q is q � n) [3]. Thus, it can be expressed in the form X = Z Y ZH for some full-rank
matrices Z ∈ Cn×q and Y = Y T ∈ Cq×q with q < n. This allows for the construction of
iterative methods that approximate X with a series of low-rank matrices stored in low-rank
factored form. There are several methods, e.g., rational Krylov subspace methods, low-rank
Newton–Kleinman methods, and Newton-ADI (alternating direction implicit) type methods,
that produce such a low-rank approximation; see, e.g., [1, 4, 6, 18, 22, 24, 30, 31, 35, 36] and
see also [5] for an overview.).

Here we are concerned with projection type methods which project the original Riccati
equation (1.1) onto an appropriate subspace, impose a Galerkin condition on the projected
problem, and expand its solution back to the whole space. This idea can be summarized as
follows; see, e.g., [5, 30]. Assume that a sequence of nested subspaces Nk ⊆ Nk+1, k ≥ 1,
is generated with dimNk = kp. Let Qk ∈ Cn×kp denote the matrix whose columns vectors

∗Received January 10, 2024. Accepted September 18, 2024. Published online on October 11, 2024. Recom-
mended by Valeria Simoncini.

†Institut für Numerische Mathematik, Technische Universität Braunschweig, Universitätsplatz 2, 38106 Braun-
schweig, Germany (h.fassbender@tu-braunschweig.de).

138

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol62s138

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 139

are an orthonormal basis of Nk. Then the Galerkin condition reads

QH
k R(Xk)Qk = 0.

This gives a small-scale Riccati equation for Yk = Y H
k ∈ Ckp×kp, i.e.,

(1.2) AH
k Yk + YkAk − YkBkB

H
k Yk + CH

k Ck = 0,

with Ak = QH
k AQk ∈ Ckp×kp, Bk = QH

k B ∈ Ckp×m, and CH
k = QH

k C
H ∈ Ckp×p.

If (Ak, Bk) and (AH
k , C

H
k) are stabilizable and detectable, respectively, then the existence

of a stabilizing solution of (1.2) is ensured. In [30, Proposition 3.3], a general condition on
A and B is given which ensures stabilizability of (Ak, Bk). Unfortunately, in practice, it
is difficult to check whether this condition holds. But as the set of matrices (Ã, B̃, C̃) with
(Ã, B̃) stabilizable and (Ã, C̃) detectable is dense in Cñ×ñ × Cñ×m × Cp×ñ, most likely
(1.2) will have a unique stabilizing Hermitian positive semidefinite solution. Thus, in general,
a unique Hermitian stabilizing solution Yk of this small-scale Riccati equation exists, such
that the approximate solution

Xk = QkYkQ
H
k

can be constructed. When k = n, thenR(Xk) = 0 must hold and the exact solution has been
found. The effectiveness of this approach depends on the choice of Nk. The approximation
spaces explored in the literature are all based on block (rational) Krylov subspaces; see
[15, 18, 22, 24, 30, 31]. For a short historic review of these ideas (stemming usually from
algorithms to solve Lyapunov equations) and a list of references, see [31, Section 2] or [5,
Section 2]. In [18] the matrix Qk is constructed as a basis of the extended block Krylov
subspace κk(AH , CH)+κk(A−H , A−HCH) [14, 20] for the standard block Krylov subspace

(1.3) κk(AH , CH) = range([CH , AHCH , (AH)2CH , . . . , (AH)k−1CH]).

In [15, 31], in addition, Qk is also generated from the block rational Krylov subspace [26]

(1.4)
Kk := κk(AH , CH ,Sk−1)

= range([CH , (AH − s1I)−1CH , . . . , (AH − sk−1I)−1CH])

for a set of shifts Sk−1 = {s1, . . . , sk−1} ⊂ C disjoint from the spectrum Λ(AH). The use of
the rational Krylov subspace Kk is explored further in [30]. The resulting projection algorithm
is usually termed the RKSM (for “rational Krylov subspace method”) algorithm. In [5], it
was observed that projecting to rational Krylov subspaces often fared better than projecting to
extended Krylov subspaces.

In both [22] and [4] methods are proposed which can be interpreted as projecting the
large-scale Riccati equation (1.1) onto the block rational Krylov subspace Kk,

(1.5) Kk := Kk(AH , CH ,Sk) = range([(AH − s1I)−1CH , . . . , (AH − skI)−1CH]),

for a set of shifts Sk = {s1, . . . , sk} ⊂ C disjoint from the spectrum Λ(AH). In [22]
approximate solutions to the continuous-time algebraic Riccati equation (CARE) (1.1) are
constructed by running subspace iterations on the Cayley transforms of the Hamiltonian matrix[

A BBH

CHC −AH

]
∈ C2n×2n associated to (1.1). It is observed that the columns of the orthonormal

matrix Qk in the resulting approximate solution Xcay
k = QkY

cay
k QH

k span Kk. Moreover, it

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

140 C. BERTRAM AND H. FASSBENDER

is proven in [22, Theorem 4.4] that the subspace iteration yields (under certain conditions)
a matrix Qk such that, besides (1.5), also QH

k R(Xcay
k)Qk = 0 holds. In the case when the

reduced problem (1.2) admits a unique stabilizing solution, this gives equivalence between
the subspace iteration and the Galerkin projection onto the rational Krylov subspace Kk. The
RADI (low-rank alternating direction implicit) algorithm suggested in [4] is a generalization
of the Cholesky-factored variant of the Lyapunov ADI method. It generates approximations
X radi

k = ZkY
radi
k ZH

k , where the columns of Zk can be interpreted as a nonorthogonal basis
of Kk. As noted in [11, Section 4.2], X radi

j can be interpreted as the solution of a projection
of the large-scale Riccati equation (1.1) onto the Krylov subspace Kk employing an oblique
projection. For both methods, the rank of the Riccati residual R(Xk) is always equal to p.
The norm ofR(Xk) can be evaluated efficiently, giving a cheap stopping criterion.

We take up the idea of employing a Petrov–Galerkin condition for the Riccati residual
equation (1.1). In our discussion we concentrate solely on projecting onto a block rational
Krylov subspace Kk (1.5), which so far has not been considered in the literature as an
idea on its own. We make use of the (generalized) block rational Arnoldi decomposition
(BRAD) AHVk+1Kk = Vk+1Hk [16, Definition 2.2], where range(Vk+1) = Kk+1. As
range(Vk+1Kk) = Kk, choosing Zk = Vk+1Kk and a suitable matrix Wk yields a (not
necessarily orthogonal) projection Πk = Zk(WH

k Zk)−1WH
k onto Kk. The projected CARE

ΠkR(Xk)ΠH
k = 0 gives a small-scale Riccati equation whose coefficient matrices are given

essentially by the matrices of the BRAD. The resulting projected Riccati equation is solved for
the small square Hermitian Yk. Then the Hermitian low-rank approximation Xk = ZkYkZ

H
k

to X is set up.
Details of this approach are explained in Section 3. As explained in Section 4, the residual

norm ‖R(Xk)‖F can be computed efficiently via the norm of a readily available 2p×2pmatrix,
avoiding the explicit computation of the large-scale matrices Xk and R(Xk). A secondary
result of that discussion is that rank(R(Xk)) = 2p, unlike for the RADI algorithm, where the
residual is of rank p. In Section 5, we suggest reducing the rank of the approximate solution
Xk even further by truncating small singular values from Xk. This truncated approximate
solution can be interpreted as the solution of the Riccati residual projected to a subspace of
Kk. As a result, we obtain a way to efficiently evaluate the norm of the resulting residual. The
transfer of the results to the generalized Riccati equation is explained in Section 6. Numerical
examples are presented in Section 7. The results discussed here can be found in slightly
different form in the PhD thesis [10].

2. Preliminaries. Rational Krylov spaces were initially proposed by Ruhe in the 1980s
for the purpose of solving large sparse eigenvalue problems [26, 27, 28]; more recent work
on block Krylov subspaces by Elsworth and Güttel can be found in [16]. We briefly recall
some definitions and results on block rational Krylov subspaces and block rational Arnoldi
decompositions from [16, Sections 1 and 2].

We are given a set Sk = {s1, . . . , sk} ⊂ C\{∞} disjoint from the spectrum Λ(AH).
In the case in which A, B, and C in (1.1) are real matrices, any complex sk should be
accompanied by its complex-conjugate partner s̄j , so that the set Sk is closed under conjugation.
In that case, all the algorithms suggested herein can be implemented in real arithmetic.

In the following, we will consider the block Krylov subspaces (1.4) and (1.5), that is,

Kk+1 = κk+1(AH , CH ,Sk) = range([CH , (AH − s1I)−1CH , . . . , (AH − skI)−1CH]),

Kk = Kk(AH , CH ,Sk) = range([(AH − s1I)−1CH , . . . , (AH − skI)−1CH]).

The columns of the starting block CH lie in Kk+1, but not in Kk. It is assumed that the
(k + 1)p columns of Kk+1 are linearly independent.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 141

There is a one-to-one correspondence between block rational Krylov spaces and so-called
block rational Arnoldi decompositions. In [30] the decomposition

AHQj+1 = Qj+2T
H
j+1

is used, where the columns of Qj+1 ∈ Cn×(j+1)p are orthonormal (QH
j+1Qj+1 = I(j+1)p)

and span either the extended block Krylov subspace or the block rational Krylov subspace
Kj+1. We will consider the more general relation of the form

(2.1) AHVj+1Kj = Vj+1Hj ,

called a (generalized) orthonormal block rational Arnoldi decomposition (BRAD) as intro-
duced in [16]. The following four conditions hold:

• the columns of Vj+1 ∈ Cn×(j+1)p are orthonormal, such that range(Vj+1) = Kj+1;
• the matrices Hj and Kj are block upper Hessenberg matrices of size (j + 1)p× jp,

where at least one of the matrices Hi+1,i and Ki+1,i is nonsingular,

(2.2)

Hj =

H11 H12 · · · H1,j−1 H1j

H21 H22 · · · H2,j−1 H2j

. . .
. . .

...
...

Hj−1,j−2 Hj−1,j−1 Hj−1,j
Hj,j−1 Hjj

Hj+1,j

,

Kj =

K11 K12 · · · K1,j−1 K1j

K21 K22 · · · K2,j−1 K2j

. . .
. . .

...
...

Kj−1,p−2 Kj−1,j−1 Kj−1,j
Kj,j−1 Kjj

Kj+1,j

;

• βiKi+1,i = γiHi+1,i, with scalars βi, γi ∈ C such that |βi| + |γi| 6= 0 for all
i = 1, . . . , j; and

• the quotients βi/γi, i = 1, . . . , j, called poles of the BRAD, correspond to the shifts
s1, . . . , sj ∈ Sj .

An algorithm that constructs an orthonormal BRAD can be found in [16, Algorithm 2.1]; see
also [9].

As a result of [16, Lemma 3.2(iii)], both matrices Kj and Hj are of full rank jp. This
does not imply that all subdiagonal blocks Hi+1,i and Ki+1,i are nonsingular. As noted in
[16, Lemma 3.2(ii)], if one of the subdiagonal blocks Hi+1,i and Ki+1,i is singular, it is the
zero matrix. Thus, in the case Hi+1,i = 0 in (2.1), the matrix Ki+1,i must be nonsingular. As
βiKi+1,i = γiHi+1,i has to hold with |βi| + |γi| 6= 0, this implies that βi = 0. Hence, this
can only happen for a zero shift in Sj . In the case Ki+1,i = 0 in (2.1), the matrix Hi+1,i must
be nonsingular. As βiKi+1,i = γiHi+1,i has to hold with |βi| + |γi| 6= 0, this implies that
γi = 0 and a shift at infinity. Because of our assumption that the roots are finite, this case is
excluded here. Thus, all blocks Ki+1,i are nonsingular, while some blocks Hi+1,i may be
singular.

Any BRAD can be transformed into an equivalent one of the form

AH V̌j+1Ǩj = V̌j+1Ȟj ,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

142 C. BERTRAM AND H. FASSBENDER

with Ǩj =
[
0p×jp

Ijp

]
, range(V̌j+1) = Kj+1, V̌j+1

[
Ip

0jp×p

]
= CHΦ, Φ ∈ Cp×p, and an upper

Hessenberg matrix Ȟj , see [11, Section 2]. This implies that

range(Vj+1Kj) = range(V̌j+1Ǩj) = Kj ,(2.3)

range(Vj+1Hj) = range(V̌j+1Ȟj) = AHKj .(2.4)

REMARK 2.1. Consider the BRAD AHVj+1Kj = Vj+1Hj . Let the thin QR decomposi-
tion Kj = QR be given with an orthonormal upper Hessenberg matrix Q ∈ C(j+1)p×jp and
an upper triangular R ∈ Cjp×jp. As Kj is of full rank, R is nonsingular. With K̂j = Q and
Ĥj = HjR

−1 we obtain the equivalent BRAD

AHVj+1K̂j = Vj+1Ĥj ,

with an orthonormal K̂j . In the case in which Vj+1 is orthonormal as well, the matrix
Zj = Vj+1K̂j is orthonormal.

3. General projection method. In this section we present in detail our approach to
reduce the Riccati residual (1.1) to a low-dimensional one using a Petrov–Galerkin projection.
In order to do so, we let the columns of Zj ∈ Cn×jp span some approximation space
Kj . We choose a matrix Wj ∈ Cn×jp such that its columns span the test space Lj and
WH

j Zj ∈ Cjp×jp is nonsingular. Thus,

Πj := Zj(W
H
j Zj)

−1WH
j ∈ Cn×n

is a (not necessarily orthogonal) projection onto Kj along L⊥j . Assume that the solution X of
(1.1) can be approximated by

(3.1) Xj = ZjYjZ
H
j

for some Hermitian matrix Yj ∈ Cjp×jp. Then, imposing a Petrov–Galerkin condition on
R(Xj),

0 = ΠjR(Xj)Π
H
j

= Zj{((WH
j Zj)

−1WH
j A

HZj)Yj + Yj(Z
H
j AWj(W

H
j Zj)

−H)

+ ((WH
j Zj)

−1WH
j C

H)(CWj(W
H
j Zj)

−H) + Yj(Z
H
j B)(BHZj)Yj}ZH

j ,

one obtains a small-scale Riccati equation for Yj ,

(3.2) 0 = AH
j Yj + YjAj + CH

j Cj − YjBjB
H
j Yj ,

with Aj = ZH
j AWj(W

H
j Zj)

−H ∈ Cjp×jp, Cj = CWj(W
H
j Zj)

−H ∈ Cp×jp, and
Bj = ZH

j B ∈ Cjp×m.
In particular, we suggest projecting onto the block rational Krylov subspace Kj as in

(1.4); that is, Kj = Kj(A
H , CH ,Sj). A suitable basis for this space is constructed via the

generalized orthonormal RAD

(3.3) AHVj+1Kj = Vj+1Hj ,

where the columns of Vj+1Kj span the space Kj = Kj(A
H , CH ,Sj); see (2.3). Thus, we

choose

(3.4) Zj := Vj+1Kj ∈ Cn×jp.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 143

Note that the columns of Zj are in general not orthonormal. As Kj is of full rank, it is
possible to choose a matrix Lj ∈ C(j+1)p×jp such that LH

j Kj ∈ Cjp×jp is nonsingular. Set
Wj := Vj+1Lj ∈ Cn×jp. Denote (as before) the space spanned by the columns of the matrix
Wj by Lj . Hence, ΠjZj(W

H
j Zj)

−1WH
j ∈ Cn×n is a projection onto Kj along L⊥j . Noting

that WH
j Zj = LH

j V
H
j+1Vj+1Kj = LH

j Kj holds and making use of (3.3), the coefficient
matrices in (3.2) can be expressed as

Aj := HH
j Lj(K

H
j Lj)

−1 ∈ Cjp×jp,

Bj := KH
j V

H
j+1B ∈ Cjp×m,

Cj := CVj+1Lj(K
H
j Lj)

−1 ∈ Cp×jp.

(3.5)

The solution Yj of (3.2) fully determines the approximate solution Xj = Vj+1KjYjK
H
j Vj+1

(3.1) of (1.1).
The resulting algorithm is summarized in Algorithm 1. In the first step V1 is chosen

from the thin QR decomposition of CH = V1R. This yields CVj+1 = [RH 0p×jp]. Once
the iteration is stopped, the approximate solution Xj = Vj+1KjYjK

H
j V

H
j+1 can be set up

(theoretically). In a large-scale setting, one may consider only its low-rank factor Vj+1KjGj

with a Cholesky(-like) decomposition Yj = GjG
H
j .

Algorithm 1 General projection method for solving (1.1).
Require: System matrices A,B,C and set of shifts Sj = {s1, . . . , sj} ⊂ C\{∞} with
Sj ∩ Λ(AH) = ∅.

Ensure: Approximate solution Xj = Vj+1KjYjK
H
j V

H
j+1.

1: Compute thin QR decomposition CH = V1R with R ∈ Cp×p.
2: Set j = 1.
3: while not converged do
4: Obtain next shift µ from Sj .
5: Expand orthonormal BRAD to obtain Vj+1 = [Vj V̂j+1] orthonormal, Kj , and Hj .
6: Choose Lj .
7: Compute Aj = HH

j Lj(K
H
j Lj)

−1.

8: Compute Bj = KH
j V

H
j+1B.

9: Compute Cj = [RH 0p×jp]Lj(K
H
j Lj)

−1.

10: Solve AH
j Yj + YjAj + CH

j Cj − YjBjB
H
j Yj = 0.

11: Compute ‖R(Xj)‖ (see Algorithm 2).
12: Set j = j + 1.
13: end while

From the rank conditions on the matrices involved in (3.5) it follows thatAj is nonsingular,
and the matrices Cj and Bj are of full rank, as rankCj = p and rankBj = min{pj,m}.
Whether (3.2) has a unique stabilizing solution cannot be read off in general. But as the
set of matrices (Aj , Bj , Cj) with (Aj , Bj) stabilizable and (Aj , Cj) detectable is dense in
Cjp×jp ×Cjp×m ×Cp×jp, most likely (3.2) will have a unique stabilizing Hermitian positive
semidefinite solution. Only in very rare cases of our numerical experiments could the small-
scale equation (3.2) not be solved for a stabilizing solution.

The effectiveness of the proposed projection method depends on the choice of the set Sj
of shifts and of the space Lj (the matrix Lj). Here we briefly mention three different choices
of Lj :

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

144 C. BERTRAM AND H. FASSBENDER

• A natural choice is Lj := Kj , which yields a Galerkin projection as Lj = Kj .
• Another choice is Lj := Hj , which yields a Petrov–Galerkin projection as Lj =
AHKj due to (2.4).

• A more general choice is Lj := αHj − βKj , with α, β ∈ C and |α| + |β| 6= 0,
which yields a Petrov–Galerkin projection in the case α 6= 0.

REMARK 3.1. Assume that an orthonormal BRAD with orthonormalKj (see Remark 2.1)
is used. Then the matrix Qj := Vj+1Kj has orthonormal columns. Its columns are an
orthonormal basis of the Krylov subspace Kj . Set Lj = Kj , so the projection is orthogonal.
Then it follows from (3.5) that

Aj = HH
j Kj(K

H
j Kj)

−1 = HH
j V

H
j+1Vj+1Kj = KH

j V
H
j+1AVj+1Kj = QH

j AQj ,

Bj = KH
j V

H
j+1B = QH

j B,

Cj = CQj

due to KH
j Kj = Ij , V H

j+1Vj+1 = Ij+1, and the BRAD (3.3). These reduced matrices look
like those in (1.2). Recall that here we project onto the Krylov subspace Kj , while in most of
the literature [18, 22, 24, 30, 31] a projection on the Krylov subspace Kj is used. In numerical
experiments, no advantage concerning accuracy when using QH

j AQj , QH
j B and CQj has

been observed.
REMARK 3.2. Assume that Vj+1 is some matrix with orthonormal columns. If Zj =

Vj+1Kj is chosen with some arbitrary Kj not satisfying (3.3), then Aj in (3.5) is given by
Aj = KH

j V
H
j+1AVj+1Lj(K

H
j Lj)

−1. The derivations in Sections 3.1, 3.2, 4, and 5 do not
hold in this case, as they depend on (3.3).

3.1. Efficient implementation. Algorithm 1 should not be implemented as formulated
above. The block upper Hessenberg form of the matrices Kj and Hj should be utilized so
that the matrices Aj , Bj , and Cj are not explicitly set up in each step, but rather obtained
by a (simple) update from Aj−1, Bj−1, and Cj−1, respectively. Moreover, in steps 7 and 9
of Algorithm 1, a linear system of equations with jp (respectively p) right-hand sides has to
be solved for the same jp× jp system matrix. This would require roughly (jp)3 flops if the
structure of the system matrix cannot be utilized.

Let us first consider the computation of Bj . As Kj is a block upper Hessenberg matrix
which grows by one block row/column in each iteration step, we have from (2.2) that

(3.6) Kj =

[
Kj−1 kj

0p×(j−1)p Kj+1,j

]
with kj =

[
KH

1j KH
2j · · · KH

jj

]H ∈ Cjp×p.

Thus, as Vj+1 =
[
Vj V̂j+1

]
, it holds that

Bj = KH
j V

H
j+1B =

[
KH

j−1 0(j−1)p×p
kHj KH

j+1,j

] [
V H
j

V̂ H
j+1

]
B =

[
Bj−1

kHj V
H
j B +KH

j+1,j V̂
H
j+1B

]
.

Thus, in each iteration step, Bj can be updated cheaply from Bj−1 = KH
j−1V

H
j B, as only

the last block row of Bj needs to be determined, since the rest of Bj is already known.
Moreover, the recomputation of V H

j B for the last block row can be avoided by storing
B̃j = V H

j+1B = [B̃j−1 V̂ H
j+1B] in each iteration step. Then Bj = [kHj KH

j+1,j]B̃j .

Next, we consider the computation of the matrix products HH
j Lj and KH

j Lj . If in each
iteration step a new Lj is selected without taking the previous Lj−1 into account, these
products have to be computed from scratch in each iteration step. This is different if Lj is

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 145

chosen as a block upper Hessenberg matrix whose leading part is given by Lj−1 like Kj or
Hj in (2.2) (see also (3.6)),

(3.7) Lj =

[
Lj−1 `j

0p×(j−1)p Lj+1,j

]
.

Then only the last block row and column of HH
j Lj and KH

j Lj need to be computed when
HH

j−1Lj−1 and KH
j−1Lj−1 are already known, e.g.,

KH
j Lj =

[
KH

j−1 0(j−1)p×p
kHj KH

j+1,j

] [
Lj−1 `j

0p×(j−1)p Lj+1,j

]
=

[
KH

j−1Lj−1 KH
j−1`j

kHj Lj−1 kHj `j +KH
j+1,jLj+1,j

]
.

We need to be able to solve linear systems with the coefficient matrix KH
j Lj efficiently

in order to set up Aj and Cj . One idea is to make use of the block LDU decomposition

(3.8) KH
j Lj =

[
I(j−1)p 0(j−1)p×p

Ωj Ip

] [
Ψj 0(j−1)p×p

0p×(j−1)p Γj

] [
I(j−1)p ∆j

0p×(j−1)p Ip

]
,

with

Ωj = kHj Lj−1(KH
j−1Lj−1)−1 ∈ Cp×(j−1)p,

∆j = (KH
j−1Lj−1)−1KH

j−1`j ∈ C(j−1)p×p,

Ψj = KH
j−1Lj−1 ∈ C(j−1)p×(j−1)p,

Γj = kHj `j +KH
j+1,jLj+1,j − kHj Lj−1(KH

j−1Lj−1)−1KH
j−1`j

= kHj `j +KH
j+1,jLj+1,j − kHj Lj−1∆j ∈ Cp×p.

Setting up this decomposition, two linear systems with the system matrix Ψj = KH
j−1Lj−1

need to be solved in order to determine Ωj and ∆j , both with p right-hand sides. For
KH

j−1Lj−1, there is a block LDU decomposition just like (3.8) which may be used to solve
those systems recursively. In particular, for

∆j =

[
∆j,1

∆j,2

]
, Ωj = [Ωj,1 Ωj,2], KH

j−1`j =

[
h1
h2

]
, and kHj Lj−1 = [g1 g2],

with ∆j,1, h1, g
T
1 ∈ C(j−2)p×p and ∆j,2, h2, g

T
2 ∈ Cp×p, we obtain

∆j,2 = Γ−1j−1(h2 − Ωj−1h1),

∆j,1 = Ψ−1j−1h1 −∆j−1∆j,2,

Ωj,2 = (g2 − g1∆j−1)Γ−1j−1

Ωj,1 = g1Ψ−1j−1 − Ωj,2Ωj−1.

Thus, continuing in this fashion, in order to determine ∆j and Ωj , some 2j linear systems
with the p× p coefficient matrices Γ`, ` = 1, . . . , j, need to be solved for p right-hand sides
each. The computational cost for each of these steps is dominated by computing the LU
decomposition of Γ`, which costs O(p3) flops. Hence, setting up the LDU decomposition of
KH

j Lj amounts to O(jp3) flops.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

146 C. BERTRAM AND H. FASSBENDER

Now we will concentrate on computing Aj = HH
j Lj(K

H
j Lj)

−1 and assume that we
have already determined

Ãj = HH
j Lj =

[
HH

j−1Lj−1 HH
j−1`j

hHj Lj−1 hHj `j +HH
j+1,jLj+1,j

]
=

[
(Ãj)11 (Ãj)12
(Ãj)21 (Ãj)22

]
.

The matrix

Aj = HH
j Lj(K

H
j Lj)

−1 = Ãj(K
H
j Lj)

−1 =

[
(Aj)11 (Aj)12
(Aj)21 (Aj)22

]
is given by

(Aj)12 = ((Ãj)12 − (Ãj)11∆j)Γ
−1
j , (Aj)11 = (Ãj)11Ψ−1j − (Aj)12Ωj ,

(Aj)22 = ((Ãj)22 − (Ãj)21)∆j)Γ
−1
j , (Aj)21 = (Ãj)21Ψ−1j − (Aj)22Ωj ,

due to (3.8), where (Ãj)11Ψ−1j = HH
j−1Lj−1(KH

j−1Lj−1)−1 is already known from the
previous iteration. Thus, in order to determine Aj , two linear systems with the p × p coef-
ficient matrix Γj need to be solved for (j − 1)p right-hand sides each. Computing the LU
decomposition of Γj costs O(p3) flops; the (2j − 2)p forward and backward solves amount to
O(jp3) flops. Computing (Ãj)21Ψ−1j can be done in the same way as the calculation of Ωj

discussed above. The LU decompositions of the Γ`, ` = 1, . . . , j, should be reused here such
that only additional forward and backward solves are needed here.

Finally, we consider the computation of Cj = CVj+1Lj(K
H
j Lj)

−1. With RH = CV1,
we obtain CVj+1 = [RH 0p×jp]. Assuming that Lj is chosen as a block upper Hessenberg
matrix as in (3.7), it follows that

C̃j = CVj+1Lj =
[
RH 0p×jp

]

L11 L12 · · · L1,j−1 L1j

L21 L22 · · · L2,j−1 L2j

. . .
. . .

...
...

Lj−1,j−2 Lj−1,j−1 Lj−1,j
Lj,j−1 Ljj

Lj+1,j

=
[
RHL11 RHL12 · · · RHL1,j−1 RHL1j

]
=
[
CVjLj−1 RHL1j

]
=
[
C̃j−1 (C̃j)12

]
.

Thus, CVj+1Lj can be updated cheaply from CVjLj−1 as only the block RHL1j needs to
be determined; the rest of CVj+1Lj is already known. We obtain Cj = C̃j(K

H
j Lj)

−1 =
[(Cj)11 (Cj)12] with (Cj)12 ∈ Cp×p and (3.8) via

(Cj)12 = ((C̃j)12 − C̃j−1∆j)Γ
−1
j , (Cj)11 = C̃j−1(KH

j−1Lj−1)−1 − (Cj)12Ωj .

The matrix C̃j−1(KH
j−1Lj−1)−1 is already known from the previous step. Thus, in order to

determine Cj from Cj−1, there is just one linear system with the p× p system matrix Γj and
p right-hand sides to be solved. Thus, the cost for setting up Cj is dominated by the cost for
the LU decomposition of Γj , that is, O(p3) flops.

In summary, each iteration step can be implemented such that just O(jp3) flops are
needed in the case where Lj is chosen as a block upper Hessenberg matrix whose leading
part is given by Lj−1 like Kj or Hj in (2.2); see also (3.6). This approach implies that all
matrices Ω`,∆

T
` ∈ Cp×(`−1)p and Γ` ∈ Cp×p, ` = 1, . . . , j, have to be stored. Otherwise,

that is, without taking the previous Lj−1 into account, each iteration step will cost O((jp)3)
flops.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 147

3.2. Shift selection. For fast convergence, the choice of the poles of the block ratio-
nal Krylov subspace used in the approximate solution Xj is crucial. It would be desir-
able to determine a set of shifts Sj such that the approximation X∗j satisfies ‖X −X∗j ‖ =
minSj ‖X − Xj‖ in some norm, where Xj has been computed by Algorithm 1 using Sj .
This question has been considered for symmetric Sylvester equations [2]. Related work on
Lyapunov equations can be found in [33, 34]. Up to now, it is an open question on how to
compute optimal shifts in the sense described above for Riccati equations.

Many shift strategies based on other ideas exist, but their description is beyond the scope
of this work. In [15, Section 5] and in [30] the shift selection for methods projecting (1.1) onto
the rational Krylov subspace Kj (1.4) is discussed. The subspace iteration method proposed
in [22] can (under certain assumptions) be interpreted as projecting (1.1) onto the rational
Krylov subspace Kj (1.5). Hence, the comments on the shift selection given in [22] hold for
the approach proposed in this paper. Moreover, the subspace iteration method is equivalent to
the RADI algorithm [4] (when using X0 = 0 and the same set of shifts). A detailed discussion
of the shift selection in the context of the RADI algorithm and related, equivalent methods
is given in [4, Section 4.5]. In particular, the idea of choosing sj+1 in order to minimize
‖R(Xj+1)‖ once Xj is fixed is pursued [4, Section 4.5.2]. A recent numerical comparison of
different solvers of (1.1) including the choice of shifts can be found in [5].

4. Efficient residual norm evaluation. Typically, the residual norm ‖R(Xj)‖ is used
as an indicator for whether Xj is a good approximation to the desired solution X of (1.1). In
the previous section, we replaced solving the large-scale n × n problem (1.1) by solving a
much smaller one, (3.2). In order to be able to use ‖R(Xj)‖ as a convergence indicator, an
equivalent small-scale expression has to be found, as R(Xj) ∈ Cn×n cannot be computed
explicitly due to storage constraints. In the following, we will derive such an expression for
‖R(Xj)‖ that allows its efficient evaluation even if n is large.

As a first step, we need to derive an alternative expression for the Riccati residual
R(Xj) = AHXj + XjA + CHC − XjBB

HXj . Recall that Xj = ZjYjZ
H
j holds with

Zj = Vj+1Kj as in (3.4). Thus, making use of (3.3) we obtain

XjA = Vj+1KjYjK
H
j V

H
j+1A = Vj+1KjYjH

H
j V

H
j+1.

Moreover, we have XjBBH
H
j = Vj+1KjYjSjYjK

H
j V

H
j+1 with

(4.1) Sj = KH
j V

H
j+1BB

HVj+1Kj = ZH
j BB

HZj .

With this, the Riccati residual can be expressed as

R(Xj) = Vj+1HjYjK
H
j V

H
j+1 + Vj+1KjYjH

H
j V

H
j+1 + CHC − Vj+1KjYjSjYjK

H
j V

H
j+1

= Vj+1(HjYjK
H
j +KjYjH

H
j + C̃C̃H −KjYjSjYjK

H
j)V H

j+1,(4.2)

with CH = Vj+1C̃.
Next, rewrite Πj as

Πj = Zj(W
H
j Zj)

−1WH
j = Vj+1Kj(L

H
j Kj)

−1LH
j V

H
j+1 = Vj+1πjV

H
j+1

with

(4.3) πj := Kj(L
H
j Kj)

−1LH
j ∈ C(j+1)p×(j+1)p.

Note that πj is a projection onto the space spanned by the columns of Kj along the orthogonal
complement of the space spanned by the columns of Lj . This implies that
KH

j π
H
j = KH

k Lj(K
H
k Lj)

−1KH
j = KH

j .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

148 C. BERTRAM AND H. FASSBENDER

With this, the projected Riccati residual can be expressed as

0 = ΠjR(Xj)Π
H
j

= Vj+1πj(HjYjK
H
j +KjYjH

H
j + C̃C̃H −KjYjSjYjK

H
j)πH

j V
H
j+1.(4.4)

As ΠjR(Xj)Π
H
j = 0, (4.2) and (4.4) yield the desired alternative expression for the Riccati

residual:

R(Xj) = R(Xj)−ΠR(Xj)Π
H

= Vj+1(HjYjK
H
j +KjYjH

H
j + C̃C̃H −KjYjSjYjK

H
j)V H

j+1

− Vj+1πj(HjYjK
H
j +KjYjH

H
j + C̃C̃H −KjYjSjYjK

H
j)πH

j V
H
j+1

= Vj+1(π̃jHjYjK
H
j +KjYjH

H
j π̃

H
j + C̃C̃H − πjC̃C̃HπH

j)V H
j+1,(4.5)

with the projection

π̃j := I − πj .

By construction, π̃j is a projection onto the orthogonal complement of the space spanned
by the columns of Lj along the space spanned by the columns of Kj . That is,

(4.6) π̃j = U(WHU)−1WH ,

with W ∈ C(j+1)p×p such that range(W) = range(Kj)
⊥ and U ∈ C(j+1)p×p such that

range(U) = range(Lj)
⊥.

This allows for a formulation of the residual that reduces the storage requirements for
evaluation of the residual from an n×nmatrix to a 2p×2pmatrix, independent of the reduced
order (j + 1)p of (3.2).

PROPOSITION 4.1. Let Υ := KjYjH
H
j + (I − 0.5π̃j)C̃C̃

H ∈ C(j+1)p×(j+1)p and T :=

ΥW (UHW)−1 ∈ C(j+1)p×p. Let [U T] = QR, with Q ∈ C(j+1)p×2p and R ∈ C2p×2p be
an economy-size QR decomposition. Then, for any unitarily invariant norm, it holds that

(4.7) ‖R(Xj)‖ =

∥∥∥∥R [0 Ip
Ip 0

]
RH

∥∥∥∥ .
Proof. The constant term in (4.5) can be written as

C̃C̃H − πjC̃C̃HπH
j = 0.5(C̃C̃H − πjC̃C̃HπH

j − πjC̃C̃H + C̃C̃HπH
j)

+ 0.5(C̃C̃H − πjC̃C̃HπH
j + πjC̃C̃

H − C̃C̃HπH
j)

= π̃jC̃C̃
H(I − 0.5π̃j)

H + (I − 0.5π̃j)C̃C̃
H π̃H

j

because of

0.5(C̃C̃H − πjC̃C̃HπH
j − πjC̃C̃H + C̃C̃HπH

j) = 0.5(I − πj)C̃C̃H(I + πj)
H

= 0.5π̃jC̃C̃
H(I + I − π̃j)H

= π̃jC̃C̃
H(I − 0.5π̃j)

H ,

and, by a similar argument,

0.5(C̃C̃H − πjC̃C̃HπH
j + πjC̃C̃

H − C̃C̃HπH
j) = (I − 0.5π̃j)C̃C̃

H π̃H
j .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 149

Herewith, (4.5) can be further manipulated to obtain

R(Xj) = Vj+1{π̃j(HjYjK
H
j + C̃C̃H(I − 0.5π̃j)

H)

+ (KjYjH
H
j + (I − 0.5π̃j)C̃C̃

H)π̃H
j }V H

j+1

= Vj+1(π̃ΥH + Υπ̃H)V H
j+1,

with Υ := KjYjH
H
j + (I − 0.5π̃j)C̃C̃

H . Hence, for any unitarily invariant norm, we have1

(4.8) ‖R(Xj)‖ = ‖π̃ΥH + Υπ̃H‖.

Making use of (4.6) we can further reduce the size of the matrix whose norm has to be
computed. It holds that

π̃ΥH + Υπ̃H = U(WHU)−1WHΥH + ΥW (UHW)−1UH = UTH + TUH

with T = ΥW (UHW)−1. As

UTH + TUH = [U T]

[
0 Ip
Ip 0

]
[U T]H ,

we have with the economy-size QR decomposition

[U T] = QR, Q ∈ C(j+1)p×2p, R ∈ C2p×2p

for any unitarily invariant norm

‖R(Xj)‖ =

∥∥∥∥R [0 Ip
Ip 0

]
RH

∥∥∥∥ .
This proves our claim.

The calculation of the residual norm as described above is summarized in Algorithm 2.
There is no incremental update formula for how to compute ‖R(Xj)‖ from ‖R(Xj−1)‖,
but only computations with small-scale matrices of size (j + 1)p× jp and (j + 1)p× p are
involved.

Algorithm 2 Residual norm calculation.

Require: Kj , Hj , Lj ∈ C(j+1)p×jp, solution Yj of (3.2), and C̃ ∈ C(j+1)p×p such that
CH = Vj+1C̃.

Ensure: Residual normR(Xj).
1: Compute basis U ∈ C(j+1)p×p of range(Lj)

⊥.
2: Compute basis W ∈ C(j+1)p×p of range(Kj)

⊥.
3: Compute Γ = W (UHW)−1 ∈ C(j+1)p×p.
4: Compute Ψ = C̃HΓ ∈ C(p×p.
5: Compute T = KjYjH

H
j Γ + (C̃ − 0.5UΨH)Ψ ∈ C(j+1)p×p.

6: Compute the economy-size QR decomposition [U T] = QR with R ∈ C2p×2p.

7: Return
∥∥∥∥R [0 Ip

Ip 0

]
RH

∥∥∥∥ .
1The residual formulation (4.8) is a generalization of the expression in [30, Proposition 5.3].

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

150 C. BERTRAM AND H. FASSBENDER

REMARK 4.2. From

R(Xj) = Vj+1(π̃ΥH + Υπ̃H)V H
j+1 = Vj+1(UTH + TUH)V H

j+1

it follows that the rank of the residual is at most 2p, as Vj+1 is of full rank. There are essentially
only two scenarios in which the residual rank is smaller. On the one hand, the residual can be
of rank p, which happens for the RADI approximate solution as observed in [4]. On the other
hand, a rank-0 residual is obtained for an exact solution. The rank-2p property has also been
investigated in [34, Section 5.2] for Lyapunov equations. It was called the dilemma of the
rational Krylov subspace approach, as in general the norm-minimizing approximate solution
yields a residual with larger rank.

5. Truncation of the approximate solution. The general projection method generates
an approximate solution of the form

Xj = Vj+1KjYjK
H
j V

H
j+1.

This matrix should be (by construction) Hermitian positive semidefinite with n − jp zero
eigenvalues. But due to rounding errors, it may even be indefinite. We propose to use an
eigendecomposition of the Hermitian matrix KjYjK

H
j in order to truncate nonpositive (and

possibly some small positive) eigenvalues. This yields a truncated approximate solution X̂j ,
which is positive semidefinite with at least n− jp zero eigenvalues. Thus, the approximate
X̂j is of lower rank than Xj . This truncated approximate solution can be interpreted as the
solution of the Riccati equation projected to a subspace K̂j ⊂ Kj of dimension r ≤ jp, which
is determined by the decomposition of Xj . Hence, unlike for similar truncated solutions in
other projection-based approaches, making use of the derivations in Section 4, the residual
norm ‖R(X̂j)‖ can be evaluated cheaply.

Let

(5.1) AHVj+1Kj = Vj+1Hj

be an orthonormal BRAD as in (3.3) and let Yj be the solution of (3.2), so that Xj =
Vj+1KjYjK

H
j V

H
j+1 is the current approximate solution to (1.1). Assume that the Hermitian

matrix KjYjK
H
j ∈ C(j+1)p×(j+1)p has been block-diagonalized by a unitary matrix such

that

(5.2) KjYjK
H
j =

[
Q̂

j
Q̌

j

] [
Ŷj 0
0 Y̌j

] [
Q̂H

j

Q̌H
j

]
,

with Ŷj = Ŷ H
j ∈ Cr×r, Q̂

j
∈ C(j+1)p×r and Q̌

j
∈ C(j+1)p×(j+1)p−r, where Q̂H

j Q̂j
=

Ir, Q̌
H
j Q̌j

= I(j+1)p−r, and Q̌H
j Q̂j

= 0(j+1)p−r×r. All unwanted (e.g., all nonpositive)

eigenvalues of KjYjK
H
j are assumed to be eigenvalues of Y̌j . Hence, r ≤ jp. As the

truncated approximate solution, define

X̂j = Vj+1Q̂j
ŶjQ̂

H
j V

H
j+1.

This can be understood as if X̂j is given by its economy-size singular value decomposition.
Next we will show that X̂j is the solution of the Riccati equation (1.1) projected onto the

subspace K̂j = range(Vj+1Q̂j
). In order to do so, we first derive a BRAD-like expression

involving Vj+1Q̂j
. Let T1 ∈ Cjp×r be such that KjT1 = Q̂

j
holds. As Kj is a matrix of full

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 151

column rank, its pseudoinverse K+
j = (KH

j Kj)
−1KH

j exists. Thus, we have T1 = K+
j Q̂j

.

Define

(5.3) Ĥj := HjT1 ∈ C(j+1)p×r.

Then postmultiplying (5.1) by T1 yields the BRAD-like relation

AHVj+1Q̂j
= AHVj+1KjT1 = Vj+1HjT1 = Vj+1Ĥj .

Let Ẑj := Vj+1Q̂j
∈ Cn×r. Choose L̂j ∈ C(j+1)p×r in the same way as Lj was chosen

in Algorithm 1, that is, for example, choose L̂j = K̂j , L̂j = Ĥj , or L̂j = Ĥj − K̂j in
the cases in which Lj = Kj , Lj = Hj , or Lj = Hj −Kj , respectively, was chosen. This
guarantees by construction that rank(L̂j) = r, and hence that L̂H

j Q̂j
is nonsingular.

Let Ŵj := Vj+1L̂j ∈ Cn×r and

Π̂j := Ẑj(Ŵ
H
j Ẑj)

−1ŴH
j = Vj+1Q̂j

(L̂H
j Q̂j

)−1L̂H
j V

H
j+1 = Vj+1π̂jV

H
j+1

with π̂j := Q̂
j
(L̂H

j Q̂j
)−1L̂H

j . Then Π̂j is an (in general oblique) projection onto K̂j , while

π̂j is a projection on the space spanned by the columns of Q̂
j
. Thus, due to (4.3), we have

π̂j = π̂jπj .
Now we can state and prove the main statement of this section.
THEOREM 5.1. The truncated approximate solution X̂j = Vj+1Q̂j

ŶjQ̂
H
j V

H
j+1 satisfies

the projected equation

(5.4) Π̂jR(X̂j)Π̂
H
j = 0.

That is, for Ŷj ∈ r×r, the equation

(5.5) π̂j(Ĥj ŶjQ̂
H
j + Q̂

j
ŶjĤ

H
j + C̃C̃H − Q̂

j
ŶjŜj ŶjQ̂

H
j)π̂H

j = 0

holds, where Ŝj = Q̂
j
V H
j+1BB

HVj+1Q̂
H
j .

Proof. As in (4.4), we have for (5.4)

0 = Π̂jR(X̂j)Π̂
H
j = Vj+1π̂j(Ĥj ŶjQ̂

H
j + Q̂

j
ŶjĤ

H
j + C̃C̃H − Q̂

j
ŶjŜj ŶjQ̂

H
j)π̂H

j V
H
j+1.

This is equivalent to the small-scale equation (5.5).
We will now prove that Ŷj fulfills (5.5), which proves the statement of the theorem. In

order to do so, we start from the equation

0 = πj(HjYjK
H
j +KjYjH

H
j + C̃C̃H −KjYjSjYjK

H
j)πH

j ,

which is equivalent to (4.4). Pre- and postmultiplication by π̂j and making use of π̂jπj = π̂j
gives

(5.6) 0 = π̂j(HjYjK
H
j +KjYjH

H
j + C̃C̃H −KjYjSjYjK

H
j)π̂H

j .

We will see that this equation is equivalent to (5.5). In order to see this, we consider the
different terms one by one.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

152 C. BERTRAM AND H. FASSBENDER

But first note that, due to (5.2),

π̂jKjYjK
H
j =

[
Q̂

j
0
] [
Ŷj 0
0 Y̌j

] [
Q̂H

j

Q̌H
j

]
= Q̂

j
ŶjQ̂

H
j = π̂jQ̂j

ŶjQ̂
H
j(5.7)

holds, as π̂jQ̂j
= Q̂

j
and π̂jQ̌j

= 0.

Now consider the first term in (5.6). Making use of the transpose of (5.7) and of (5.3), it
holds that

π̂jHjYjK
H
j π̂

H
j = π̂jHjK

+
j KjYjK

H
j π̂

H
j = π̂jHjK

+
j Q̂j

ŶjQ̂
H
j π̂

H
j = π̂jĤj ŶjQ̂

H
j π̂

H
j ,

asK+
j Kj = I for the pseudoinverseK+

j . Thus, the first terms in (5.6) and (5.5) are equivalent.
The second term in (5.6) is just the transpose of the first term and is thus equivalent to the

second term in (5.5). The third terms in (5.6) and (5.5) are identical.
For the fourth and last term in (5.6), it holds with (4.1) and (5.7) that

π̂jKjYjSjYjK
H
j π̂

H
j = π̂jKjYjK

H
j V

H
j+1BB

HVj+1KjYjK
H
j π̂

H
j

= π̂jQ̂j
ŶjQ̂

H
j V

H
j+1BB

HVj+1Q̂j
ŶjQ̂

H
j π̂

H
j

= π̂jQ̂j
ŶjŜj ŶjQ̂

H
j π̂

H
j .

Thus, the fourth terms in (5.6) and (5.5) are equivalent. In summary, (5.6) and (5.5) are
equivalent.

In the case Y̌j = 0, (5.2) reduces to KjYjK
H
j = Q̂j ŶjQ̂

H
j . Thus, in that case we have

‖R(Xj)‖ = ‖R(X̂j)‖ in any unitarily invariant norm. In any other case, it is not clear whether
the norm of ‖R(X̂j)‖ will decrease or increase compared to ‖R(Xj)‖.

Theorem 5.1 allows us to efficiently evaluate the norm of the Riccati residual for the
truncated approximate solution X̂j in the same way as described in the previous section by
using K̂j = Q̂

j
, Ĥj , L̂j , and Ŷj instead of the values without .̂ The solution Ŷj of (5.5)

is given by the decomposition (5.2), so no additional small-scale Riccati equation has to be
solved; just a block-diagonalization has to be performed. The matrices L̂j and K̂j consist of
r columns; thus we have U,W ∈ C(j+1)p×p+r in Algorithm 2. Hence r < jp implies more
columns in U and W . The rank of the residual matrix increases from 2p to 2(p+ r). Storing
the low-rank factor Ẑj = Vj+1K̂j requires r columns of length n, while storing the low-rank
factor Zj = Vj+1Kj requires jp columns of length n. Thus, in the case r < jp, the low-rank
factorization Xj = Ẑj ŶjẐ

H
j is more efficient storagewise.

In summary, given an approximate Xj = Vj+1KjYjK
H
j V

H
j+1 as discussed in Section 3,

one computes (5.2) and (5.3) and chooses L̂j appropriately in order to compute a new ap-
proximate X̂j of lower rank than Xj . Its residual can be determined using the algorithm for
the efficient residual norm evaluation (Algorithm 2). The corresponding calculations need
to be inserted after line 13 in Algorithm 1. We will term the so-modified Algorithm 1 the
“truncation algorithm”.

6. Generalized Riccati equations. For generalized Riccati equations

(6.1) AHXE + EHXA+ CHC − EHXBBHXE = 0

with an additional nonsingular matrix E ∈ Cn×n, it was noted in [4, Section 4.4] that the
equivalent Riccati equation

Rgen(X) = E−HAHX +XAE−1 + E−HCHCE−1 −XBBHB = 0

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 153

has the same structure as (1.1) in which the system matrix A and the initial residual factor CH

are replaced by AE−1 and E−HCH , respectively. In an efficient algorithm, inverting E is
avoided. The orthonormal BRAD used in Algorithm 1 becomes

E−HAHVj+1Kj = Vj+1Hh ⇐⇒ AHVj+1Kj = EHVj+1Hj

with the starting block E−HCH . The expression (4.2) forR(Xj) becomes

R(Xj) = EHVj+1(HjYjK
H
j +KjYjH

H
j + C̃C̃H −KjYjSjYjK

H
j)V H

j+1E,

with CH = EHVj+1C̃, such that the subsequent derivations in Section 3 all hold without any
changes.

The expression for the residual becomes

EHVj+1(UTH + TUH)V H
j+1E.

In order to evaluate this efficiently, let QR = EHVj+1 [U T] be an economy-size QR
decomposition. Then

‖EHVj+1(UTH + TUH)V H
j+1E‖ =

∥∥∥∥R [0 Ip
Ip 0

]
RH

∥∥∥∥
is the residual norm of (6.1); see (4.7).

7. Numerical experiments. An extensive comparison of low-rank factored algorithms
for solving (1.1) has been presented in [4, 5]. We complement those findings by comparing
Algorithm 1 (employing the efficient residual computation as in Algorithm 2 and truncating the
approximate solution as discussed in Section 5), the RADI algorithm from [4], and the RKSM
algorithm from [15, 30] with respect to their convergence performance. Recall that RADI
generates approximations X radi

k = ZkY
radi
k ZH

k , where the columns of Zk can be interpreted as
a nonorthogonal basis of Kk = Kk(AH , CH ,Sk) (1.5). The approximations Xk = ZkYkZ

H
k

generated via Algorithm 1 have the same structure, just the matrix Yk being obtained in a
different way. Moreover, X radi

j can be interpreted as the solution of a projection of the large-
scale Riccati equation (1.1) onto the Krylov subspaceKk employing an oblique projection; see
[11, Section 4.2]. In contrast, RKSM computes an approximate solutionX rksm

k = QkY
rksm
k QH

k ,
where the columns of Qk span an orthogonal basis of Kk = κk(AH , CH ,Sk−1) (1.4) and
Y rksm
k is the solution of (1.2) resulting from the Galerkin projection QH

k R(Xk)Qk = 0 of the
Riccati residual.

The behavior of Algorithm 1 for the choices Lj = Kj (which yields a Galerkin projection)
and Lj = Hj or Lj = Hj−Kj (which yield a Petrov–Galerkin projection) and different shift
strategies is investigated. That is, in order to see the influence of different shift strategies on
Algorithm 1, a set of shifts is precalculated. Then all three algorithms are run with this same
set of shifts so that all algorithms perform the same number of iteration steps with the same
shifts. Their convergence behaviors are compared. Our purpose is not to propose Algorithm 1
in its current version as a valid competitor of RADI or RKSM. In theory, the Petrov–Galerkin
approach gives more degrees of freedom than the Galerkin approach. With an optimal choice
of Lk and suitable shifts, the Petrov–Galerkin version of Algorithm 1 should converge at least
as fast as or faster than the Galerkin version. But, so far, we do not know how to best choose
Lk and the set of shifts.

For the RADI algorithm, we use the function mess_lrradi from the MATLAB toolbox
M.E.S.S.-2.2 [29]. The implementation of the RKSM method used is based on the function
RKSMa_care from [5]. The function RKSMa_care had to be modified in order to handle

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

154 C. BERTRAM AND H. FASSBENDER

precomputed shifts correctly. The modified code as well as all experimental code used to
generate the results presented can be found at [17].

We consider three different shift strategies. For two of these, mess_lrradi is used.
The shifts are precomputed employing either the default option “opts.shifts.method
= ’gen-ham-opti’;”, which implies that the shift strategy residual Hamiltonian shifts
[4, Section 4.5.2] are used, or the option “opts.shifts.method = ’heur’;”, which
yields an estimation of suboptimal ADI shift parameters as suggested by Penzl [19, 25]. The
third set is computed using the default option “conv” of the function RKSMa_care, which
chooses the shifts from the convex hull of Ritz values [15].

Algorithms 1 and 2 have been implemented in order to handle generalized Riccati equa-
tions, as discussed in Section 6. The entire orthonormal BRAD (3.3) associated to the
precomputed set of shifts is generated prior to the start of the iteration in Algorithm 1 using
the function rat_krylov from the Rational Krylov Toolbox [9] in version 2.9. During the
iteration, only the relevant parts of the BRAD are used. The rat_krylov function supports
generalized Riccati equations with an additional system matrix E, block vectors CH ∈ Cn×p,
and realification in case complex shifts are used in conjugate-complex pairs. All occurring
small-scale Riccati equations are solved with MATLAB’s icare. For the vast majority of
the small-scale Riccati equations to be solved, MATLAB’s icare reported back that the
unique solution generated is accurate (info.Report == 0). Nonetheless, some of the
computed solutions Yj were indefinite. In our implementation, Y̌j in (5.2) was chosen to
contain all eigenvalues less than 10−12ρ(KjYjK

H
j), where ρ(·) denotes the spectral radius

of the matrix. In order to do so, the matrix KjYjK
H
j is diagonalized using MATLAB’s eig.

The eigenvalues (and corresponding eigenvectors) are reordered such that the eigenvalues
appear in descending order.

Algorithm 1 has been implemented in two versions: an efficient version that takes
into account the comments from Section 3.1, as well as a version that directly implements
Algorithm 1. The efficient version of Algorithm 1 does require Kj , Hj , and Lj to be
block upper Hessenberg matrices. The function rat_krylov may return Kj and Hj with
additional entries in the case where deflation was performed. In those cases, we make use of
the second version of the implementation of Algorithm 1. In a really efficient implementation,
the calculation of the BRAD would have to be linked to the successive solution of the Riccati
equation, so that the BRAD is not calculated in advance, but step by step, immediately followed
by the solution of the corresponding small Riccati equation. Aspects such as deflation and
reorthogonalization would then be adapted to the problem at hand. But, for our purpose, the
approach taken here is sufficient.

In our test setup, RADI will, in general, be (much) faster than RKSM and Algorithm 1,
as each algorithm is run for the same number of iteration steps with the same set of shifts.
The most time-consuming part of the RADI algorithm is the solution of linear systems with
multiple right-hand sides. The rest of the computational effort is negligible. Assuming
that, as proposed in [4, Section 4.2], the Sherman–Morrison–Woodbury formula is used to
reformulate the dense linear systems in the RADI algorithm as sparse linear systems of the
form (AH −σI)Ẑ = R, linear systems with p+m right-hand sides have to be solved. RKSM
and Algorithm 1 need to solve the same linear systems of equations with just p right-hand sides
in order to advance the required basis of the block rational Krylov subspace. However, this
slight advantage is more than offset by the necessary orthonormalization of the basis in RKSM
and Algorithm 1. Moreover, unlike in the RADI algorithm, in RKSM and Algorithm 1 the
solution of the small-scale Riccati equation (3.2) of growing dimension has to be calculated,
which further increases the computational time required. Nevertheless, for the first example
we present time measurements to illustrate the difference between RKSM, Algorithm 1, and

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 155

RADI and especially between RKSM and Algorithm 1.
All experiments are performed in MATLAB R2024a on an Intel® CoreTM i7-8565U

CPU @ 1.80 GHz 1.99 GHz with 16 GB RAM.

7.1. Example 1. The first example considered is the well-known steel profile cooling
model from the Oberwolfach Model Reduction Benchmark Collection [7, 23]. This example
(often termed RAIL) comes in different problem sizes n, but fixed m = 7 and p = 6. We used
the one with n = 79,841. The system matrices E and A are symmetric positive and negative
definite, respectively.

FIG. 7.1. Example 1: Relative residual norms for shifts generated by mess_lrradi with option
’gen-ham-opti’.

As a first test, we precomputed one set of shifts employing mess_lrradi with the
default option ’gen-ham-opti’;. For all other options used, we refer to [17]. This
resulted in 50 real shifts. Then we ran all algorithms with this set of shifts. All plots in
Figure 7.1 display the residual norm normalized by the norm of CCH versus the dimension
of the subspace projected onto for all methods considered. The plot in the upper left-hand
side shows that Algorithm 1 with the choice Lj = Hj and Lj = Hj −Kj converges a bit
slower than RADI and RKSM. For the choice Lj = Kj Algorithm 1 performs slightly better
than RADI and (in the end) than RKSM. The other plots in Figure 7.1 show the effect of the
truncation on the convergence. To make the effect clearly visible, we display the results for
truncation together with three of the residual norm curves from the top-left plot in Figure 7.1,
namely, the convergence of RADI, of RKSM, and of Algorithm 1 for one of the three choices
of Lj .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

156 C. BERTRAM AND H. FASSBENDER

In addition, the convergence of the truncation algorithm is given for the selected Lk.
The truncated approximate solution X̂j is computed from Xj as explained in Section 5. For
illustration purposes, this is done in each iteration step. Clearly, in the beginning no truncation
is taking place, but after 26 iteration steps (that is, BRAD subspace dimension 162) truncation
shows an effect. As can be seen in Figure 7.1 and Table 7.1, when employing truncation
of the computed approximate solution Xj , the subspace dimensions decrease after a while
such that the low-rank factorization of X̂j requires less storage than that of Xj . Recall that
when applying Algorithm 1, the dimension of the subspace on which the Riccati equation is
projected increases by p in each iteration step, that is, in step j, it is 6j. Moreover, in each
iteration step, the rank of the Riccati residualR(Xj) is given by 2p = 12. See Table 7.1 for
detailed information on the dimension of the subspace used and the rank of the Riccati residual.
In the end, instead of a 79,841× 300 matrix to store Vj+1Kj , only one of size 79,841× 187,
79,841× 188, or 79,841× 188 is required, depending on the choice of Lj .

TABLE 7.1
Example 1: Rank(R(Xj)) and subspace dimension for the set of ’gen-ham-opti’ shifts as in Figure 7.1.

Lj = Kj Lj = Hj Lj = Hj −Kj

j subspace subspace subspace
rank(R(Xj)) dimension rank(R(Xj)) dimension rank(R(Xj)) dimension

1–26 12 6j 12 6j 12 6j
27 16 160 12 162 14 161
28 22 163 22 163 22 163
29 28 166 24 168 26 167
30 34 169 28 172 32 170

31 38 173 32 176 38 173
32 44 176 38 179 44 176
33 52 178 46 181 50 179
34 62 179 56 182 60 180
35 66 183 64 184 68 182
36 76 184 72 186 76 184
37 88 184 78 189 84 186
38 98 185 92 188 98 185
39 110 185 102 189 106 187
40 120 186 114 189 118 187

41 132 186 128 188 130 187
42 144 186 140 188 142 187
43 154 187 154 187 154 187
44 166 187 166 187 166 187
45 178 187 176 188 176 188
46 190 187 188 188 188 188
47 202 187 200 188 200 188
48 214 187 212 188 212 188
49 226 187 224 188 214 188
50 238 187 236 188 238 188

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 157

Figure 7.2 displays the same information as the left upper plot in Figure 7.1, but with
different precomputed shifts. The left plot shows the convergence related to the shifts generated
with my_RKSMa_care and the option ’convR’; the right one to the convergence related to
the shifts generated with mess_lrradi and the option ’heur’. All precomputed shifts
are real. For both set of shifts, RKSM performs better than the other algorithms. Algorithm 1
with the choice Lj = Kj converges slightly faster than RADI, but a bit slower than RKSM.
For the set of RKSM shifts, the other versions of Algorithm 1 perform worse than the other
algorithms, but for the set of ’heur’ shifts, the convergence for the choice Lk = Hk −Kk

is better than RADI and almost like the choice Lk = Kk, while for the choice Lj = Hj

the overall performance is better than that of RADI, although this does not apply to some
iteration steps. Truncation has almost no effect for the set of RKSM shifts, while for the set of
’heur’ shifts the effect can be nicely seen from BRAD subspace dimension 162 onwards;
see Figure 7.3.

FIG. 7.2. Example 1: Relative residual norms for different shifts.

FIG. 7.3. Example 1: Relative residual norms for shifts generated by mess_lrradi and the option ’heur’.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

158 C. BERTRAM AND H. FASSBENDER

Finally, we give some timings for the different algorithms and sets of shifts; see Table 7.2.
Algorithm 1 is used with the efficient implementation discussed in Section 3.1 without any
truncation. The number of shifts is chosen such that the algorithms terminate with a comparable
final accuracy. Due to the setup of the experiments, RADI is the fastest algorithm, as both
other algorithms need to perform some orthogonalization to set up the required basis. As the
timings show, Algorithm 1 requires typically less time than RKSM.

TABLE 7.2
Example 1: Timings for different sets of shifts.

Shift choice Method Timings No. of shifts
RKSM 20.1088
RADI 12.1011

RKSM Alg. 1, Lk = Kk 15.8956 26 real
Alg. 1, Lk = Hk 15.8769

Alg. 1, Lk = Hk −Kk 15.8989
RKSM 31.6462
RADI 12.4941

’gen-ham-opti’ Alg. 1, Lk = Kk 26.7037 32 real
Alg. 1, Lk = Hk 26.8429

Alg. 1, Lk = Hk −Kk 27.6092
RKSM 49.8927
RADI 18.8875

’heur’ Alg. 1, Lk = Kk 26.5591 32 real
Alg. 1, Lk = Hk 26.2650

Alg. 1, Lk = Hk −Kk 26.4021

7.2. Example 2. The second example considered is the convection–diffusion bench-
mark example from MORwiki – Model Order Reduction Wiki [25, 32]. The examples are
constructed with

A = fdm_2d_matrix(100,’10*x’,’100*y’,’0’);
B = fdm_2d_vector(100,’.1<x<=.3’);
C = fdm_2d_vector(100,’.7<x<=.9’)’;
E = speye(size(A));

resulting in a SISO (single-input single-output) system of order n = 10,000. The plots in
Figure 7.4 display essentially the same information as the corresponding plots in Figure 7.2.
For this example, for the set of shifts generated with my_RKSMa_care and the option
’conv’, all versions of Algorithm 1 perform at least as good as RKSM, while for the set of
shifts generated with mess_lrradi and the option ’gen-ham-opti’, the performance of
all versions of Algorithm 1 lie between those of RKSM and RADI. Truncation has essentially
no effect for the RKSM shifts, while for the ’gen-ham-opti’ shifts, starting from the
BRAD subspace dimension 25, truncation has an effect.

For the set of shifts generated with mess_lrradi and the option ’heur’, RADI
performs worse than the other algorithms, which perform alike; see Figure 7.5. Truncating the
solution does decrease the final subspace dimension, but also decreases the accuracy of the
computed solution. This is depicted here for the choice Lk = HK .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 159

FIG. 7.4. Example 2: Relative residual norms for different sets of shifts.

FIG. 7.5. Example 2: Relative residual norms for ’heur’ shifts generated with mess_lrradi.

7.3. Example 3. As a third example, we consider the nonsymmetric matrix “lung2”
available from The SuiteSparse Matrix Collection2 (formerly known as the University of
Florida Sparse Matrix Collection) via the matrix ID 894 [13], modeling processes in the human
lung. We employ this example with the negated system matrix −A ∈ R109460×109460, E =
I , and randomly chosen CH ∈ R109460×3 and B ∈ R109460×15 (using randn). Here
we report only on the numerical experiments involving the precomputed shifts using the
option ’gen-ham-opti’ for mess_lrradi. When using the shifts precomputed with
the ’heur’ option, MATLAB’s icare had trouble solving the small-scale Riccati equations.
RKSM also had problems converging. Figure 7.6 displays the same information as Figure 7.1.
As can be seen, Algorithm 1 with the choice Lk = Kj outperforms RKSM and RADI slightly,
while for the choice Lk = Hj −Kj , RKSM and RADI perform slightly better. Algorithm 1
with the choice Lk = Hj behaves quite differently from the other two choices for Lj . For this
choice, only erratic and poor convergence can be observed.

2https://sparse.tamu.edu

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://sparse.tamu.edu

ETNA
Kent State University and

Johann Radon Institute (RICAM)

160 C. BERTRAM AND H. FASSBENDER

FIG. 7.6. Example 3: Relative residual norms for shifts generated using the option ’gen-ham-opti’ for
mess_lrradi.

7.4. Summary of findings. The convergence of the general projection method typically
behaves comparably to that of the RADI and the RKSM algorithms. The general projection
method with orthogonal projection (Lj = Kj) shows the best convergence behavior among
all the variants tested, usually slightly better than the RADI algorithm. This may be due to
the fact that all shift choices tested are stemming from Galerkin projection type methods. A
choice adapted to the Petrov–Galerkin scenario could possibly provide a remedy and better
performance for the Petrov–Galerkin projection approach. The general projection method
is computationally more demanding than the RADI algorithm, but somewhat cheaper than
RKSM. Truncation of the approximate solution Xj proves to be an efficient way to further
reduce the rank of the approximate solution while improving the accuracy of the approximate
solution achieved for the related subspace dimension. The choice of criterion for determining
Y̌j (5.2) determines the achievable accuracy of the truncated approximate solution.

8. Concluding remarks. So far, the orthogonal projection onto the block rational
Krylov subspace Kj (1.4) or onto the extended block Krylov subspace κj(A

H , CH) +
κj(A

−H , A−HCH) for the standard block Krylov subspace κj(AH , CH) (1.3) has been
considered in the literature in connection with projection methods for solving large Riccati
equations. Here, for the first time, we have explicitly considered the projection of the Riccati
equation onto the block rational Krylov subspace Kj (1.5). The projections need not be
orthogonal. Like the resulting projected small-scale Riccati equation, the projections are
determined by the matrices in the BRAD corresponding to Kj . An efficient way to evaluate the
norm of the residual has been derived. Instead of the norm of an n× n matrix, the norm of a
readily available 2p× 2p matrix has to be computed. This implies that the rank of the residual
matrix is 2p. The idea of truncating the resulting approximate solution has been proposed. By
employing this idea, the rank of the approximate solution can be effectively reduced further
while increasing the accuracy obtained for the corresponding subspace dimension.

It has been proven that the truncated approximate solution can be interpreted as the
solution of the Riccati residual projected to a subspace of the Krylov subspace Kj . This
gives a way to efficiently evaluate the norm of the resulting residual. Numerical experiments
demonstrate that the convergence of the proposed projection methods generally follows the
same pattern as the convergence of the RADI and the RKSM algorithms. Among all the
evaluated versions, the general projection method with orthogonal projection exhibits the best
convergence behavior. The Petrov–Galerkin scenario allows for more freedom in the choice
of the search space. This could possibly provide a remedy and better performance for the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR CARES 161

Petrov–Galerkin projection approach when a suitable strategy for choosing Lj and the set of
shifts has been found. However, the RADI approach requires less computational time than the
projection method.

Acknowledgements. Part of this work was done while the second author visited the
Oden Institute at the University of Texas at Austin in October 2023 and the Department of
Mathematics and the Division of Computational Modeling and Data Analytics (CMDA) in the
College of Science at Virginia Tech in Blacksburg in November 2023.

REFERENCES

[1] L. AMODEI AND J.-M. BUCHOT, An invariant subspace method for large-scale algebraic Riccati equation,
Appl. Numer. Math., 60 (2010), pp. 1067–1082.

[2] P. BENNER AND T. BREITEN, Rational interpolation methods for symmetric Sylvester equations, Electron.
Trans. Numer. Anal., 42 (2014), pp. 147–164.
https://etna.ricam.oeaw.ac.at/vol.42.2014/pp147-164.dir/pp147-164.pdf

[3] P. BENNER AND Z. BUJANOVIĆ, On the solution of large-scale algebraic Riccati equations by using low-
dimensional invariant subspaces, Linear Algebra Appl., 488 (2016), pp. 430–459.

[4] P. BENNER, Z. BUJANOVIĆ, P. KÜRSCHNER, AND J. SAAK, RADI: a low-rank ADI-type algorithm for large
scale algebraic Riccati equations, Numer. Math., 138 (2018), pp. 301–330.

[5] , A numerical comparison of different solvers for large-scale, continuous-time algebraic Riccati
equations and LQR problems, SIAM J. Sci. Comput., 42 (2020), pp. A957–A996.

[6] P. BENNER, M. HEINKENSCHLOSS, J. SAAK, AND H. K. WEICHELT, An inexact low-rank Newton-ADI
method for large-scale algebraic Riccati equations, Appl. Numer. Math., 108 (2016), pp. 125–142.

[7] P. BENNER AND J. SAAK, Linear-quadratic regulator design for optimal cooling of steel profiles, Technical
Report SFB393/05-05, Sonderforschungsbereich 393, TU Chemnitz, Chemnitz, 2005.

[8] , Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov
equations: a state of the art survey, GAMM-Mitt., 36 (2013), pp. 32–52.

[9] M. BERLJAFA, S. ELSWORTH, AND S. GÜTTEL, A rational Krylov toolbox for MATLAB, MIMS EPrint
2014.56, Manchester Institute for Mathematical Sciences, University of Manchester, Manchester, 2014.

[10] C. BERTRAM, Efficient Solution of Large-Scale Riccati Equations and an ODE Framework for Linear Matrix
Equations, Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2021.
https://nbn-resolving.org/urn:nbn:de:gbv:084-2021110311426

[11] C. BERTRAM AND H. FASSBENDER, On a family of low-rank algorithms for large-scale algebraic Riccati
equations, Linear Algebra Appl., 687 (2024), pp. 38–67.

[12] D. A. BINI, B. IANNAZZO, AND B. MEINI, Numerical Solution of Algebraic Riccati Equations, SIAM,
Philadelphia, 2012.

[13] T. A. DAVIS AND Y. HU, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Software,
38 (2011), Art. 1, 25 pages.

[14] V. DRUSKIN AND L. KNIZHNERMAN, Extended Krylov subspaces: approximation of the matrix square root
and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 755–771.

[15] V. DRUSKIN AND V. SIMONCINI, Adaptive rational Krylov subspaces for large-scale dynamical systems,
Systems Control Lett., 60 (2011), pp. 546–560.

[16] S. ELSWORTH AND S. GÜTTEL, The block rational Arnoldi method, SIAM J. Matrix Anal. Appl., 41 (2020),
pp. 365–388.

[17] H. FASSBENDER, Matlab Code for “A class of Petrov-Galerkin Krylov methods for algebraic Riccati equa-
tions”, Software, 2024. See https://doi.org/10.5281/zenodo.13332981.

[18] M. HEYOUNI AND K. JBILOU, An extended block Arnoldi algorithm for large-scale solutions of the continuous-
time algebraic Riccati equation, Electron. Trans. Numer. Anal., 33 (2008/09), pp. 53–62.
https://etna.ricam.oeaw.ac.at/vol.33.2008-2009/pp53-62.dir/pp53-62.pdf

[19] P. KÜRSCHNER, Efficient Low-Rank Solution of Large-Scale Matrix Equations, Ph.D. Thesis, Fakultät für
Mathematik, Otto von Guericke Universität, Magdeburg, 2016.
http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2

[20] L. KNIZHNERMAN AND V. SIMONCINI, A new investigation of the extended Krylov subspace method for
matrix function evaluations, Numer. Linear Algebra Appl., 17 (2010), pp. 615–638.

[21] P. LANCASTER AND L. RODMAN, Algebraic Riccati Equations, Clarendon Press, New York, 1995.
[22] Y. LIN AND V. SIMONCINI, A new subspace iteration method for the algebraic Riccati equation, Numer.

Linear Algebra Appl., 22 (2015), pp. 26–47.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://etna.ricam.oeaw.ac.at/vol.42.2014/pp147-164.dir/pp147-164.pdf
https://nbn-resolving.org/urn:nbn:de:gbv:084-2021110311426
https://doi.org/10.5281/zenodo.13332981
https://etna.ricam.oeaw.ac.at/vol.33.2008-2009/pp53-62.dir/pp53-62.pdf
http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2

ETNA
Kent State University and

Johann Radon Institute (RICAM)

162 C. BERTRAM AND H. FASSBENDER

[23] OBERWOLFACH BENCHMARK COLLECTION, Steel profile, hosted at MORwiki – Model Order Reduction
Wiki, 2005.
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Steel_Profile

[24] D. PALITTA, The projected Newton-Kleinman method for the algebraic Riccati equation, Preprint on arXiv,
2019. https://arxiv.org/abs/1901.10199

[25] T. PENZL, Lyapack – a MATLAB toolbox for large Lyapunov and Riccati equations, model reduction problems,
and linear–quadratic optimal control problems, Version 1.0., Software, NETLIB, 1999.

[26] A. RUHE, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl., 58 (1984),
pp. 391–405.

[27] , Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. Matrix pairs, Linear Algebra
Appl., 197/198 (1994), pp. 283–295.

[28] , Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils, SIAM J. Sci.
Comput., 19 (1998), pp. 1535–1551.

[29] J. SAAK, M. KÖHLER, AND P. BENNER, M-M.E.S.S.-2.2—the matrix equations sparse solvers library,
Software, February 2022.
See https://doi.org/10.5281/zenodo.5938237 or
https://www.mpi-magdeburg.mpg.de/projects/mess.

[30] V. SIMONCINI, Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati
equations, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1655–1674.

[31] V. SIMONCINI, D. B. SZYLD, AND M. MONSALVE, On two numerical methods for the solution of large-scale
algebraic Riccati equations, IMA J. Numer. Anal., 34 (2014), pp. 904–920.

[32] THE MORWIKI COMMUNITY, MORwiki – Model Order Reduction Wiki, Web Resource.
http://modelreduction.org

[33] B. VANDEREYCKEN AND S. VANDEWALLE, A Riemannian optimization approach for computing low-rank
solutions of Lyapunov equations, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2553–2579.

[34] T. WOLF, H2 Pseudo-Optimal Model Order Reduction, Ph.D. Thesis, MAS Maschinenbau, Technische
Universität München, München, 2014.

[35] N. WONG AND V. BALAKRISHNAN, Quadratic alternating direction implicit iteration for the fast solution
of algebraic Riccati equations, in 2005 International Symposium on Intelligent Signal Processing and
Communication Systems, IEEE Conference Proceedings, Los Alamitos, 2005, pp. 373–376.

[36] , Fast positive-real balanced truncation via quadratic alternating direction implicit iteration, IEEE
Trans. Computer-Aided Design Integr. Circ. Systems., 26 (2007), pp. 1725–1731.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Steel_Profile
https://arxiv.org/abs/1901.10199
https://doi.org/10.5281/zenodo.5938237
https://www.mpi-magdeburg.mpg.de/projects/mess
http://modelreduction.org

