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INEXACT LINEAR SOLVES IN THE LOW-RANK
ALTERNATING DIRECTION IMPLICIT ITERATION FOR

LARGE SYLVESTER EQUATIONS∗

PATRICK KÜRSCHNER†

Abstract. We consider iteration for approximately solving large-scale algebraic Sylvester equations. Inside every
iteration step of this iterative process, a pair of linear systems of equations has to be solved. We investigate the situation
when those inner linear systems are solved inexactly by an iterative method such as, for example, preconditioned
Krylov subspace methods. The main contribution of this work are thresholds for the required accuracies regarding
the inner linear systems, which dictate when the employed inner Krylov subspace methods can be safely terminated.
The goal is to save computational effort by solving the inner linear system as inaccurately as possible without
endangering the functionality of the low-rank Sylvester–ADI method. Ideally, the inexact ADI method mimics
the convergence behavior of the more expensive exact ADI method, where the linear systems are solved directly.
Alongside the theoretical results, strategies for an actual practical implementation of the stopping criteria are also
developed. Numerical experiments confirm the effectiveness of the proposed strategies.
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1. Introduction. We consider the numerical solution of large-scale algebraic Sylvester
equations of the form

AX +XB = −fg∗(1.1)

with large coefficient matrices A ∈ Rn×n and B ∈ Rm×m, the sought-after matrix X ∈
Rm×n, and a factorized right-hand side with f ∈ Rn×r and g ∈ Rm×r which have full column
rank r � n,m. Sylvester equations play a vital role in many application areas, for instance,
control theory, model order reduction [1, 38], and image processing [11], and they often arise
as a crucial ingredient in algorithms in more complicated matrix equations [10, 20, 29, 39].
We refer to the survey article [35] for further details and examples.

For equations defined by small to medium-sized coefficient matrices, methods based on
matrix factorizations can be used, such as the Bartels–Stewart and related methods [2]. When
only one coefficient matrix (A or B) is large and sparse, while the other one is small and dense,
special methods are applicable [5, 38]; and see [17, Section 7.6.3].

In this work we treat the case when both coefficients, A and B, are large and sparse
matrices and the right-hand side is of low rank. For this scenario, one can show that the singular
values of the solution X typically decay rapidly towards zero [13, 18, 31]. This motivates the
computation of a solution approximation of low rank in factored form X ≈ ZΓY ∗, where Z
and Y are thin rectangular matrices and the middle matrix Γ has conforming size. In recent
years, different (rational) Krylov subspace projection methods have been proposed for this
purpose; see, e.g., [10, 12, 16, 19, 21, 30]. Another method for this situation, and the focus of
this study, is the low-rank (LR) version of the alternating direction implicit (ADI) iteration
[6, 8, 11, 40, 41].

Inside every step of the Sylvester ADI iteration, linear systems of equations must be
solved. Solving these inner linear systems is computationally the most expensive part of
every iteration step, and, if direct solvers are not applicable, a further, inner iteration can be
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used in order to obtain approximate solutions. Typically, one uses preconditioned Krylov
subspace methods for this purpose. We develop estimates for the required accuracies regarding
those linear systems which will dictate when the inner Krylov subspace methods can be
safely terminated, thus potentially saving some computational effort without endangering
the functionality of the low-rank Sylvester ADI method. A peculiarity of the Sylvester ADI
approach is that a pair of linear systems must be solved in every step. These linear systems are
defined by shifted versions of the coefficient matrices A and B. Hence, one must determine
two connected stopping criteria, for which we present strategies.

The paper is structured as follows. In Section 2 we review the Sylvester ADI iteration
and its properties, which we then modify to incorporate inexact solutions of the inner linear
systems. Afterward in Section 3, we develop dynamic inner stopping criteria for the iterative
solution of the arising linear systems and analyze their effect on the Sylvester ADI iteration.
We also discuss the actual implementation of these stopping criteria inside the ADI iteration.
Section 4 demonstrates the findings by some numerical experiments, and Section 5 concludes
and gives some potential future research directions.

1.1. Notation. Throughout the paper, if not stated otherwise, we use ‖ · ‖ to denote
the Euclidean vector and associated induced matrix norm; and (·)∗ stands for the transpose
(respectively, complex conjugate transpose) for real (respectively, complex) matrices and
vectors. The identity matrix of dimension k is denoted by Ik with the subscript omitted
if the dimension is clear from the context. The kth column of the identity matrix is de-
noted ek and 1k := [1, . . . , 1]∗ ∈ Rk. The spectrum of a matrix A ∈ Cn×n and a matrix
pair (A,M) is denoted by Λ(A) and Λ(A,M), respectively. The smallest (respectively,
largest) eigenvalue in magnitude of a matrix A is denoted by λmin(A) (respectively, λmax(A)),
ρ(A) = max{|λ|, λ ∈ Λ(A)} is the spectral radius, andW(A) = {z = x∗Ax : 0 6= x ∈
Cn, ‖x‖ = 1} is the field of values. The symbol ⊗ denotes the Kronecker product. For
A ∈ Cn×n, β ∈ C, and α /∈ −Λ(A), a two-parameter Cayley transformation is given by

C(A,α, β) = (A− βIn)(A+ αIn)−1 = In − (β + α)(A+ αIn)−1.(1.2)

2. Inexact low-rank ADI iteration for Sylvester equations. The Sylvester equations
(1.1) have a unique solution, if and only if Λ(A) ∩ Λ(−B) = ∅. This is, in particular, fulfilled
if Λ(A),Λ(B) ⊂ C− (or Λ(A),Λ(B) ⊂ C+), which is assumed in the remainder of the paper.

2.1. Derivation and review of basic properties. For every β /∈ Λ(A), α /∈ Λ(B),
α 6= β, the continuous-time Sylvester equation (1.1) is equivalent to the discrete-time Sylvester
equation

X = C(A, β, α)XC(B,α, β) + T (α, β),

where

T (α, β) := −(β + α)(A+ βIn)−1fg∗(B + αIm)−1

and C(·, ·, ·) are two-parameter Cayley transformations (1.2). This motivates the non-stationary
iteration for k = 1, 2, . . .,

Xk = C(A, βk, αk)Xk−1C(B, αk, βk) + T (αk, βk)

= Ck(A)Xk−1Ck(B) + Tk,
(2.1)

where we have introduced varying parameters αk and βk throughout the iteration. This is the
alternating direction implicit iteration for algebraic Sylvester equations [40].
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The error and the Sylvester residual matrix after k steps of the Sylvester ADI scheme (2.1)
are given by

Xk −X = Ak(X0 −X)Bk, Rk = AXk +XkB + fg∗ = AkR0Bk,(2.2)

Ak :=

k∏
i=1

C(A, βi, αi), Bk :=

k∏
i=1

C(B,αi, βi).

The iteration is convergent, for example, when ρ(Ck(A))ρ(Ck(B)) < 1 for all k ≥ 1. A rapid
decrease of error and residual can thus be achieved by minimizing this product of the spectral
radii of Ak and Bk, which leads to the ADI shift parameter problem,

min
αi,βi∈C

 max
1≤`≤n
1≤j≤m

k∏
i=1

∣∣∣∣ (λ` − αi)(µj − βi)(λ` + βi)(µj + αi)

∣∣∣∣
 , λ` ∈ Λ(A), µj ∈ Λ(B).(2.3)

Various approaches have been proposed for (2.3), e.g., pre-computing shift parameters
[8, 31, 41] in an offline phase before the actual ADI iteration, based on either elliptic func-
tion regions or heuristic strategies. In contrast, more recent developments were focused on
computing one pair (αk, βk) of parameters at a time online during the running ADI iteration
[7, 22]. In this study, we assume that the pairs (αk, βk) that guarantee convergence of (2.1)
are given in advance. This is purely for reasons of simplification, as the upcoming results on
the stopping criteria do not depend on the way the shifts are generated.

A low-rank version1 of the ADI iteration [8] is obtained by setting X0 = 0 in (2.1)
and exploiting that the matrices (A + βkI)−1 and (A − αkI) as well as (B + αkI)−1 and
(B − βkI) commute. This allows us to formulate (2.1) for k ≥ 1 as

z1 = (A+ β1In)−1f, s1 = (B + α1Im)−Hg,(2.4a)

zk = zk−1 + (βk − αk−1)(A+ βkIn)−1zk−1,(2.4b)

yk = yk−1 + (αk − βk−1)(B + αkIm)−Hyk−1,(2.4c)

which produces solution approximations in low-rank format:

X ≈ Xk = ZkΓkY
∗
k with Zk = [z1, . . . , zk] ∈ Cn×kr,

Γk = diag (Γk−1, (βk − αk)Ir) ∈ Ckr×kr, Yk = [y1, . . . , yk] ∈ Cm×kr.

The column dimensions of Zk and Yk grow by r columns after each iteration step, so that also
their ranks grow. To reduce the memory demand, column compression techniques can be used,
for instance after the iteration terminates.

It can be shown [6, 22] that the residual matrix (2.2) at step k has at most rank r and is
given by the low-rank factorization

Rk = wkt
∗
k,(2.5a)

where
wk := Akf = w0 + Zkγk = wk−1 + γk(A+ βkI)−1wk−1 ∈ Cn×r,(2.5b)

tk := B∗kg = t0 + Ykγk = tk−1 + γk(B + αkI)−∗tk−1 ∈ Cm×r,(2.5c)

with
w0 := f, t0 := g, γk := [γ1, . . . , γk]∗ ⊗ Ir, γk := −(βk + αk).(2.5d)

1This version is also called factored ADI iteration (fADI).
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This allows one to compute the residual norm ‖Rk‖2 = ‖wkt∗k‖2 more efficiently, and
the residual factors wk and tk can be directly integrated into the low-rank Sylvester ADI
iteration (2.4), which then becomes

zk = (A+ βkI)−1wk−1, wk = wk−1 + γkzk, w0 := f,(2.6a)

yk = (B + αkI)−∗tk−1, tk = tk−1 + γkyk, t0 := g.(2.6b)

This is the form of the iteration used nowadays.
Generalized Sylvester equations. For two given additional non-singular matrices

M ∈ Cn×n and C ∈ Cm×m, generalized Sylvester equations are of the form

AXC +MXB = −fg∗.(2.7)

The low-rank ADI iteration can be generalized in a straightforward manner to

Xk = C(AM−1, βk, αk)XC(C−1B, βk, αk) + T̂k,

with

T̂k := −γk(A+ βkM)−1fg∗(B + αkC)−1.

The corresponding low-rank iteration (2.6) transforms in that case [6, 22] to

zk = (A+ βkM)−1wk−1, wk = wk−1 + γkMzk, w0 := f,(2.8a)

yk = (B + αkC)−∗tk−1, tk = tk−1 + γkC
∗yk, t0 := g.(2.8b)

The spectra Λ(A) and Λ(B) in (2.3) have to be replaced by the spectra Λ(A,M) and Λ(B,C),
respectively.

REMARK 2.1. Note that

wk = wk−1 + γkM(A+ βkM)−1wk−1 = (A− αkM)(A+ βkM)−1wk−1

= (AM−1 − αkI)(AM−1 + βkI)−1wk−1 = Ck(AM−1)wk−1,

tk = tk−1 + γkC
∗(B + αkC)−∗tk−1 = (B − βkC)∗(B + αkC)−∗tk−1

= (C−1B − βkI)∗(C−1B + αkI)−∗tk−1 = C∗k(C−1B)tk−1,

indicating that the matrices of AM−1 and C−1B appear only for notational purposes and will
not be formed explicitly in an actual implementation.

We will mostly consider the more general version (2.8) in the remainder of the paper.
The most expensive parts inside each step of the outer ADI iteration (2.6) and (2.8) are the

solutions of the inner shifted linear system with (A+ βkM), (B + αkC)∗, and r right-hand
sides for zk and yk.

In this study, we discuss the situation when zk and yk are only approximate solutions of
the linear systems but the remaining steps in (2.6) and (2.8) are kept unchanged. This gives
the inexact low-rank ADI iteration illustrated in Algorithm 1. Let

(2.9)
rAk := wk−1 − (A+ αkM)zk with ‖rAk ‖ ≤ δAk ,
rBk := tk−1 − (B + βkC)∗yk with ‖rBk ‖ ≤ δBk

be the residual vectors with respect to the linear systems. We generally refer to rAk and rBk as
inner residuals. The quantities δAk , δ

B
k > 0 indicate the residual tolerances with respect to the

inner linear systems at outer step k of the inexact LR-ADI iteration.
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Algorithm 1: Inexact low-rank ADI (LR-ADI) method for Sylvester equations
Input : A,B,M,C, f, g as in (2.7), shift parameters {α1, . . . , αk}, {β1, . . . , βk},

and tolerance 0 < τ � 1.
Output : Zk ∈ Cn×rk, Yk ∈ Cm×rk, Γk ∈ Crk×rk such that ZkΓkY

H
k ≈ X .

1 w0 = f, t0 = g, Z0 = Γ0 = Y0 = [ ], j = 1.
2 while ‖wk−1THk−1‖ ≥ τ‖FG∗‖ do
3 Approximately solve the linear systems for zk, yk:

(A+ βkM)zk = wk−1, ‖rAk ‖ = ‖wk−1 − (A+ βkM)zk‖ ≤ δAk ,
(B + αkC)∗yk = tk−1, ‖rBk ‖ = ‖tk−1 − (B + αkC)∗yk‖ ≤ δBk .

γk := −(βk + αk).
4 wk = wk−1 + γkMzk, tk = tk−1 + γkC

∗yk.
5 Zk = [Zk−1, zk], Yk = [Yk−1, yk], Γk = diag (Γk−1, γkIr).
6 k = k + 1.

REMARK 2.2. In this work, “inexact” means that the solution process of the linear
systems is the only source of inexactness in the LR-ADI iteration. We do not consider other
errors introduced, e.g., by the finite-precision arithmetic.

REMARK 2.3. An inexact version of the dense iteration (2.1) for positive definite A, B,
M = In, C = Im, and fixed shifts αk = α, βk = β, ∀ k ≥ 1, is discussed in [27]. The
motivation in [27] is to ensure asymptotic convergence of (2.1) under inexact inner solves. In
contrast, our analysis is focused on the low-rank iteration with variable shifts and, moreover,
pursues the goal to make the behavior of the inexact ADI iteration as close as possible to that
of the exact ADI iteration. Note that, by our assumptions on the shift parameters, the exact
ADI iteration converges.

2.2. Properties of inexact low-rank Sylvester ADI iteration. Before we can investigate
stopping criteria for the inexact low-rank Sylvester ADI iteration, we need to generalize
some results for the exact iteration [22, Corollary 3.16] as well as for the inexact iteration for
Lyapunov equations [24, Theorem 3.2].

THEOREM 2.4. The low-rank solution factors Zk and Yk constructed after j steps of the
inexact LR-ADI iteration (Algorithm 1) satisfy the identities

AZk = MZkσ
α
k + wkE

∗
k − SAk , B∗Yk = C∗Ykσ

β
k + tkE

∗
k − SBk ,(2.10)

with

σαk :=

[ α1
−γ2 α2

...
. . .

−γk ··· −γk αk

]
⊗ Ir, σβk :=

 β1

−γ2 β2

...
. . .

−γk ··· −γk βk

⊗ Ir ∈ Cjr×jr,

Ek := 1k ⊗ Ir ∈ Rjr×r,
SAk := [rA1 , . . . , r

A
k ] ∈ Cn×rk, SBk := [rB1 , . . . , r

B
k ] ∈ Cm×rk

containing the residuals of the linear systems (2.9).
Proof. The result for SAk = 0 and SBk = 0 has been established in [22]. By construction, it

holds that wi−1 = wi − γiMzi and Azi = wi−1 − βiMzi − rAi for i = 1, . . . , k. Combining
the two relations yields Azi = wi + αiMzi − rAi . Moreover, successively inserting the
defining relation (2.8a) for the previous residual factors wj , with j = k − 1, . . . , i ≥ 1, into

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

124 P. KÜRSCHNER

the formula for wk gives, after rearranging: wi = wk −M
∑k−i
j=1 γk−j+1zk−j+1. Inserting

this into the expression for Azi gives

Azi = wk + αiMzi −M
k−i∑
j=1

γk−j+1zk−j+1 − rAi , i = 1, . . . , k,

such that

A[z1, . . . , zk] = [wk, . . . , wk] +M [z1, . . . , zk]

([ α1
−γ2 α2

...
. . .

−γk ··· −γk αk

]
⊗ Ir

)
− SAk ,

which is the result in (2.10) for AZk. The result for B∗Yk is developed in the same way using
the corresponding relations for tk, yk, and rBk .

THEOREM 2.5. After k iteration steps of inexact LR-ADI applied to (2.7), the Sylvester
residual matrix is given by

Rk = AZkΓkY
∗
k C +MZkΓkY

∗
k B + fg∗ = wkt

∗
k − ηAk − ηBk ,

ηAk := SAk ΓkY
∗
k C, ηBk := MZkΓk(SBk )∗.

(2.11)

Proof. By construction, it follows from (2.5) that f = wk−MZkγk and g = tk−C∗Ykγk.
Plugging this and the identities of Theorem 2.4 into the Sylvester residual matrix yields

Rk = MZk
(
σαkΓk + Γk(σβk)∗ + γkγ

∗
k

)
Y ∗k C + wkt

∗
k −MZkΓk(SBk )∗ − SAk ΓkY

∗
k C.

The claim follows upon realizing that Γk is the solution of the following Sylvester equation:
σαkΓ + Γ(σβk)∗ + γkγ

∗
k = 0.

In the following we call Rcomp
k = wkt

∗
k the computed residual, which refers to the

computation of its norm by means of the outer product of the residual factors wk and tk, just
as done in the exact LR-ADI. As stated earlier, the norm of this outer product can be computed
efficiently. Plugging Xk = ZkΓkY

∗
k into the Sylvester equation gives the true residualRtrue

k

from (2.11). The above properties show that, in the presence of inexact linear solves, there is
a discrepancy between the computed Sylvester residuals Rcomp

k and the true residuals Rtrue
k

given by (2.11).
DEFINITION 2.6 (Residual gap). The residual gap after k iteration steps of the low-rank

Sylvester ADI is defined as

∆Rk := Rcomp
k −Rtrue

k = SAk ΓkY
∗
k C +MZkΓk(SBk )∗ = ηAk + ηBk .

Hence, the efficiently computable quantity ‖Rcomp
k ‖ = ‖wkt∗k‖ is not the correct value of

the norm of the Sylvester residual for the current solution approximation ZkΓkY
∗
k . Using it

might give a wrong impression of the iteration’s progress. One would need to estimate the
true residual norm, e.g., by means of a Lanczos process applied toR∗R, which is more costly
(see comparison in [6]).

3. Dynamic residual thresholds for inner linear systems. In this section, we investigate
strategies to make the inner residual norms ‖rAk ‖ and ‖rBk ‖ as large as possible without
endangering the functionality of the outer ADI iteration. The goal is to achieve that the inexact
low-rank ADI iteration mimics the exact counterpart up to a very small deviation.

Similar to the low-rank ADI iteration for Lyapunov equations, it can be shown that the low-
rank factors Zk and Yk span (block) rational Krylov subspaces for AM−1 and, respectively,
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C−∗B∗ [3, 15, 26]. Hence, the low-rank ADI iteration can be seen as a (two-sided) rational
Krylov subspace method. A commonly used approach in inexact (rational) Krylov and related
methods is to enforce a small norm of the residual gap: ‖∆Rk‖ ≤ ε. If ‖Rcomp

k ‖ ≤ ε, then a
small true residual norm ‖Rtrue

k ‖ = ‖Rcomp
k + ∆Rk‖ ≤ 2ε can be expected. This technique is

often coined relaxation because it usually leads to increasing (relaxed) inner residual norms if
the outer residual norm decreases [9, 34]. The next theorem generalizes [24, Theorem 3.3]
and provides a theoretical strategy for reducing ‖∆Rk‖ in the inexact low-rank Sylvester ADI
below a desired threshold after a pre-specified number of outer steps.

THEOREM 3.1 (Theoretical inner stopping criterion for the inexact Sylvester-ADI). Let
the residual gap be given by Definition 2.6 with wk, tk, and γk as in (2.8). Let kmax be the
maximum number of steps of Algorithm 1 and 0 < ε < 1 a small threshold. Furthermore,
let cAk := ‖Ck(AM−1)‖, cBk := ‖Ck(C−1B)‖, and čk := max(cAk , c

B
k ) + 1. If, for 1 ≤ k ≤

kmax, the inner residuals satisfy

čk(‖rAk ‖‖tk−1‖+ ‖rBk ‖‖wk−1‖+ 2‖rBk ‖‖rAk ‖) ≤
ε

kmax
,(3.1)

then ‖∆Rkmax
‖ ≤ ε.

Proof. Consider the following estimate:

‖∆Rkmax
‖ ≤ ‖MZkΓk(SBk )∗‖+ ‖SAk ΓkY

∗
k C‖

≤
kmax∑
k=1

‖rBk ‖‖γkMzk‖+ ‖rAk ‖‖γkC∗yk‖.
(3.2)

Moreover, we can bound

‖γkMzk‖ = ‖γkM(A+ βkM)−1(wk−1 − rAk )‖ = ‖(Ck(AM−1)− In)(wk−1 − rAk )‖
≤ (cAk + 1)(‖wk−1‖+ ‖rAk ‖),

‖γkC∗yk‖ = ‖γkC∗(B + αkC)−∗(tk−1 − rBk )‖ = ‖(C∗k(C−1B)− Im)(tk−1 − rBk )‖
≤ (cBk + 1)(‖tk−1‖+ ‖rBk ‖),

and get

‖∆Rkmax
‖ ≤

kmax∑
k=1

(cAk + 1)‖rBk ‖(‖wk−1‖+ ‖rAk ‖) + (cBk + 1)‖rAk ‖(‖tk−1‖+ ‖rBk ‖)

≤
kmax∑
k=1

čk(‖rBk ‖‖wk−1‖+ ‖rAk ‖‖tk−1‖+ 2‖rAk ‖‖rBk ‖) ≤
kmax∑
k=1

ε

kmax
= ε

if (3.1) holds.

Discussion and consequences. We have already observed one striking difference com-
pared to the Lyapunov situation: We do not get a single combination for the largest possible
inner residual norms but instead infinitely many admissible combinations of ‖rAk ‖ and ‖rBk ‖
that satisfy (3.1). We introduce the following notation:

ε̌ :=
ε

kmax
from (3.1).
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ε̌
č∥t∥

ε̌
č∥w∥

0

∥rA∥

∥rB∥ Ψ(∥rA∥, ∥rB∥) = 0

admissible tolerances
largest admissible tolerances

FIG. 3.1. Illustration of the region of admissible inner residual norms with the boundary curve Ψ = 0, where
the thick dashed portion is the set of admissible combinations of largest tolerances. The ADI iteration indices were
left out for readability. The data were generated here with č = 3, ε̌ = 10−8, ‖t‖ = 10−5, and ‖w‖ = 2× 10−3.

Due to the non-negativity of the residual norms, the bounds (3.1) dictate that admissible values
are from the region bounded by

0 ≤ ‖rAk ‖ ≤
ε̌

čk‖tk−1‖
, 0 ≤ ‖rBk ‖ ≤

ε̌

čk‖wk−1‖
, and ψ(‖rAk ‖, ‖rBk ‖) ≤ ε̌,

ψ(x, y) := čk (x(‖tk−1‖+ y) + y(‖wk−1‖+ x)) .

(3.3)

The largest admissible inner residual norms are located on the planar curve

0 = Ψ(‖rAk ‖, ‖rBk ‖) := ψ(‖rAk ‖, ‖rBk ‖)− ε̌,

which is illustrated in Figure 3.1. How to select one particular combination will be discussed
later.

By solving Ψ = 0, e.g., for ‖rBk ‖,

‖rBk ‖ =
ε̌− čk‖rAk ‖‖tk−1‖
čk(2‖rAk ‖+ ‖wk−1‖)

,(3.4)

we can infer an upper bound for one inner residual from the other. While obeying the
constraints (3.3), the smaller that ‖rAk ‖ is chosen, the larger ‖rBk ‖ can be, and vice versa.

If the computed Sylvester residual decreases in norm, the product of the norms of the
residual factors ‖wk−1‖‖tk−1‖ will decrease as well but not necessarily the norms of the
individual residual factors ‖wk−1‖ and ‖tk−1‖. Hence, the absolute inner residual norms
do not need to increase as the outer residual norm ‖Rcomp

k ‖ decreases, which forms another
difference to the Lyapunov situation. However, we observe increasing relative inner residual
norms

‖rAk ‖
‖wk−1‖

≤ ε̌

čk‖wk−1‖‖tk−1‖
and

‖rBk ‖
‖tk−1‖

≤ ε̌

č‖wk−1‖‖tk−1‖
,

since čk can be bounded by a moderate constant, as we will discuss later. Note that, for r = 1,
we even have ‖Rcomp

k−1‖ = ‖wk−1‖‖tk−1‖, so that

‖rAk ‖
‖wk−1‖

,
‖rBk ‖
‖tk−1‖

≤ ε̌

čk‖Rcomp
k−1‖

.
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3.1. Distance between exact and inexact Sylvester ADI with dynamic inner solve
tolerances. We now establish a relation between the (norms of the) computed Sylvester
residual matrices of both exact and inexact Sylvester-ADI, where the dynamic inner stopping
criteria from Theorem 3.1 are used in the latter.

THEOREM 3.2. Assume kmax steps of both exact and inexact Sylvester-ADI are applied
to a Sylvester equation using the same set of shift parameters (αk, βk), j = 1, . . . , kmax. We
denote the quantities of the exact LR-ADI iteration by superscript exact and 0 < ε � 1 is a
small threshold. If the condition (3.1) is used in the inexact ADI iteration, then

‖Rcomp
kmax
‖ ≤ ‖Rexact

kmax
‖+O(ε).

Proof. First, following the construction of the residual factors wk and tk in Algorithm 1,
we find that

wk = Ck(AM−1)wk−1 + (I − Ck(AM−1))rAk

= · · · = wexact
k +

k∑
j=1

[
k∏

i=j+1

Ci(AM−1)

]
(I − Cj(AM−1))rAj ,

tk = Ck(C−1B)∗tk−1 + (I − Ck(C−1B)∗)rBk

= · · · = texact
k +

k∑
j=1

[
k∏

i=j+1

Ci(C−1B)∗
]

(I − Cj(C−1B)∗)rBj ,

which generalizes [24, Lemma 3.1]. Then,

‖Rcomp
kmax
‖ = ‖wkt∗k‖
≤ ‖(Ck(AM−1))wk−1t

∗
k−1Ck(C−1B)‖

+ (cAk + 1)cBk ‖rAk ‖‖tk−1‖+ (cBk + 1)cAk ‖rBk ‖‖wk−1‖
+ (cBk + 1)(cAk + 1)‖rAk ‖‖rBk ‖,

where we have used the constants cAk and cBk introduced in Theorem 3.1. Consequently,

(cAk + 1)cBk ‖rAk ‖‖tk−1‖+ (cBk + 1)cAk ‖rBk ‖‖wk−1‖+ (cBk + 1)(cAk + 1)‖rAk ‖‖rBk ‖
≤ č2k(‖rAk ‖‖tk−1‖+ ‖rBk ‖‖wk−1‖+ 2‖rAk ‖‖rBk ‖) ≤ čk

ε

kmax
.

Repeating this process again for wk−1 and tk−1 for 1 ≤ k ≤ kmax − 1 eventually yields

‖Rcomp
kmax
‖ =

∥∥∥∥∥
(
kmax∏
k=1

Ck(AM−1)

)
w0t
∗
0

(
kmax∏
k=1

Ck(C−1B)

)∥∥∥∥∥
2

+

kmax∑
j=1

čk
ε

kmax

= ‖Rexact
kmax
‖+

ε

kmax

kmax∑
k=1

čk.

Combining Theorems 3.1 and 3.2 yields the following conclusion.
COROLLARY 3.3. Under the same conditions as in Theorem 3.2 we have

‖Rtrue
kmax
‖ ≤ ‖Rcomp

kmax
‖+ ‖∆Rkmax

‖ ≤ ‖Rexact
kmax
‖+

(
1 +

kmax∑
k=1

čk
kmax

)
ε.

Hence, if (3.1) is used, then the true Sylvester residual norms in the inexact LR-ADI are a
small perturbation of the residuals of the exact method, provided that the čk are bounded by
moderate constants, which we will discuss next.
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3.2. Practical and implementational considerations. Here, we discuss some ways for
the practical usage of the stopping criterion (3.1) in an actual implementation of the low-rank
Sylvester ADI.

3.2.1. Estimating the spectral norms. First, we are going to bound the constants cAk ,
cBk , and čk. For this, we require some additional assumptions:

• The rational functions defining both Cayley transforms,

φAk (x) :=
x− αk
x+ βk

, φBk (x) :=
x− βk
x+ αk

, k ≥ 1,

are, for all k ≥ 1, analytic onW(AM−1) and, respectively,W(C−1B).
• It holds that

qA := max
z∈W(AM−1)

|φAk (z)| < 1, qB := max
z∈W(C−1B)

|φBk (z)| < 1.

Then, by [14],

cAk = ‖Ck(AM−1)‖ ≤ ψAqA < ψA, cBk = ‖Ck(C−1B)‖ ≤ ψBqB < ψB ,

where ψA = 1 +
√

2 (but ψA = 1 if AM−1 is normal) and similarly for ψB and C−1B. As a
consequence, we can bound the constants as

čk ≤ c := 2 +
√

2.

Practical stopping criteria. Additionally, if we use ε/(2čkkmax) instead of ε/kmax for
the condition in Theorem 3.1, then we achieve

‖Rcomp
kmax
‖ ≤ ‖Rexact

kmax
‖+

ε

2
and ‖Rtrue

kmax
‖ ≤ ‖Rexact

kmax
‖+ ε

in Corollary 3.3. Replacing čk by the bound c leads to

‖rAk ‖‖tk−1‖+ ‖rBk ‖‖wk−1‖+ 2‖rBk ‖‖rAk ‖ ≤ ξ
ε

2c2kmax
=: ε̂(3.5)

as the practical realization of (3.1). Here, 0 < ξ ≤ 1 is a safeguard constant for situations
when the above assumptions are mildly violated. Note that similar small safeguard constants
are common in inexact (rational) Krylov methods [24, 34, 36]. In most of our experiments,
ξ = 1 was sufficient.

3.2.2. Incorporating inner residual norms and residual gaps. The proposed stopping
criterion requires the norms of the inner residuals, which can often be directly obtained from
the employed Krylov subspace methods.

Back-looking . The previous inner residual norms can be used to further refine the
dynamic stopping strategy. Assume the inner solvers achieved

‖rBj ‖‖γjMzj‖+ ‖rAj ‖‖γjC∗yj‖ ≤
ε

kmax

for 1 ≤ j ≤ k − 1. In the bound (3.2) we can at step k try to achieve

‖∆Rk‖ ≤ ‖∆Rk−1‖+ ‖rBk ‖‖γkMzk‖+ ‖rAk ‖‖γkC∗yk‖ ≤
kε

kmax
.
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which leads to

čk(‖rAk ‖‖tk−1‖+ ‖rBk ‖‖wk−1‖+ 2‖rBk ‖‖rAk ‖) + ‖∆Rk−1‖ ≤
kε

kmax
.(3.6)

As in [24], the reasoning behind this approach is to look back at all previous inner
residuals and also to incorporate the previous residual gap ‖∆Rk−1‖. Hence, we will refer
to this strategy as “back-looking”. This might allow the incorporation of instances when, at
some of the earlier steps j ≤ k − 1, smaller inner residuals than requested were achieved by
the inner solvers, allowing us to use slightly larger inner tolerances at step k.

The back-looking strategy (3.6) requires the previous residual gap to be ‖∆Rk−1‖ =
‖ηAk−1 + ηBk−1‖, which might be expensive to compute and, moreover, would require storing
all previous inner residuals. Here, we simply use, for k ≥ 2, the approximations

‖∆Rk−1‖ ≤ ‖ηAk−1‖+ ‖ηBk−1‖ ≤ uk−1 + vk−1,

uk−1 := uk−2 + |γk−1|‖Mzk−1‖‖rBk−1‖, u0 := 0,

vk−1 := vk−2 + |γk−1|‖C∗yk−1‖‖rAk−1‖, v0 := 0.

(3.7)

The matrix–vector products Mzk−1 and C∗yk−1 can be reused from step 4 of Algorithm 1.
As a practical realization of (3.6) we propose

‖rAk ‖‖tk−1‖+ ‖rBk ‖‖wk−1‖+ 2‖rBk ‖‖rAk ‖ ≤
1

c

∣∣∣∣ξ kε

2ckmax
− uk−1 − vk−1

∣∣∣∣ =: ε̂k.(3.8)

Here, we have again replaced čk by c, divided the right-hand side of (3.6) by 2c, and introduced
the safeguard constant ξ. The subscript k in ε̂k now indicates the dependence on k on the
right-hand side of inequality (3.8).

3.2.3. Selecting one particular combination of solve tolerances. From the infinitely
many possibilities for the inner tolerances, we have to select one combination in an actual
implementation. First, for reasons of feasibility, we may restrict the inner accuracies to some
minimal and maximal levels via

0 < δAmin ≤ δAk ≤ δAmax, 0 < δBmin ≤ δBk ≤ δBmax.

Then, one simple selection for δAk could be to pick it somewhere from the middle of the
boundary curve of (3.3) and compute δBk via (3.4), as illustrated in Figure 3.2. A strategy that
worked well in our experiments is to set

δAk = max

(
1

2

(
min

(
δAmax,

ε̂

‖tk−1‖

)
− δAmin

)
, δAmin

)
,

δBk = max

(
min

(
ε̂− δAk ‖tk−1‖
2δAk + ‖wk−1‖

, δBmax

)
, δBmin

)
,

(3.9)

where ε̂ is from (3.5). If the back-looking strategy is used, then ε̂k from (3.8) is inserted
in (3.9) instead.

Since any point of the curve Ψ = 0 is admissible, we may move this point so that smaller
inner residuals are favored for the linear system, which is easier and/or less costly to solve,
and thus allow larger residuals for the other linear system. For example, if the linear system
with A+ βkM can be solved more easily and faster than the one with B + αkC, we set

δAk = δAmin and δBk via (3.9).(3.10)
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ε̌
č∥t∥

ε̌
č∥w∥

0

∥rA∥

∥rB∥ Ψ(∥rA∥, ∥rB∥) = 0

admissible tolerances
admissible tolerances on Ψ = 0

FIG. 3.2. Extension of Figure 3.1 illustrating the region of admissible inner residual norms with the set of
admissible combinations of largest tolerances (thick dashed line). The square marks one possible combination from
this set. The straight dashed-dotted lines indicate minimal bounds δAmin and δBmin for the inner residual norms.

In the reverse situation, we analogously select δBk = δBmin and the largest admissible δAk .
As indicators as to how difficult or costly the iterative solution of a linear system is, one could
look at, for example, the size of the matrix, the cost of the matrix–vector products (sparsity
density), the condition number of the matrix, or a mixture thereof. A more general idea for
selecting a combination might be to minimize some cost function (encoding the cost of solving
both systems) constrained to the set of admissible largest tolerances. Experiments with these
strategies led to working tolerances, but, unfortunately, there was hardly any performance
gain at all compared to the simpler selections mentioned before. Additionally, extra costs plus
several further tuning parameters were introduced for solving the constrained minimization.
Hence, these strategies are not pursued further here.

Combination of direct and iterative linear solves. A similar situation arises when the
linear systems of one sequence, e.g., those with A + βkM , can be solved by sparse direct
solvers, and the other linear systems, i.e., those with B + αkC, require iterative methods, or
vice versa. Since direct solvers do not need stopping criteria, selecting a residual threshold is
only required in the other sequence. For example, if the systems with A+ βkM are solved
directly and, ideally, we have ‖rA‖ ≈ 0, then the proposed practical stopping criteria (3.5)
and (3.8) simplify to

‖rBk ‖ .
ε̂

‖wk−1‖
.

Note that this bears some similarity with the simplified stopping criterion for the inexact
LR-ADI iteration for Lyapunov equations [24]. There, the bounds are of the form ‖rk‖ .
ε̂/‖Rcomp

k−1‖
1/2,where ‖wk−1‖ = ‖Rcomp

k−1‖1/2. For the Sylvester ADI and r = 1, the computed
Sylvester residual norms are ‖Rcomp

k−1‖ = ‖wk−1‖‖tk−1‖, so that ‖wk−1‖ = ‖Rcomp
k−1‖p for

some 0 < p < 1.

3.2.4. Further implementation aspects.
Choice of inner iterative solver and preconditioning. The motivation behind low-rank

solvers for large matrix equations was to compute the approximate solution in a memory-
efficient way. This should be maintained also in the inexact low-rank method, and we therefore
strongly advocate the use of short-recurrence Krylov methods for solving (non-symmetric)
inner linear systems. Working with a (non-restarted) long-recurrence method such as GMRES
for solving non-symmetric inner linear systems requires storing the full Krylov basis and
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hence might hinder working in a memory-efficient way (especially if the memory requirements
for GMRES exceed those for the low-rank factors). Of course, having a very effective
preconditioner would limit the memory requirements.

If rank fg∗ = r > 1, every inner linear system has r right-hand sides. One could
then use special block Krylov methods (see, e.g., [28, 37]). In our experiments, this had
no advantage over simply employing the single vector methods to every column wk−1(:, `),
tk−1(:, `), ` = 1, . . . , r. As stopping criterion, we simply used ‖rk(:, `)‖ ≤ δk/r.

The proposed stopping criteria require the norms of the residuals rk of the underlying
inner linear systems. If left or two-sided preconditioning is used, the preconditioned Krylov
method will internally work with the preconditioned residuals, which might be different from
the true inner residuals. Hence, we therefore used mostly right preconditioning, which does
not suffer from this issue. In the other cases, we computed the true inner residual norms after
termination of the Krylov method and ensured that ‖rk‖ ≤ δk was met.

Complex shift parameters. For Sylvester equations defined by real but non-symmetric
coefficient matrices, the sets of shifts {αj}kj=1 and {βj}kj=1 can include pairs of complex
conjugate shifts. In order to minimize the amount of complex arithmetic operations and to
generate real low-rank solution factors Zk, Γk, and Yk, the results in [6, 22] can be used.
The main idea is to perform a double iteration step when a complex pair of α-shifts meets a
complex pair of β-shifts or two real β-shifts or vice versa. In this way, only one complex linear
system needs to be solved per complex conjugate pair of shifts, but the arising variant of the
low-rank Sylvester ADI involves rather cumbersome formulas. Therefore, here we stick to the
possible complex formulation of the method. Note that in most of the upcoming experiments
the used shifts were entirely real. As in the inexact low-rank Lyapunov ADI iteration, using
the real formulation of the Sylvester ADI only involves some minor adjustments for the
estimate (3.7) when the back-looking strategy (3.8) is used and a double step occurs.

Related matrix equations. In addition to the generalized Lyapunov equation (B = A∗,
C = M∗, g = f ), also cross-Gramian Sylvester equations (B = A, C = M ) and symmetric
Stein matrix equations (B = M∗, C = −A∗, g = f ) are special cases of (2.7). Hence, with
the appropriate adaptations, Algorithm 1 can be employed as well (see [6, 22]) including the
proposed dynamic stopping criteria of this work.

4. Numerical experiments. The following experiments were carried out in MATLAB
2023a on an Intel Core 2 i7-7500U CPU @ 2.7 GHz with 16 GB RAM using the implementa-
tion of Algorithm 1 from [23]. We wish to obtain an approximate solution such that the scaled
Sylvester residual norm satisfies

R := ‖Rtrue‖/‖fg∗‖ ≤ ε̃, 0 < ε̃� 1.

In all the upcoming experiments ε̃ = 10−8 is used.
As inner Krylov subspace solvers, we use BiCGstab for non-symmetric coefficients

A + βkM , B + αkC, and we use MINRES in the symmetric case. Note that, if βk ∈ C,
then A + βkM is non-symmetric even if A and M are symmetric, and thus this requires a
Krylov method for non-symmetric linear systems. Sparse-direct solves are carried out by the
MATLAB backslash routine.

Shift parameters for the Sylvester-ADI are generated either by the heuristic approach
from [8] (using 10 Ritz values for each of A and B and 20 inverse Ritz values of A−1 and
B−1) or for real spectra also by the analytic approach of Sabino [31, Algorithm 2.1] (using
approximations of the extremal eigenvalues from both spectra obtained with the MATLAB
routine eigs).
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TABLE 4.1
Examples used in the experiments with matrix properties, settings for preconditioners, and shift selection. Here,

iLU(X, ν) and iC(X, ν) refer, respectively, to incomplete LU and Cholesky factorization of the matrix X with drop
tolerance ν. The last column indicates which ADI shift selection strategy (analytic approach by Sabino or heuristic
method) is used.

Ex. n, m Coefficients r Sym. Prec. Shifts

1
125000 A: ω = 0, M = In 5 yes iC(−A, 0.1) Sab.
27000 B: ω = 0, C = Im 5 yes iC(−B, 0.1) Sab.

2

512000 A: ω = [x sin(x), y cos(y), ez
2−1]T ,

M = In

3 no iLU(A, 0.1) heur.

27000 B: ω = [zy(x2−1), 1/(y2 + 1), ez]T ,
C = Im

3 no iLU(B∗, 0.1) heur.

3
125000 A from Example 1, M = In 5 yes iC(−A, 0.1) heur.
22500 B: two-dim. version of (4.1) with

ω = 0, C = Im

5 yes — heur.

4

106641 A, M from
simplifiedMachineToolFineSA1 [32]

2 yes iC(−A−βkM , 0.1) heur.

35408 B, C from
simplifiedMachineToolFineSA2 [32]

2 yes iC(−B−αkC, 0.1) heur.

The coefficients in some of our experiments come from finite-difference discretizations of
convection–diffusion operators

L(u) = −∆u+ ω · ∇u on (0, 1)3,(4.1)

with different ω ∈ R3. A uniform grid with n0 points in each spatial dimension was used,
leading to matrices of size n30 × n30. The right-hand side factors f and g are drawn from a
normal distribution and are rescaled so that ‖f‖ = ‖g‖. Table 4.1 gives an overview of the
examples and the settings for preconditioners and ADI shift selection methods.

Example 2 is set up similarly to an example in [21]. The matrix B in Example 3
comes from a two-dimensional finite-difference discretization, and the arising linear systems
can be efficiently solved by direct methods. Hence, only the inner tolerances δAk must be
chosen. The matrices of the generalized Sylvester equation in Example 4 come from a finite-
element discretization of the heat transfer across a machine tool [33]. Here, updating the
preconditioners in every ADI iteration step is required to achieve a reasonable performance of
the inner MINRES solver. In all other experiments, fixed preconditioners were sufficient.

We will monitor the performance of Sylvester-ADI with fixed tolerances, using δA,Bk =
ε̃/20, and with the proposed dynamically chosen inner solve tolerances. Unless stated other-
wise, δmin = ε̃/20 and δmax = 0.1 are set as minimal and maximal linear solve tolerances,
and jmax = 50 and ξ = 1 are used. Only Example 4 required slightly stricter settings:
δmin = ε̃/100, jmax = 100, and ξ = 0.1.

The following settings for the dynamic stopping criteria are tested:
• dynamic, no BL, mid: strategy (3.5) without back-looking, combination (3.9) of δAk

and δBk from the middle of the admissible set;
• dynamic, BL, mid: like above, but with back-looking (3.8);
• dynamic, no BL, B: strategy (3.5) without back-looking, inner iterations on the

smaller system (defined by B∗ + αC∗) are preferred via (3.10); and
• dynamic, BL, B: like above, but with back-looking (3.8).

Inside Algorithm 1, the scaled computed Sylvester residual norm ‖Rcomp‖/‖fg∗‖ is used
for the outer stopping criterion. After termination, we also estimate the (scaled) norm of the
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TABLE 4.2
Experimental results. The columns denote the used inner stopping criterion (fixed or dynamic versions), the

number of required outer iterations itout, the column dimension of the low-rank solution factors (dim), the final
obtained scaled residual norm Rk , the total number of inner iteration steps

∑
itin,A and

∑
itin,B for the two linear

systems, the computing times in seconds, and the obtained savings in computing time compared to inexact LR-ADI
with fixed inner tolerances. The best results in the categories regarding the inner solves are shown in bold.

Ex. Settings inner tol. itout dim Rk

∑
itin,A ∑

itin,B Time Save (%)

1

direct solves 29 145 1.9e−09 — — 114.6
fixed 29 145 1.9e−09 581 738 34.3
dynamic, no BL, mid 29 145 1.9e−09 471 462 26.3 23.32
dynamic, BL, mid 29 145 2.0e−09 436 437 25.8 24.78
dynamic, no BL, B 29 145 1.9e−09 450 597 27.9 18.66
dynamic, BL, B 29 145 1.9e−09 424 597 28.2 17.78

2
fixed 25 75 4.1e−10 836 428 234.6
dynamic, BL, mid 25 75 4.1e−10 602 315 165.4 29.92
dynamic, BL, B 25 75 4.2e−10 596 350 162.8 30.61

3
direct solves 20 100 5.3e−09 — — 77.2
fixed 20 100 5.3e−09 638 — 24.2
dynamic, BL 20 100 5.3e−09 430 — 18.0 25.62

4

direct solves 85 170 1.6e−09 — — 261.5
fixed 85 170 1.6e−09 4204 3099 242.9
dynamic, BL, mid 85 170 8.9e−09 1934 1871 144.8 40.14
dynamic, BL, B 85 170 7.7e−09 1818 2301 176.4 27.4

true Sylvester residual matrix ‖Rtrue‖ by using the eigs routine to get an approximation of
λmax((Rtrue)∗Rtrue). The results are summarized in Table 4.2.

For Example 1 we tested the inexact LR-Sylvester-ADI with all of the above dynamic
stopping criteria as well as with fixed inner tolerances and also used the exact ADI (with direct
inner solvers). The data collected in Table 4.2 indicate that, with an appropriate choice for
the inner tolerances, the inexact Sylvester-ADI needs the same number of outer steps and
achieves similar final Sylvester residuals as the exact counterpart, but requires significantly
less computing time. This is also the case for most of the other examples. Secondly, using the
dynamic stopping criteria leads overall to smaller numbers of required inner iteration steps
(columns

∑
itin,A and

∑
itin,B in the table) compared to fixed inner tolerances. This leads to

reduced computing times with savings between approximately 17% and 25% for Example 1.

Now comparing the various different versions of the dynamic stopping criteria, we observe
that the plain version (3.5) requires slightly more inner iterations than the version with back-
looking (3.8). Since using (3.8) comes with almost no additional costs, we therefore always
use back-looking for the remaining examples. The strategies that allow more inner iteration
steps with the smaller linear system indeed achieve this goal: the numbers

∑
itin,A are slightly

decreased while
∑

itin,B are slightly increased. However, for Example 1 this does not lead
to a reduction in the computing time. Some more fine-tuning regarding the selection of a
combination δAk and δBk might be needed here.

Figure 4.1 shows that, when the scaled computed Sylvester residual norm Rcomp
k decreases

in the course of the Sylvester-ADI iteration, the dynamic stopping criteria lead to increasing
inner residual norms ‖rAk ‖ and ‖rBk ‖. Note that the curves for Rcomp

k were visually indistin-
guishable for all the tested variants, and therefore only one curve is shown in Figure 4.1. In
Figure 4.2 the cumulative sum of the inner iteration steps is illustrated for different inner
stopping criteria. We clearly see that the dynamic criteria lead to a significantly reduced slope
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FIG. 4.1. Residual norms for Example 1: Scaled computed residual norms Rcomp
k and inner residual norms

‖rAk ‖ and ‖rBk ‖ against the outer iteration number for different dynamic stopping criteria. Only one curve for Rcomp
k

is shown.

5 10 15 20 25 30
0

200

400

600

800

step

su
m

(i
nn

er
ite

rs
)

itin,A, fixed
itin,B , fixed
itin,A, dyn.
itin,B , dyn.
itin,A, dyn., BL
itin,B , dyn., BL

FIG. 4.2. Inner iteration numbers for Example 1: Cumulative sum of the inner iteration steps against the outer
iteration number for fixed inner tolerances and different dynamic stopping criteria.

compared to fixed tolerances, which is reduced slightly further when back-looking (3.8) is
equipped.

For Example 2 we can make a similar observation from the data in Table 4.2. Using the
dynamic stopping criteria leads to savings in the computing times of roughly 30%. Figure 4.3
illustrates again the history of the scaled computed Sylvester residual norms Rcomp

k and the
inner residual norms ‖rAk ‖ and ‖rAk ‖. For Example 2, the strategy [dynamic, BL, B] actually
leads to a very small reduction in the computing time due to a small change in the inner
iteration numbers

∑
itin,A and

∑
itin,B . This is also visible in Figure 4.3, where the inner

residual norms ‖rA‖ in this variant are slightly larger but the ‖rBk ‖ (corresponding to the much
smaller linear systems) are kept at a much lower level.
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FIG. 4.3. Residual norms for Example 2: Scaled computed residual norms Rcomp
k and inner residual norms

‖rAk ‖ and ‖rAk ‖ against the outer iteration number for different dynamic stopping criteria.

In Example 3 only the sequence of linear systems defined by A is solved iteratively, while
direct solvers are used for the other one defined by B. Hence, only the threshold for ‖rAk ‖
must be adjusted by simply setting ‖rBk ‖ = 0 in (3.8). The results in Table 4.2 show again
reduced numbers of inner iterations gained with the dynamic stopping strategies and savings
of approximately 25% in the computing time.

The results for the generalized Sylvester equation of Example 4 are in line with those of
the previous examples. Here, the dynamic criteria lead to runtime savings between roughly
27% and 40%. The strategy [dynamic, BL, B] does lead to higher computation times than
[dynamic, BL, mid], but overall the total number of inner iteration steps as well as the
computing time are lower compared to using fixed inner tolerances. The arising linear systems
in Example 4 seem to be harder for the inner solver (MINRES) compared to the other examples.
That is the reason why we opted to update the preconditioners in every step. Using smaller drop
tolerances for the incomplete Cholesky factorization did not lead to significant improvements.

A further noteworthy observation in these and other experiments (not reported here) is that
sometimes, in the inexact ADI iteration with fixed tolerances, the required residual thresholds
could not or could hardly be achieved by the inner solver. This was much less frequently
an issue with the proposed dynamic criteria because there the smallest inner residual norms
are typically only required in the first outer iteration steps. Moreover, for some examples,
looser fixed inner tolerance might work, too, potentially at an increase of the number of outer
iteration steps. With this setting, however, the residual gap might be larger so that ‖Rcomp‖
might not be a correct indicator for the achieved accuracy. One would have to estimate the
true Sylvester residual norm (e.g., via a Lanczos process), which is more costly than using the
norm of the computed Sylvester residual. Choosing the fixed tolerances too loose can also
lead to a stagnation of ‖Rtrue‖, although ‖Rcomp‖ indicates a decrease, which is a common
issue in inexact (rational) Krylov methods.

5. Conclusions and future research perspectives. We considered the inexact low-rank
ADI iteration for large-scale Sylvester equations and proposed dynamic stopping criteria for
the inner solvers which are used to iteratively solve the arising linear systems. We provided
theoretical results showing that, with an appropriate choice for the inner accuracies, the
residuals in inexact ADI iteration are only a small perturbation of the exact ADI iteration.
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Moreover, the practical implementation of the dynamic stopping criteria was discussed, and
numerical experiments confirmed the effectiveness of these strategies, leading to fewer inner
iteration steps and, hence, shorter computing times compared to the case when constant inner
tolerances were used.

A potential next research direction might be subspace recycling techniques for the se-
quences of shifted linear systems by, for example, storing the Krylov basis obtained from
solving one linear system. This was discussed, for example, for the Lyapunov LR-ADI in [25],
and a similar idea was developed in [4], leading to an efficient hybrid method. Corresponding
strategies for the Sylvester-ADI iteration are promising future research directions. Conducting
similar studies for the linear systems inside rational Krylov projection methods for Sylvester
equations [30] is, of course, also a further worthwhile research direction.
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