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SIMULTANEOUS APPROXIMATION OF HILBERT AND
HADAMARD TRANSFORMS ON BOUNDED INTERVALS*
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Abstract. In this paper, we propose a compound scheme of different product integration rules for the simultaneous
approximation of both Hilbert and Hadamard transforms of a given function f. The advantages of such a scheme are
multiple: a saving in the number of function evaluations and the avoidance of the derivatives of the density function f
when approximating the Hadamard transform. Stability and convergence of the proposed method are proved in the
space of locally continuous functions in (—1, 1) with possible algebraic singularities at the endpoints, equipped with
weighted uniform norms. The theoretical estimates are confirmed by several numerical tests.
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1. Introduction. The present paper deals with the simultaneous approximation of the
Hilbert and Hadamard transforms of a function f, namely H (f) and H(f), defined as

(1.1) Hy (f,t) = /() w(z)dr = lim/l /(@) w(x)dz, te(-1,1),

1Tt 0 g g>e T —t
1
d
0y o =F = GHs, te(-1,1),

where w is a Jacobi weight and the integral in (1.1) is in the Cauchy principal value sense.
The topic is of interest since many mathematical models in applied sciences lead to them;
see, e.g., [1, 15, 16, 25, 26, 34] and the references therein. Due to its outstanding relevance,
many authors introduced and studied many different kinds of numerical approaches; see, for
instance, [1, 2, 10, 14, 25, 27, 28].

In particular, global methods to approximate them can be useful in the numerical treatment
of singular [7, 22] and hypersingular integral equations [3, 9], which in turn describes many
physical and engineering models; see, e.g., [19] and the references therein. Here we approach
the case of weighted Hilbert and Hadamard transforms in the finite interval (—1, 1), devel-
oping a scheme based on the approximation of the density function f by suitable Lagrange
polynomials and their first derivatives. We propose a framework applicable according to
different approaches that can be applied independently or together. To be more precise, there
are three main approaches (paths):

Path 1 approximate only H{ (f) by using a mixed scheme made of two product integration
formulae: the first rule is obtained by approximating f by the Lagrange polynomial
Lyp+1(7, f) interpolating f at the zeros of the Jacobi polynomial p,,11(7), where
T(z) = (1 — 2)?(1 + )7 is a Jacobi weight; the second one, the so-called extended
rule, is based on the approximation of f by the extended Lagrange polynomial
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Lom+1(7,7, f), being 7(x) = (1 — 2?)7(x), and interpolating f at the zeros of
Pm+1(7)pm (7). This approach, described in Section 3, allows us to double in some
sense the degree of the corresponding ordinary formulas by reusing the computations
employed in the ordinary ones.

Path 2 approximate only H}’(f) according to a mixed scheme similar to that used for
HY(f), i.e., made up of a suitable composition of ordinary and extended rules, both
of them avoiding the derivatives of the density function f. This approach will be
discussed in Section 4.

Path 3 Both the previous procedures can be fruitfully employed to simultaneously approxi-
mate 1y (f) and HY’(f), without further samples of f than those required in Path 1.
This scheme will be developed in Section 5.

Extended interpolation processes have been considered by many authors in both finite
and infinite intervals, and their behavior has been studied in different weighted normed
spaces [5, 6, 12, 17, 29, 30]; see also [20] and the references therein. Mixed schemes of
ordinary and extended rules in quadrature have been developed in [23, 31, 32], with the
purpose of a fast computation of weakly singular integrals, both in R* and the interval
[—1,1]. The mixed quadrature scheme has been fruitfully employed in the fast solution of
Fredholm integral equations by Nystrom-type methods [24, 33], for which the reduction of
samples of f corresponds to reducing the sizes of the final linear systems. The simultaneous
approximation of Hilbert and Hadamard transform through the Lagrange approximation tool
has been considered in [8] when such transforms are defined on R+.

As we have previously announced, all the schemes we propose here combine the advan-
tages of the mixed quadrature scheme (Path 1 and 2) and of the simultaneous approximation
of HY(f) and HY’(f) (Path 3), without computing any derivative of the density function
f. Moreover, from the theoretical point of view, we have proved that for any function f’
satisfying a Dini-type condition, the weighted Hadamard transform H%Y (f,t) is bounded
for any ¢ € (—1,1) and algebraically diverges at the endpoints +1. About the introduced
numerical scheme, we have proved the stability of the formulae and studied the convergence
in uniform spaces of functions equipped with weighted norms.

The outline of the paper is as follows. In Section 2, some preliminary results are collected.
In Section 3 the main results on the approximation of the Hilbert transform and the scheme
obtained by mixing ordinary and extended rules are presented. The successive Section 4 con-
tains the main results and the mixed scheme for the Hadamard transforms, while in Section 5
we are finally able to propose the compound scheme for the simultaneous approximation of
the Hilbert and Hadamard transforms. Section 6 provides some details about the coefficients
of all the rules we use. Finally, in Section 7, a selection of numerical tests is given.

2. Preliminaries. Throughout the paper, C will denote a generic positive constant having
different meanings at different occurrences. We write C # C(a, b, .. .) to indicate that C is
independent of a, b, ... and C = C(a,b,...) to say that C depends on a,b,.... If A, B > 0
are quantities depending on some parameters, then we write A ~ B if there exists a constant
C # C(A,B) suchthatC~'B < A < CB.

For m € N, we denote by IP,,, the space of the algebraic polynomials of degree at most m.
Finally, in all the paper, we will use the short notation

v*P(z) = (1 —2)*(1+2)°, abeR, zc(-1,1).
2.1. Function spaces. Let u be the Jacobi weight

u(z) =% (z) = (1 —z)(1+2)°, rel[-1,1], ~,6>0.
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We denote by C,, the space of locally continuous functions f on (—1, 1) such that the following
limit conditions are satisfied:

lim f(z)u(z) =0, ify>0, and lim f(z)u(z) =0, ifd>0.
Tz—1—

rz——11

C,, equipped with the uniform norm

Iflle. = lfulleo = max |f(z)|u()

is a Banach space, i.e.,

lim E,(f)y =0<= f € C,,

m—r o0

where F,,(f)., is the error of best polynomial approximation of f defined as
E,(f)y = inf — Plle,;
(f)u = jnf IIf = Pl

see, e.g., [20]. In the case v = § = 0, C,, coincides with the space C° of all continuous
functions in [—1,1]. For any f € C,, setting ¢(x) := +/1 — 22, by the main part of the
p-modulus of smoothness [11, p. 90] of order k € N,

Qg}fp(fa t)y = sup ||Allztpfu|‘lkh,’ reN,
0<h<t

where
k

Z ( ) (a;—l—(k‘—Zj)Zcp(x)), Ien = [~1+(2kh)?, 1—(2kh)?],

j=
it is possible to define the Holder—Zygmund space Z,.(u) of order r € R as
QL (f,t)u
Z.(u)=< feC, : supL_)<oo7 k>rp,
>0 12

endowed with the norm

1z = Il +wp—iﬁlf

For any f € Z,.(u) and m sufficiently large, say m > mg, we have

e B, <c 2w o,

Finally, in what follows DT'(u) C C,, will denote the set of functions satisfying the Dini-type

condition
D1 ={fecus (/ 2l < .

The following lemma will be useful:
LEMMA 2.1 ([22, Lemma 2.1]). Forany f € C, s.t. f € DT (u), then

1
m m QU (f,t)u
/ o(f — Pm,t)udt§||fu”w+/ H(f,1) "
0 0

t )
where C # C(m, f).
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2.2. Orthonormal polynomials and Lagrange interpolating polynomials. Denote by
{Pm (7) } men, the system of the orthonormal polynomials for the Jacobi weight 7(z) = v (z),
p,0 > —1,x € (—1, 1), with positive leading coefficients, i.e.,

P (T, ) = Y (7)™ + terms of lower degree, v, (1) > 0.

Setting {z;,}7""' the zeros of p,,11(7) and denoting by { A 41,x(7)}7,! the Christoffel
numbers of Order (m + 1) w.r.t. 7, the Lagrange polynomial interpolating f at the zeros of
Pm+1(7) can be represented as

m-+1
Lm+1 T, f7 Z lm+1 k\T, l‘ ( k:)a

(2.2) N
b 11 (7,2) = A1 k(7)Y i (7, 2)p; (7, ).
=0

The next theorem states necessary and sufficient conditions such that the norm of the operator
Lyy1(7) : Cy — C, diverges with optimal order.

THEOREM 2.2 ([20, Theorem 4.3.1]). Let 7 = v and u = v"° with p,oc > —1, and
~,0 > 0. Then, forall f € C,

[ L1 (7, e, < Clogml|flc,, C#C(m,f),

if and only if

23 {5’+isfrss+i,
Z+i<6<g+3

It follows that

2.4) If = Linta (7, flle, < Clogm Ep(f)u, C#C(m, f).

About the norm of the operator Ly, +1(7) : Z,(u) = Zs(u), r > s > 0, from a more
general result stated in [21] (see also [34]) the next theorem follows.

THEOREM 2.3. For any function f € Z,.(u), under the assumptions (2.3),

Hf||z Iz, ()

—S8

If = Linsa (7, f)

, C#C(m,f), r>s>0.

Setting 7(x) = 7(x)(1 — 2?) and denoted by {p,,(7)}, the corresponding sequence of
orthonormal polynomials, we recall the extended interpolation process based on the zeros of
Q2m+1 = Pm+1(T)Dm (T). Denoting by {yx }7* the zeros of p,,,(7) and by { A\, & (7) } 7,
the corresponding Christoffel numbers, the extended Lagrange polynomial interpolating f at
the zeros of (2,,+1 takes the form

Lomi1 (7,7, frox) = ng:lf(mk) Qam+1(7)
=1 Qo1 (@k) (@ — @)

(2.5)

+Zf(yk:) : Q2m+1(2)
k=1

Q2m+1(yk)($ - yk).
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REMARK 2.4. We observe that in view of (2.5), once the polynomial L, 1 (7, f) has been
obtained, the construction of the polynomial Ls,,+1(7,7, f) requires only m new samples of
fat{yp}i,.

Similarly as the Lagrange polynomial based on the zeros of p,,+1(7), also the norm of
the operator Loy, 11(7,7) : Cyy — C, behaves as log m under suitable assumptions on the
parameters p, o, 7, 0. Indeed, the following theorem holds:

THEOREM 2.5 ([33, Theorem 2.2]). Let be T = v”°, 7 = vPTLHoFL with p,o > —1.
Forany f € C,, u = v’ under the assumptions

(2.6)

ptl<y<p+2
c+1<§<o+2,

then

||£277l+1(7-’ T, f)”cu < ClOgme”Cuv C 7é C<m7 f)

Moreover, the following error estimate holds true:

(27) ||f - £2m+1(7—» ?7 f)| Cu S ClongZnL(f)u; C 7é C<m7 f)

REMARK 2.6. In [6] it was introduced the polynomial Loy, 41,r,5(7, 7, f) interpolating f
at the zeros of QQ2,,,+14, Bs, being the zeros of A, € P,., Bs € P,. The r and s additional
knots “close” to the endpoints £1 are chosen in such a way that the norm of the operator
Lomi1(T,7) 1 f € CY — C° logarithmically diverges.

Theorems 2.2 and 2.5 assure that both the sequences { L, (7, f)}m and {Lopm+1 (7,7, f) }m
can be selected, so that their norms in C,, diverge as logm. In addition, according to Re-
mark 2.4, with fixed m and computed L, 1(7, f), by the extended polynomial we double the
degree of the approximant of f with only m new samples of f instead of 2m + 1. Supported
by these properties, the following mixed sequence of Lagrange interpolating polynomials was
introduced in [33],

L2n+1(7',f,$)7 n:052747"'7

L, ) =
(f m) {E2"+1(T7Tafax)a n:1a3757"'7

i.e., a suitable sequence composed of the ordinary and the extended Lagrange polynomials,
defined in (2.2) and (2.5), respectively, proving the following result:

THEOREM 2.7 ([33, Theorem 2.3]). Under the assumptions

p+l<~<
c+1<6<

5
+ 2,

2.8)
+3

NQ o

SJorany [ € Z,.(u), we have

logm

/]

We conclude this section, by stating two theorems that we need in the sequel to provide
error estimates of the new numerical methods.

THEOREM 2.8. For any function f € Z,.(u), under the assumptions (2.6),

I[f = Ln(H)ullee <C Zo(w), m=2"C#C(m,[)

m’[‘

Q9 If ~ Loner(r 7. Pl 2. < ClogmIZD ¢ sgim p), vz a0
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Proof. To prove (2.9), we note that

= Ee(f)us if k> 2m,
(210) Ek(f - £2m+1(7—7 Fu f))u
<Nf = Lomar (1,7, Hlulloo, if k< 2m.

Consequently, for all s > 0, we have

||f - £2m+1(7—7 T, f)HZs(u)
= || [f - £2m+1 (7—7 T, f)]uHoo + bgg(z + 1)8Ei(f - ‘CQm-‘rl(T’ T, f))u

< CEQm(f)u logm + C”[f - L277L+1(Ta T, f)]uHoc(zm + 1)87

and hence, by (2.7) and (2.1) under the assumption f € Z,.(u), it follows

I = Lamer(r 7. Dz, < Clogm 112200

)

and the theorem is proved. a
By using Theorems 2.3 and 2.8, the following result can be deduced:

THEOREM 2.9. For any function [ € Z,.(u), under the assumptions (2.8), for any
O<s<ritis

If = Lu(f)] Wz ¢4 cm. 1)

Zowy < Clogm

2.3. The Hilbert transform. We conclude by recalling a result in [34] (see [18]) about
the boundedness of the Hilbert transform. To this end, denote by

By(u) := {fEC'u : k_lw<oo}

the Besov-type space (introduced in [18]) which is the “correct and minimal” space to study
the boundedness of the Hilbert transform, equipped with the norm

= En(f)s
ot 2 T

m=1

1118wy := IIf]

THEOREM 2.10 ([34]). Let w = v®P?, with o, 8 > —1, be the Jacobi weight defining
wy () := v P+ (z) and w_(z) = v*— P~ (x), and

1

ht) =17 (wpw_)(—1)[log(L +¢)| + (wsw_)(1)|log(1 — t)|’

Then forallt € (—=1,1) and any f € Bo(wy), it is

H (f O)lw-(t) < C (IfOlwr () + [ flBo(ws)) » € #C(f 1)

In conclusion, the last theorem provides conditions assuring the boundedness of H{’ as a
map from By (w. ) into CY .
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2.4. The ordinary product integration rules. A well-known product integration rule is
obtained by approximating the density function f by the Lagrange polynomial L, 1 (7, f)
defined in (2.2) with 7 = v”"7, i.e.,

(21 1) H(Su(fa t) = H(i)u,m+1(f7 t) + eg},erl(.ﬂ t)7

where the rule takes the form

m—+1
2.12) HY i1 (f.1) = HE (Linga (7, ), 1) = Y Fla) D),
k=1

0 w
DI () i= HY (s 1.5(7), 1),
and the remainder term is defined as
6(1)0,m+1(f7 t) = quv(f - Lm+1(7_7 f)a t)

Formula (2.11) has been considered by several authors (for instance [4]); see also [20, 28] and
the references therein. In particular, we recall the error estimate given in [34]. Denoting by

cy == max{0,c}, c_ :=max{0,—c},

the following theorem holds:

THEOREM 2.11 ([34]). Let w = v™P, with o, f > —1, be the Jacobi weight defining the
Hilbert transform (1.1), and set w = ** withw. (x) := v+ P+ (2) and w_ () := v*=F~ (),
and

1
ht) = 1+ (wyw_)(=1)|log(1 + ¢)| + (wyw_)(1)|log(1 —t)|

Then under the assumptions

forallt € (—1,1) and any f € Z,(w4), we have

logZm

(2.13) €51 (f; D)w-(D)h(t) < C 1z, wy)s € #C(f1).

m”
3. Main results: approximation of the Hilbert transform.

3.1. The extended product rule. Now, we introduce the extended product rule obtained
by replacing the function f in the Hilbert transform in (1.1) by the polynomial Lo, 11 (7,7, f),
ie.,

(31) H(I)U(fa t) = ﬁ(q)u,Qerl (f7 t) +€8:2m+1(f7 t)v
where the product rule takes the form

m—+1

H g1 (1) = HE Lomir (1.7, 1), 0) = D flan) AV @)+ fun)BY (¢),

k=1 k=1
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with
A’(€0) (t) = HY ( : Q2m+1 ,t) 7
B(O) (t) = Y ( Q2m+1 ,t> 7
b 0 Q/Qm—i-l (yk)( - yk)

and the remainder term is

ngZerl(fa t) = Héu(f - £2m+1(7—7 F? f)a t)

About the convergence of the extended rule, we can prove the following:

THEOREM 3.1. Let w = v™?, with o, B > 0, be the Jacobi weight defining the Hilbert
transform (1.1), and set w = == with w, (z) := v+ (z) and w_(x) := v*=P= (). Then,
under the assumptions

a—2<p<a-—1,
3.3)
ﬁ_2§0§ﬁ_17

forallt € (—1,1) and any f € Z,(w), we have

log2 m

Proof. From (3.1) it follows that
|€(1)(j2m+1(fa t)' = |H6U(f’ t) - ﬁg;ﬂm«kl (f> t)‘ = ‘Hg}(f - ‘C2m+1(7-a T, f)7 t)l

First, we observe that under the assumptions on p, a4 and o, 5 in Theorem 2.10 the exponents
ay = a, By = B, and consequently wy = w, h(t) = 1 and w_(¢t) = 1. Hence, we have

€8 21 ([ )] < C(I(F(t) = Lomr (7,7, F,0)|[w(t) + | f = Lomt1 (7,7, )| Bo(w))
=:C (j1 + jz) .

1 £1 2, (w)> C #C(f,1).

m’l"

Under the assumptions (3.3), by (2.7) it follows that

Ji < Clogm Eap(f)w < Clogm”ft‘n@-

About Jo, by (2.10) and (2.7) we have

- Ek(f)w
G 2T

k=1
2m—1 00
1 Ex(Fw
<Clf = Lomsa (7,7, e, <1+ > k+1> + (/)
k=1

j\Z = ||f _£2m+1(7—7?7f)|

E+1

= E w w w
§Clog2mEgm(f)w+ Z k’jf)l SClome”f‘?'i;( )—&—CHﬂlj;( ) |
k=2m

Combining the two previous estimates, the thesis follows. a
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3.2. The mixed scheme for the approximation of the Hilbert transform. We consider
the mixed scheme of product integration rules, obtained by combining the ordinary product
rule Hg',,, 1 (f,t) and the extended product rule H's,,, 1 (f, ), to take advantage of reducing
the global number of required samples of f. To this end, we propose the following mixed
scheme

(35) Hg’(f7 t) = ,’qg},n(f7 t) + ngn(.ﬂ t)a
where
) HY . n=0,24,...,
(3.6) gj,n(f) _ { 10,2 +1(f), n
HE)U,2”+1<f)7 n= 173557""

Regarding the convergence of the mixed sequence, the following result holds:

THEOREM 3.2. Assume that the weight functions w = v*®, o, > 0, and T = vP°
defining (3.5) satisfy

37 maX(2a—%,a—2)§p§a—1,
' max (28 - 5,8-2) <o <f -1
Then forall f € Z,(w) and any t € (—1,1), we have

log2 m

G (frt) < C

being C # C(m, f,t).
Proof. We observe that under assumptions (3.7), Theorems 2.11 and 3.1 are both satisfied.
Hence, in view of (3.6), the thesis follows by combining the estimates (2.13) and (3.4). 0

merM4m77n=2"+L

4. Main results: approximation of the Hadamard transform. From now on, we
assume that for H{"(f,t) defined in (1.2) the parameters defining the Jacobi weight satisfy
a, 8> 0.

Our first result considers the boundedness of the Hadamard transform in (1.2).

THEOREM 4.1. Let w = v®®, with o, > 0 and f' € DT (wyp). Then, for any
t € (=1,1) we have

1 !/
P D120 < ¢ (wanoo + [ Q(fyy)”dy) )

REMARK 4.2. In the case a = = 0, Theorem 4.1 has been proved in [13].
To prove Theorem 4.1 we need two lemmas.
LEMMA 4.3. Forany —1 < t < —3 and for any f € C,, s.t. f' € DT(wy), we have

7[21‘,4-1 f(-'L') w(x)dx < C( 1 /1 Qsa(f’70')wsa do + ||fw||oo) 7
0

1 (w—1)? () o 1+t
where C # C(f,t).
Proof. The proof starts from

2t+1 . 241 oy ~ () —
VN (CNVRVRIS GRS (GRS {GE IS

-1 (x - t)Q -1 € t)2
2t+1 w(z 2t+1 wl(z
srof - e rof

(41) = Al(t) + A2 (t)7+ Ag (t)
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Since f' € DT (w¢), the term A1 (t) can be rewritten as

- [ =

1 (I - t)2

w(x)dx,

and therefore

a = [ tl { / 1) - f’(y)]dy] (f<xt)>2 d
o o [ / 1) - f’(t)]dy] (:(mt))zdx.

Hence, introducing the changes of variable x = ¢ — %\/1 — 12, y=1t— % 1 — ¢2 in the first
addendum and x =t + $v/1 — 2,y =t + %\/ 1 — 2 in the second one, we get

= [ ([ o (-] 254

0
2
/
0

14t

o UOU {f’ <t+ ;m> —f’(t)} dh} it %W)d"'

o
Consequently,
VI Qu(f, 0)up wit = §VI =)
[Ar(t)] < do
0 o w(t)e(t)
. /v Q') Wt + SV =)
0 o w(t)e(t)
and
1 [PQu(f,0)w
e e R
e(t) Jo o
Since
2t+1
w(zx) 2
Ax(H)] < |f(¢ de | < —
a0l <Ol e < ol 2
and
2t+1 dx
Aa(0)] < Il [ {25 | =0
the statement follows by collecting the last three inequalities and (4.1). a

Similarly, one can prove the following:
LEMMA 4.4. Forany 1 <t < 1and for any f s.t. f' € DT(w¢p), we have

75_1 (xf(xz)Qw(x)dx <C (szt) /01 Q"D(f;’a)w“" do + ”J;wnf) ;

where C # C(f,t).
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Proof of Theorem 4.1. Firstly assume —1 < ¢ < —7. In this case ©?(t) ~ (1 +¢), and
we have

f(z) R LC))
- t)zw(x)dac + /2t+1 @ t)zw(a:)dx .

2t+1
SO HE ()] ~ (1+1) \f

Since

(1+1) < Cllfwlloo,

Y f)
At+1 (z — t)2W(x)dx

the statement follows from Lemma 4.3 for any —1 < ¢ < —%.
Now, assume 1 <t < 1, so that ¢?(t) ~ (1 — t). By using the decomposition

2t—1 T 1 T
comol~ -0 [ L@ £ IO uw]
and taking into account that
2t—1
-0 L <clfull,

the statement follows from Lemma 4.4 for any 3 < ¢ < 1.
Finally, let [t| < 3,
following decomposition

for which p(t) ~ 1. Fixing bst. + < b < L

1 59 consider the

¢ () [HY (f, 1)l

T o f(p) — — () (x —
[ i [ DSOS 00,
|z—t|>b t

- (z—1)2 b (z—1)2
- () ()
+ f(t)jé_b = t)2dx+ f’(t)jg_b mdm
Since
t+b d 2
Bat] < Cllful[f 2| < Sl
43) -

ft+b d.’L’ B
iy Tt
we estimate Bj (t). Following steps analogous to the ones used to estimate A;(¢) in Lemma 4.3,

[ o= o] 2z

[ [ o - rew] e

1Bs(t)] < [[f'welloo

)

|[Bi(t)] <

+

)
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and introducing the change of variables z = ¢ + $¢(t) and y = ¢ + %¢(t), we obtain

1B.(1)] < / [ro-r (- jvize)|al w=3VIZ R,
+/0 an [f’ (t+gm> —f’(t)} dh} “’(”%{W)do—

g

/bm Q (f )wtp w(t_g 1_t2)d0'

o W) ()
T Q[ 0 wlt + GV~ )
* / - w(t)p(D)

1 YO (f,0)w
C td ® do.
= w<t>/o o 7

By combining the last estimate with (4.3) and (4.2), the theorem follows for |¢| < %. Then,
taking into account Lemmas 4.3 and 4.4, the theorem is completely proved. a

4.1. The product rules for the Hadamard transform. Following the same scheme
used to treat the approximation of the Hilbert transform, we consider ordinary and extended
product integration rules and their mixed sequence. By replacing f with L,, 1 (7, f), we have

(44) Hw(f> ) (Lm+1( f)7 t) + ellw,m+1(f7 t) = 711},m+1(f7 t) + eqlu,erl(fu t)a
where

m—+1
(4.5) Vet (£ = Y f@)D @), DY) = HY (s k(1) 1),

k=1

and ef,,, 1 (f,t) is the remainder term. Moreover, approximating f by the extended polyno-
mial Lo,,4+1(7, 7, f) we get the extended rule for Hadamard integrals

H11U (f? t) = H’Llu(‘c2m+1(7—7 T, f)a t) + €ﬁ2m+1(f7 t)

4.6) ~
= H11U72m+1 (f? t) + €fj2m+l(f7 t)v
with
_ m—41
iLJ,Q’rrL+1(f7 t) = Z f T 'Ak; + Zf yk
k=1
where
Q2m+1
AW HY ( ,t) ,
. A\ Ty
BY (1) = HY ( Qom+1 ,t) .
O = G )= )

About the convergence of the ordinary rule (4.5), the next theorem holds.

THEOREM 4.5. Assume that the weight functions w = v*?, o, 8 > 0 and 7 = vP°
defining (4.4) satisfy

200 —
4.8)
S

plor ol
I/\
[N} l\')

\/\
Q
M\»—A L\J\»—A
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Then, for all f' € Z.(wp) and any t € (—1,1), we have

/]
m

Zo(wp)

4.9) > ()€Y i1 (f,1)] < Clog?

Proof. Since eY,, 1 (f,t)) = HY(f — Lim41(7, f), ), by Theorem 4.1 it follows

! Qw((f - Lm+1(7'» f))/,t)ww dt>

POtmia(£0] <€ (17 = s Nl + | t

=Ji + Jo.
By (2.4), under the assumptions (4.8), we have
(4.10) J1 < ClogmEn(f)w-

To estimate J> we use Lemma 2.1,

/% U((f = Linr (. £) D
0 t

- Qr ' Do
= <”(f ~ L (n ) vl +/0 wdt>

and

(f = Ln1(7, ) wep]l oo log m

/1 Qs@((f - Lm+1(7—7 f))/at)uxp dt < ”
1 t -

m

to conclude that

#QT / w
B<c <||(f ~ L. )Y wl g + [ Wdt) .

Now, by [20, Theorem 4.3.5] we have for any f € W1 (w)
”(f - Lm+1(7a f))lw(PHoo < IOngmfl(f,)uupv
by which, for [’ € Z,.(wy), it follows

/
J2 SClong”f ||ZT‘(’LUL,0)7
m’l"

and combining the last inequality with (4.10), we obtain

. 12,0
P (D)t 1 (F.1)] < Clog? m==— 22,
and the theorem is completely proved. a

THEOREM 4.6. Assume that the weight functions w = v®® and T = v*° defining (4.6)
satisfy

a—2<p<a-—1,
4.11)

f—2<oc<pB-—1.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

SIMULTANEOUS APPROXIMATION OF HILBERT AND HADAMARD TRANSFORMS 41

Then, for all f' € Z.(wp) and any t € (—1,1), we have

!
4.12) ()€l amss (.0)] < Clog? m1 T 1Z:00).

mT
being C # C(m, f,1).
Proof. Note that from (4.6)
(€ (£ 0] = [HY(f,8) = HY st (F, O] = (MY (f = Lomgr (7,7, 1), 0)]-
By Theorem 4.1 we have

wz(t)\§ﬁ2m+1(f, t)]

<¢ (7 = Lama(rm Dl + |
= Jy + Jo.
Under the assumptions (4.11), by (2.7) it follows that
Ji < Clogm Eam(f)uw-
Recalling that by [20, Theorem 4.3.5] we have for any f € W;(w)
I(f = Loms1 (7,7, ) wolloo < logm Eam—1(f)we,

and applying Lemma 2.1, we obtain the following bound for J

! Qsa((f — Lomy1(7,7, f))/at)wsa dt)
t

!
Jo < Clog®m 7Hf | Zr(we)

(2m)"
Combining the two estimates of jl and jg the thesis follows. O
4.2. The mixed scheme for the approximation of the Hadamard transform. Under
suitable assumptions, both sequences {H1’,,, | (f )}m and { ~§"72m n(f )} converge uni-

formly to the Hadamard transform 3’ (f). Thus, it makes sense to consider a mixed scheme
combining the previously introduced methods. The mixed sequence is obtained as follows:
HY (f,1) = H(F:0) + CEn(F 1),
where
~ quﬂQ"—Q—l(fat)a n:032747"~7
4.13) Valfit) = { _
H1’2n+1<f7t), n = 1,3,57....

With regard to convergence the following result holds:
THEOREM 4.7. Assume that the weight functions w = v®? and 7 = v*7 satisfy

27

maX(Za—é a—2)§p§a—1,
4.14)
max(2ﬂf%, —2)§0§571.

Then, for all f' € Z.(wp) and any t € (—1,1), we have

!
PO, 8)] < Clog? mll 1 Z:twe) ||5L;(W>, m=2" 41,

with C # C(m, f, ).
Proof. We observe that under assumptions (4.14), Theorems 4.5 and 4.6 are both satisfied.
Hence, in view of (4.13), the thesis follows by combining estimates (4.9) and (4.12). 0
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5. Simultaneous approximation of Hilbert and Hadamard transforms. Summing up
the results regarding both the mixed sequences, i.e., ’;‘—2’0” n(f,t) and 7—1}“,1 (f,t), we are now able
to consider an appropriate scheme of work, useful in all the cases where we simultaneously
want to approximate H{ (f) and HY(f). Basically, we can obtain both the approximated
values of 1y (f,t) and H’(f, ), saving on the total amount of samples of f needed whenever
we treat their approximation separately.

To be more precise, assuming w = v*# with o, 3 > 0, for any ¢ € [a,b] C (—1,1) we
consider the following scheme obtained by merging both the mixed sequences of approximants
of Hilbert and Hadamard transforms:

B (£,0) = {7, (0, 2, (£ )
(51) . {Hg),2"+l(f7t)’ H%),Q"—‘,-l(f?t)}a TLZO,2,47...,
{~8z2“+1(f7t)77:211112”+1(f7t)}ﬂ 7’L=1,3,57...,

which allows us to gain many advantages. More precisely, at every even step of each com-
pounded scheme, we save up to 33.2% on function evaluations, with comparable (or even
better) performances w.r.t. the related sequence based on only the ordinary rule. This leads
to a drastic reduction in CPU time required to create the approximant sequences. Moreover,
we delay the difficulties of evaluating the modified moments for high values of m and the
instability of their computation by recurrence relations. Finally, using the same set of function
evaluations and avoiding the computation of the derivative f’, we simultaneously approximate
the values of Hy'(f) and HY'(f).
About the convergence, by combining Theorems 3.2 and 4.7 the following result holds:

THEOREM 5.1. Assume that the weight functions w = v*?, o, > 0 and 7 = vP°

satisfy
max(2a—%,a—2) <pLa-—-1,
{maX(ZB— %,ﬂ—Q) <o<pg-1.
Then for any f s.t. f' € Z,.(wy) and for any t € [a,b] C (—1,1),

/
Iz o) 5 e g0,1y, m=2 41,
m’[’

[Hen(f:1) = HE(f,8)] < Clog*m
C #C(m. f.1).

6. Implementation details. This section is divided into two parts: in the first part we
provide some details for the construction of the ordinary product rules and in the second one
the details for the extended product rules.

6.1. Coefficients of the ordinary product rules. Recalling that the fundamental La-
grange polynomials of L,,41(7, f) can be expressed as

m

lm+1,k(7—7 .’E) - )‘m+1,k(7-) Zpi(Tv xk)pi(Ta .’E), k = 17 27 e, M + ]-7
=0

the functions DI(CO) (t) in (2.12) take the form

m

(6.1) D () = A1,k (7) D pi(r, ) HE (pi(7), 1),

=0
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and D,gl) (t) in (4.5) the expression

m

6.2) D (1) = Ansra (1) D pi(r, ) HY (pi(7), 1),

=0

As it is known, the main effort in the construction of the coefficients in (6.1) and (6.2) is due
to the evaluation of the so-called modified moments, i.e., the functions

MpW%:HWMhLQZfEMhJM@W% =01,

r—t

1
1 w Pi (Ta .T) .
MO () = HY (pi(7), ) :7{1 = t)2w(x)dx, i=0,1,....
They can be computed by recurrence relations, based on the three-term recurrence for the
sequence of orthonormal Jacobi polynomials {p,,(7)},,, 7(x) = v»7(z), p,c > —1,
€ (-1,1),

{p—l(Ta Jf) = 07 pO(Ta .TZ‘) = \/LT)’
bit1pir1(T, ) = (. — ay)pi(1,2) = bipi—1(7,2), i=0,1,...,
where we denote the Euler’s Beta function by B,

1
o — / (@) dz = 2077 B(1 4+ p,1 + o),
—1

and
. 02— p? . 1
4 = @itpto)@itptota) i=0,1,...,
, T+ ) (40 (4 pro) -
bi = \/(2Z+p+<7 1) (2i+p+0)2(2itpto+1) ? i=0,1,....
Hence, we compute the sequences {Mi(o)(t)} N and { Mi(l) (t)} N by means of the
i>0 >0
recursions
1
M) = 5 (eo+ (0 —a0) Mg (1))
1
MO0 = 57— (et t—a)m O —bMO (1), i=12.
i+1
1
M) = - (M7 () + (0= ao)Mg " (1))
1
ML) = 5= (MO0 + (¢ = a) MV (0) - bME D)) i=12,
41

where the starting moments are

MéO) : Mél)

\ﬁ][ x—tx \ﬁjé xft

and

1
o= [ mrou@ds, i=01,....

-1
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Note that in the case w = 7 we have ¢; = 0, for all ¢ > 1. In the other cases, the ¢; can be
exactly computed by the LmT“j -point Gauss—Jacobi quadrature rule w.r.t. w.

m—+1
In the case w = T, all the coefficients {D,(CO) }k can be computed in 3m? +4m floating
=1

point arithmetic operations, requiring in addition the computation of the zeros and Christoffel
numbers {x, Appt1,% (T ) mAl | through the Golub—Welsh procedure. The same cost is required

for computing {D( ) } . However, in the case that both rules (2.12) and (4.5) have to be

computed, the overall algorlthm can be performed in 3m? + 10m floating point arithmetic
operations.

6.2. Coefficients of the extended product rules. The extended Lagrange polynomial
Lom+1(7, 7, f, ) can be rewritten in the following form

Lomi1 (1,7, f,2) = pm(T, #) Lina (T, 17nf(7)7x> + Pmy1(7,2) L (T’ f()’x>

Pm+1(T
m+1
| _flak)
7' x Z/\m—i-lk Z (Tax)pl(ﬂxk)pm(?’xk)

m—1
Fpna () > k(™) 3 w7, i, ) — L )

k=1 i=0 Pm+1(T, yk)

Hence, the coefficients in (3.2) take the form

(6.3) AQ) (1) = dmr1.4(7) Z;m 7wV HE (P (T)pi(7), 1),
pm(T xk 1=0
m—1
64 B0 = 2D § 3 B M s ()0,
and those in (4.7)
AP = TEEETES i on (7))
s m—1
B (1) = 2mh(D)_ 53 P (e (7). ).

Pm+1 (Tv yk

=0

Denoting the ordinary modified moments w.r.t. 7 by

M (t) = HE (pi(F), 1), DL (t) = HE(ps(7), ), i =0,1,...,

and the “extended modified moments” (see [32]) by

MO (1) = HE P (P)pi(7)s ), M) = HY (o (Dpi(7),1), i =0,1,...,
ML () = HY Pra (T)ps(7), 1), ML () = HE (P (D7), 1), i =0,1,...,
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the sequences {M(O)-(t)7 Mr(,?i_l,i(t)}po and {M(l)

m,t m,t

(1), M,Sllilz(t)} -, e computed by

means of the following recursion schemes

1

M) = 5 (dmo + (= a0) My (1))
0 1 0 0
M1 (8) = 5 (i (0 = ) MH ) = bMT, 1 (1)
i=1,2,...,
(6.5) . . .
M2k (0) = 5 (donsro + (6= an) ML (1)
0 1 0 0
Mr(n—)&-l,i—i—l(t) = ﬁ (dm+1,i + (t - ai)Mr(rl3-1,i(t) - bian—)&-l,i—l(t)) )
1
i=1,2,...,
1 1 0 1
M) = 5 (MA2(0) + (= a0) M4 (1))
1 1 0 1 1
Mipa(t) = 5 (M0 + (6 = @) MU0 = b (1))
i=1,2,...,
(6.6) . .
1 1
M (t) = 5 (Mho®) + (= a0) M o))
1 1 0 1 1
My 0= 5 (M) + (= )Mk (6 = b ()
i=1,2,...,
where the starting moments are
0 1 —0) 0 1 0
MOy (t) = M) M t) = =M (),
1 1 — 1 1 1
MUy () = T M (0, M) () = ﬁMﬁLim,

with 7ig = [, T(2)dz = 20+ T3 B(2 4 p,2 + o), and the quantities

1
i = / P (T, 2)pi (1, )w(x)d, 1=0,1,...,

-1

1
dm+t1,i = / Pt (T, 2)ps (T, x)w(x ) de, i=0,1,...,
-1
are exactly evaluated by means of (m + 1)-point Gauss—Jacobi quadrature rules w.r.t w.
REMARK 6.1. From the recurrence schemes (6.5) and (6.6) we observe that the general-

ized modified moments sequences {M,(loi) (t)} and {M,SIZ (t)} ,h=m,m+1, can
' >0 : >0

be obtained starting from the ordinary modified moments sequences {Mi(o) (t),ﬂz(-o) (t)}
>0

and {M}”(t),ﬁﬁ.”(t)} .
i>0
In the case w = 7, excluding the computation of the zeros and Christoffel numbers, the
coefficients {.A,(ﬂo) }i4 !t in (6.3) and the coefficients {B,(CO) }i, in (6.4) can be computed in
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3m? 4 7m floating point arithmetic operations, for a total amount of 6m? + 14m floating
point arithmetic operations. However, in case the extended rule is combined with the ordinary
rule (2.12) (Path 1), then the additional global effort is only due to the computation of
{B O)}’” . This means that the compound scheme of ordinary and extended product rules
results in a save in the construction of two consecutive elements of the sequence {7:[6‘1 2D
in (3.6) and require a total amount of 6m? floating point arithmetic operations instead of
9m? floating point arithmetic operations needed if computed independently of each other.
Moreover, in the global construction of two consecutive elements, the number of function
evaluations will be around 2m instead of 3m. Very similar considerations can be done for
the implementation of the compound scheme {7—2}“”( f)}n in (4.13) (Path 2). We conclude
by observing that in the case of the simultaneous approximation of ' (f) and H{’(f), the
compound scheme {IA{,“L’( f)}n in (5.1) requires only 2m evaluations of f for any 4 elements
of the sequence, instead of 6m evaluations necessary when they are computed independently.
As a final remark, we are aware that the proposed procedure is more expensive than other
known methods in the literature (see, for example, the method in [1, 25] based on B-splines
for the computation of the Hilbert transform on R) having complexity O(m log m), but this
higher cost “repays” the fact that we deal with the more general case of weighted transforms,
other than providing a procedure that computes both Hilbert and Hadamard transforms at the
same time.

7. Numerical tests. In this section, we present some numerical examples to test the
accuracy of the developed methods and confirm the theoretical estimates introduced in the
previous sections. In all the considered examples, the exact values of the Hilbert and Hadamard
transforms are unknown, and consequently we assume as exact values the results achieved by
the ordinary product rules (2.12) and (4.5) for m = 1024 fixed. In this context, we compute
the relative errors

€hm+1(f5 1)

gord gord €lma1(fs1)
Hzl (fa )_ Ho (f,t) ’ Had(f7 )_ le
ch Cévn(f’ t) Mz:z: Cﬁn(fa t)
H7l (fv ) W ) Had(f7 ) W‘

More precisely, in the first example we report the relative errors attained at three different
points in the interval (—1, 1), while in the remaining examples we display the maximum
relative errors obtained over a sufficiently dense set I of points in (—1, 1), namely

r ewm (f7 tl) " ewm (f) tz)
ER(f) = max | SmETE L ERRA(F) = max | o

tiel | HE(f ti) tel | HY(f,ta) |
Mizx . CO n(f’ ) Mix _ C%Un(f’ )
i (f) = max Ty (f’ 0 EHad (f) = Itngll Hy (f7 )|

In each test, we compare the results of the introduced mixed schemes (3.6) and (4.13) with
the corresponding sequences based on the ordinary rules (2.12) and (4.5), respectively. All
the computations are performed in double precision using Mathematica 13 software installed
on a MacBook Pro laptop under the MacOS operating system. Moreover, we point out that
the computation of the modified moments was carried out in quadruple precision to overcome
potential instability issues of the recursive schemes based on the three-term recurrence relation
for orthonormal polynomials.

EXAMPLE 7.1. Let us consider the following Hilbert and Hadamard transforms

HE(fo) = ][ (x? +25)7 11 — 22

-1 r—1

dx,
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dx.

b(x2 -V1i-z
Hp(o - f :

D @)

Here f(z) = %% and w(z) = v22(z). Hence, the choice of exponents p = o = -1
guarantees the convergence of both the mixed schemes approximating H{ (f,t) and HY’(f, t)
Tables 7.1 and 7.2 report the relative errors of our product rules for the numerical approximation
of the Hilbert and Hadamard transforms at the points ¢ = 4, 3, 5, respectively. Since the
function f is smooth, machine precision eps is easily reached, in agreement with the theoretical
expectations.

TABLE 7.1
Example 7.1: Relative errors attained for the approximation of Hy (f,t).
m ‘ 2:‘ld(f777) I]yzzlz(fv ) ‘ Ig;rld(.ﬁ 3) g{jl(fv 3) ‘ I(%Tld(f? 5) g[zéz(fa 5)
5 1.13e-04 1.13e-04 2.83e-04 2.83e-04 1.20e-05 1.20e-05
9 1.19¢-08 4.80e-11 2.28e-09 9.44e-12 7.20e-09 1.70e-10
17 eps eps eps eps eps eps
33 eps eps eps eps eps eps
TABLE 7.2

Example 7.1: Relative errors attained for the approximation of HY (f,t).

m | Equg(f, =) Eitai(f,—3) | Ennalfs3)  Enaa(fs3) | Eqaa(f2)  Eiras(f,3)
5 3.37e-04 3.37e-04 6.77e-05 6.77e-05 6.10e-04 6.10e-04
9 2.81e-08 4.06e-10 8.79e-08 2.13e-10 9.36e-08 4.77e-10
17 eps eps eps eps eps eps

33 eps eps eps eps eps eps

EXAMPLE 7.2. Let us consider the following integrals

2=

dzx

1 ez
My = S5 a-at) s,

_1x—t

1 z L
H(f, 1) :][ — & (1-2)" da.

(-t

Table 7.3 displays the maximum relative errors achieved by the ordinary and the mixed

TABLE 7.3
Example 7.2: Maximum relative errors attained for the approximation of H (f,t) and HY (f, ).

m | Egit(f)  ERET(S) | Eqaa(f)  Eifi(f)
5 | 2.13e-02  2.13e-02 | 1.84e-01 1.84e-01
9 | 1.68e-06 1.23e-07 | 7.83e-06 3.32e-07
17 eps eps eps eps
33 eps eps eps eps

sequences over a sufficiently dense set of points in (—1,1). In this case, we have set
p =0 = —7; to guarantee the convergence of both schemes. Even in this case, since
f(z)=¢€" 1s analyt1c machine precision is soon obtained.
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EXAMPLE 7.3. Let us consider the Hilbert and Hadamard transforms

1 _l 1 1
Hgf(f,t)z][_l ‘xx_?t (1—2)3(1+ )5 dr,

1 -1 % 1 1
HY(f 1) =7{1 H(l —2)4(1+ )7 da.

In this case f(z) = |z — & = e Z13 (wep) with w(z) = 015 () and () = v (),
p= —%, o= —% Therefore, by Theorems 3.2 and 4.7, we expect that a larger number of

nodes is required to achieve machine precision. Tables 7.4 and 7.5 display the sequences

TABLE 7.4
Example 7.3: Numerical results attained for the approximation of H (f,0).
m Ordinary Sequence Mixed Scheme
5 -3.463209284706466 | -3.463209284706466
9 -3.542038534516906 | -3.542697359167085
17 | -3.542213963916695 | -3.542213963916695
33 | -3.542213959968340 | -3.542213958262041
65 | -3.542213959998572 | -3.542213959998572
129 | -3.542213959998260 | -3.542213959998261
257 | -3.542213959998261 | -3.542213959998261
513 | -3.542213959998261 | -3.542213959998261
TABLE 7.5
Example 7.3: Numerical results attained for the approximation of HY (f,0).
m Ordinary Sequence Mixed Scheme
5 14.81929011986100 | 14.81929011986100
9 5.035501928348207 | 4.995659780499221
17 | 4.995711526977758 | 4.995711526977758
33 | 4.995713956658255 | 4.995713937864166
65 | 4.995713935556930 | 4.995713935556930
129 | 4.995713936073610 | 4.995713936070872
257 | 4.995713936070761 | 4.995713936070761
513 | 4.995713936070774 | 4.995713936070774

of approximants of H{'(f,t) and HY'(f,t) using the ordinary and mixed rules at the point
t = 0, respectively. We note that in the mixed scheme, at every even step we gain at least
one significant digit more w.r.t. its ordinary counterpart, thanks to the good properties of
the extended rule. This behavior is confirmed by the maximum relative errors reported in
Table 7.6.

8. Conclusions. In this paper, we introduced a mixed scheme of product integration rules
for the simultaneous approximation of weighted Hilbert and Hadamard transforms of a given
function f. This approach allowed us to avoid the computation of the derivatives of the density
function f and to delay the instability of the recurrence relations when evaluating the modified
moments for high values of m. Moreover, using always the same samples of f for both
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TABLE 7.6
Example 7.3: Maximum relative errors attained for the approximation of Hy (f, t) and HY (f,1).

m_| Egit(f)  ENT() | Eqna(f)  Eitai(f)
5 | 6.56e-01 6.56e-01 | 9.44e+01 9.44e+01
9 | 3.46e-03 1.28¢-03 | 9.97e-01 3.55e-01
17 | 1.32e-06 1.32e-06 | 1.42e-04 1.42¢-04
33 | 1.52e-09 1.51e-10 | 1.64e-06 1.71e-07
65 | 6.66e-12 6.66e-12 | 1.11e-09 1.11e-09
129 | 2.80e-14 6.10e-15 | 1.41le-11  5.29¢-12
257 eps eps 1.74e-13  1.74e-13
513 eps eps eps eps

transforms led to a significant reduction in the computing time. Regarding the computational
cost, cheaper methods exist in the literature, and hence our compounded algorithm is more
expensive in terms of required long operations. Nevertheless, this higher cost is justified by
the fact that we explore the more general case of weighted transforms, other than providing a
procedure that computes both Hilbert and Hadamard transforms at the same time.
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