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Abstract. The applicative motivation of this paper is the reconstruction of some electromagnetic features of the
earth superficial layer by measurements taken above the ground. We resort to frequency domain electromagnetic
data inversion through a well-known linear integral model by considering three different collocation methods to
approximate the solution of the continuous problem as a linear combination of linearly independent functions. The
discretization leads to a strongly ill-conditioned linear system. To overcome this difficulty, an iterative regularization
method based on Landweber iterations in Banach spaces is applied to reconstruct solutions which present discontinu-
ities or have a low degree of smoothness. This kind of solutions are common in many imaging applications. Several
numerical experiments show the good performance of the algorithm in comparison to other regularization techniques.
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1. Introduction. We are interested in reconstructing the electrical conductivity profile
of the subsoil as a function of depth by inverting electromagnetic induction (EMI) data.
Frequency domain electromagnetic data (FDEM) is a very useful prospection method in
applied Geophysics, as it provides information about underground conductive materials, like
pollutants, saline water, or unexplored ordnance, by a relatively simple instrumentation.

There exists different mathematical models (linear and nonlinear) to describe the inter-
action between the soil and the electromagnetic field generated by the instrument. A typical
approach is to solve the inverse problem for such models to obtain a physically significant
solution. Here, we focus our attention on the linear integral model first introduced in [35],
which is composed by two Fredholm integral equations of the first kind, each one correspond-
ing to a particular configuration of the measuring device; we refer to Section 2 for a detailed
description of the model.

When dealing with low induction numbers, i.e., low values of the electrical conductivity,
this linear integral model is accurate enough to yield acceptable reconstructions. Quite
recently, some authors have analyzed this model from both the theoretical and the numerical
points of view; see [22, 23]. In [23], the continuous problem has been studied in various
function spaces and three different collocation methods have been proposed to discretize the
problem. After applying a particular procedure to deal with the integral truncation error, an
ill-conditioned linear system was obtained. The resulting systems of equations have different
structures, but there are no significant differences in their conditioning, so some regularization
techniques based on the truncated singular value (TSVD) and the truncated generalized SVD
(TGSVD) decompositions were considered. A different approach was proposed in [22], where
a regularized minimal-norm solution was computed in a reproducing kernel Hilbert space,
under the assumption that boundary constraints are available.
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It is important to note that for high conductivity values, the linear model does not accu-
rately represent the physics of the problem. In such cases, a nonlinear approach is preferable,
as it provides a greater accuracy. Different numerical techniques for the analysis of such
a nonlinear model have been studied in [10, 18, 19, 20, 21, 38, 39], and a Matlab toolbox
implementing the algorithms introduced in the papers has been released [16, 17]. Since the
solution of a nonlinear problem typically reduces to the solution of a sequence of linear
problems, the techniques explored in this paper may be relevant also in the nonlinear setting,
as they would influence the choice of a regularized solution. This will the subject of future
work.

Fredholm integral equations of the first kind are in general ill-posed problems, hence
they lead to strongly ill-conditioned linear systems, so regularization methods are of primary
importance for their solution. A typical regularization technique for this kind of problems
consists of imposing smoothness constraints on the solution. However, this is not always
the best approach in specific applications where sharp interfaces might be present. This may
happen in our problem for a stratified soil or in the presence of buried archaeological remains,
since such scenario would produce a discontinuous distribution of the electrical conductivity.
In these situations, approximating a piecewise constant profile by a smooth solution may
produce inaccurate results or even a misleading outcome. For such situations, it is interesting
to employ regularization methods which promote discontinuities in the solution.

Classical regularization methods in Hilbert spaces are based on the spectral decomposition
of the linear operator to be inverted. The analysis of single eigencomponents gives useful
information about the convergence of the methods and their regularization properties. Anyway,
the spectral-based methods, in general, lead to smooth (and sometimes over-smooth) solutions.
This becomes an important disadvantage in practical applications where a non-smooth behavior
of the solution arises. Indeed, in many geophysical prospection scenarios a smoothly varying
dielectric distribution is rarely encountered, because strong boundaries between essentially
homogeneous but different materials occur.

In order to obtain physically relevant reconstructions of non-smooth solutions for ill-
posed inverse problems, Banach spaces have been considered to introduce and investigate
regularization methods; see [41]. Such spaces are complete vector spaces endowed with a
norm that allows “lengths” and “distances” between its elements to be measured, without an
inner product which induces the norm.

Some of the advantages of these methods are the following: 1) They have geometrical
properties such that the associated solutions are endowed with less over-smoothness. This
results, for instance, in a better localization and restoration of the discontinuities or localized
impulsive signals in imaging applications. 2) They produce sparse solutions, in the sense
that they can be represented by few coefficients in an appropriate basis; see [6, 41]. This is
very useful when dealing with large-scale problems, where sparsity yields low complexity
in computation and storage. We point out that sparsity in Banach spaces is a fast emerging
research field, with a lot of real applications in learning theory and compressed sensing [42, 43].

In this work, attention is focused on the inversion of FDEM data by combining the
different collocation methods discussed in [23] to the regularization techniques in Banach
spaces discussed in [41]. The new results are compared to those obtained in [23] by applying
the TSVD and the TGSVD as regularization methods.

The paper is organized as follows: Section 2 starts with a description of the linear integral
model based on a particular device used to collect FDEM data, while in Section 3 we review
three different collocation methods which lead to the linear system to be solved. In order to
describe the proposed iterative regularization method, a brief introduction to Banach spaces is
provided in Section 4, and Section 5 presents the numerical regularization procedure which
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we propose to apply to the FDEM problem. Numerical examples that show the efficiency of
the whole algorithm are presented in Section 6, and some conclusions and future work are
reported in Section 7.

2. The linear EM model. A well-known device for frequency domain electromagnetic
(FDEM) geophysical prospection is a ground conductivity meter. Its transmitter coil generates
a primary electromagnetic field at a fixed frequency f that propagates in the ground. Con-
ductors present in the under soil, when crossed by the EM field, produce a secondary field
by electromagnetic induction. This field is measured by the receiver coil, placed at a fixed
distance ρ from the transmitter. The coils can be aligned in various positions, here we just
consider vertical (V ) and horizontal (H) magnetic dipoles.

A mathematical model for FDEM prospection was introduced in [35] for the Geonics
EM-38 device (f = 14300Hz, ρ = 1m), assuming a linear dependence between the instrument
response and the region of soil beneath the ground level. The model is composed by two
Fredholm integral equations of the first kind, corresponding to the V - and H-orientations of
the device, respectively. It reads

(2.1)


∫ ∞

0

kV (z + h)σ(z) dz = bV (h),∫ ∞
0

kH(z + h)σ(z) dz = bH(h),

where the kernels kV and kH are defined by

kV (z) =
4z

(4z2 + 1)3/2
, kH(z) = 2− 4z

(4z2 + 1)1/2
,

and σ(z) represents the value of the electrical conductivity, expressed in Siemens/meter (S/m),
at depth zρ below the ground surface. The right-hand sides bV (h) and bH(h) stand for the
readings of the instrument (usually considered as the apparent conductivity of the soil) at
height hρ > 0 above the ground, for the two possible orientations. We remark that the
variables z and h are variables that indicate the depth and height as a multiple of the intercoil
distance ρ.

REMARK 2.1. The linear model prediction is considered reliable when the conductivity
of the area under investigation is relatively low, i.e., σ ' 0.1 S/m. In the case where the
conductivity values are expected to be larger, a nonlinear model is available and has been
studied by many authors; see, e.g., [10, 17, 18, 19, 21, 23].

3. Discretization of the forward problem. Following [23], the forward model is dis-
cretized by expressing the electrical conductivity σ(z) as a linear combination of linearly
independent functions ϕj(z) with coefficients cj , for j = 1, 2, . . ., that is,

(3.1) σ(z) '
∞∑
j=1

cjϕj(z).

A collocation method is employed by evaluating the right-hand sides at different heights
h1, h2, . . . , hm above the ground, so that model (2.1) becomes

(3.2)



∞∑
j=1

cj

∫ ∞
0

kV (z + hi)ϕj(z) dz = bV (hi),

∞∑
j=1

cj

∫ ∞
0

kH(z + hi)ϕj(z) dz = bH(hi),
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for i = 1, . . . ,m.
In [23], a particular truncation of the sums involved in (3.2) was introduced. We report it

here briefly. The integrals appearing in (2.1) are split as follows:∫ ∞
0

kV (h+ z)σ(z) dz =

∫ τ

0

kV (h+ z)σ(z) dz +

∫ ∞
τ

kV (h+ z)σ(z) dz,∫ ∞
0

kH(h+ z)σ(z) dz =

∫ τ

0

kH(h+ z)σ(z) dz +

∫ ∞
τ

kH(h+ z)σ(z) dz,

for some τ > 0. Moreover, the kernels kV and kH are continuous and integrable functions,

kV (z) =
d

dz

(
− 1√

4z2 + 1

)
, kH(z) =

d

dz

(
2z −

√
4z2 + 1

)
.

They are known as sensitivity functions, since they reflect the relative contribution of the
electrical conductivity to the secondary EM field at depth zρ. Indeed, in the V -orientation,
the device is most sensitive around z =

√
2/4, while in the H-orientation, it is most sensitive

near the surface and the sensitivity rapidly decays for increasing depth.
Assuming σ(z) ≤ C, for z ≥ z̃, where z̃ is either 0 or a rough underestimate of τ , we

have the following upper bound for the equations:∫ ∞
τ

kV (h+ z)σ(z) dz ≤ C
∫ ∞
τ

kV (h+ z) dz = CRV (h),∫ ∞
τ

kH(h+ z)σ(z) dz ≤ C
∫ ∞
τ

kH(h+ z) dz = CRH(h),

with

RV (h) =
1√

4(h+ τ)2 + 1
, RH(h) =

√
4(h+ τ)2 + 1− 2(h+ τ).

By requiring that both quantities are smaller than a given tolerance ε for any h ≥ 0, we obtain
that the truncation parameter τ must be chosen larger than C(2ε)−1. The bound C may often
be estimated by a priori information on the composition of deep layers of the undersoil under
scrutiny.

On the one hand, physical considerations suggest that the sensitivity of the measuring
device is limited to the depth range [0, aρ], with a ' 3–4, so taking τ � a would lead to an
unnecessarily large linear system. On the other hand, once τ is chosen, the series in (3.2) can
be truncated to a finite number of terms, corresponding to writing the conductivity as

(3.3) σ(z) '
n∑
j=1

cjϕj(z).

So τ and n will be related through the localization of the basis elements ϕj .
Thus, the above discussed discretization leads to the linear system

(3.4) Fc = g,

where F ∈ R2m×n has entries

(3.5) fij =


∫ τ

0

kV (z + hi)ϕj(z) dz, i = 1, . . . ,m,∫ τ

0

kH(z + hi−m)ϕj(z) dz, i = m+ 1, . . . , 2m,
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with j = 1, . . . , n, and the components of g ∈ R2m are given by

gi =

{
bV (hi)− CRV (hi), i = 1, . . . ,m,

bH(hi−m)− CRH(hi−m), i = m+ 1, . . . , 2m.

By solving (3.4), one obtains the coefficient vector c = (c1, . . . , cn)T needed to construct the
numerical approximation (3.1) of the solution.

We remark here that problem (2.1), being composed by Fredholm integral equations of
the first kind, leads to an ill-posed problem in the sense of Hadamard [28], namely, a problem
that may have no solutions in a desired class, may admit infinitely many solutions, or is such
that a small perturbation in the data may lead to arbitrarily large errors in the solution; this
point has been discussed in [23], where conditions for well-posedness have been described.

This fact makes system (3.4) severely ill-conditioned. It is then necessary to resort to
suitable regularization techniques to solve it with a reasonable accuracy. In this paper we
propose an iterative regularization method in Banach spaces; see Section 5.

In [23], three different choices for the functions ϕj have been analyzed to approximate
the solution. In the following, we briefly review the corresponding collocation procedures
which lead to the construction of the coefficient matrix F in (3.4).

3.1. Piecewise constant functions. As a first choice, we use piecewise constant functions,
or B-splines of order 1, (see [15, 30]) for the approximation of the solution in (3.1), that is,

(3.6) ϕj(z) =

{
1, zj−1 ≤ z < zj ,

0, otherwise,

with j = 1, . . . , n, so that z0 = 0 and zn = τ .
By replacing (3.3) in (2.1) and collocating each equation at different measurements

heights hi, i = 1, . . . ,m, we obtain system (3.2) with a finite number n of terms in the sums.
From definitions (3.5) and (3.6), an explicit form for the entries of F in the system (3.4) can
be found. They are reported in [23, Section 3.1].

REMARK 3.1. Note that the exact solution vector of both equations in the system (2.1)
is the same. So, one may think of solving the linear system corresponding to only one
orientation of the device. We stress that, given the ill-conditioning of the system and the
presence of experimental errors in the right-hand side, solving the overdetermined linear
system corresponding to both orientations in the least-squares sense generally gives more
accurate results, as it uses the largest amount of available information to solve the inverse
problem.

3.2. Linear splines. In this case, in the approximation (3.3) we use linear splines, i.e.,
B-splines of order 2 [15, 30], in the form

ϕ0(z) =


1

δ1
(z1 − z), z0 ≤ z < z1,

0, otherwise,

and

ϕj(z) =



1

δj
(z − zj−1), zj−1 ≤ z < zj ,

1

δj+1
(zj+1 − z), zj ≤ z < zj+1,

0, otherwise,
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for j = 1, 2, . . . , n, with δj = zj − zj−1.
Following the same procedure as in Section 3.1, closed formulae for the entries of the

linear system were obtained in [23, Section 3.2].
REMARK 3.2. In the case of a uniformly spaced discretization, it is easy to see that, in

this case and in the previous one, the coefficient matrix F is composed of two blocks that are
Hankel matrices, except for their first columns; see [23].

3.3. Bernstein polynomials. The third collocation scheme is based on Bernstein polyno-
mials. By introducing the change of variable z = τy in (2.1), the integrand is approximated
by a Bernstein polynomial

kV,H(τy + h)σ(τy) =

n∑
j=0

kV,H(τyj + h)σ(τyj) pnj(y),

where yj = zj/τ , j = 0, 1, . . . , n, and

pnj(z) =

(
n

j

)
zj(1− z)n−j .

Collocating the resulting equation at the heights hi, i = 1, . . . ,m, the analytic expression of
the entries of the matrix F in (3.4) is easily found. A detailed description can be found in [23].

4. Mathematics background of Banach spaces. Before discussing an iterative method
for solving problem (3.4), we first sketch basic tools and notations of regularization in Banach
spaces, including duality mappings and Bregman distances [13, 34, 41].

Let X and Y be two real Banach spaces, that is, two normed vector spaces that are
complete with respect to the metric induced by each corresponding norm. We recall that,
differently from Hilbert spaces, no scalar product is in general defined in a Banach space,
so that the conventional concepts of “angle” and “orthogonality” between elements are not
defined. As usual X ∗ denotes the dual space of X , that is, the Banach space of all bounded
linear functionals x∗ : X −→ R, equipped with the norm [8]

‖x∗‖X∗ = sup
‖x‖=1

|x∗(x)|.

Throughout the paper, we omit subscripts indicating the space when implicitly clear.
For any x∗ ∈ X ∗ and x ∈ X , both the duality pairings 〈x∗, x〉 and 〈x, x∗〉 represent the

action of the linear functional x∗ on the element x, that is

〈x∗, x〉X∗×X = 〈x, x∗〉X×X∗ = x∗(x) ∈ R.

Let A : X −→ Y be a continuous linear operator. As usual, A∗ : Y∗ −→ X ∗ denotes its
adjoint operator, that is, by using duality pairing notation, the linear operator such that

〈Ax, y∗〉 = 〈x,A∗y∗〉, ∀x ∈ X and ∀y∗ ∈ Y∗,

or equivalently, such that y∗(Ax) = [A∗y∗](x). Moreover, it holds ‖A‖ = ‖A∗‖ in each
corresponding operator norm. We remark that the adjoint operator A∗ is a map between
the dual spaces Y∗ and X ∗, that is, A∗ maps linear operators into linear operators. This
definition of adjoint operator in Banach spaces is the most general one, and the usual definition
in an Hilbert setting is just a particular simplified case. Given a continuous and linear
operator A : H1 −→ H2 between two Hilbert spaces H1 and H2, A∗ is the Hermitian
operator (or conjugate transpose operator, in finite dimensions) A∗ : H2 −→ H1. Thanks
to the isometric isomorphism based on the Riesz representation theorem [44], one can write
A∗ : H∗2 ∼= H2 −→ H∗1 ∼= H1, which falls under the scope of the previous general definition.
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4.1. Duality mappings and the geometry of Banach spaces. The key tool for extending
regularization methods to Banach spaces is the so-called duality map [2, 29, 36]. A duality
map associates an element of a Banach space X to an element (or a subset of elements) of its
dual X ∗. If X is a non-Hilbertian Banach space, X is not isometrically isomorphic to its dual
X ∗, and the duality map is hence necessary. Formally, we have the following definition.

DEFINITION 4.1. The (set-valued) mapping JXr : X −→ 2X
∗
, with r > 1, defined by

JXr (x) =
{
x∗ ∈ X ∗ : 〈x∗, x〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖r−1

}
, ∀x ∈ X ,

is called duality map of X with gauge function t 7−→ tr−1.
Duality mappings can be better understood by considering the subdifferential of the

norm. We first recall that, given a (nonlinear) functional f : X −→ R ∪ {+∞}, then a linear
functional x̃ ∈ X ∗ is a subgradient of f at x ∈ X if and only if

(4.1) f(z) ≥ f(x) + 〈x̃, z − x〉, ∀z ∈ X .

The subdifferential of f is the set-valued map ∂f : X −→ 2X
∗

that associates an element
x ∈ X with the set of all the subgradients of f at x, i.e. the set contained in X ∗, of linear
functionals that satisfy (4.1). The subdifferential ∂f(x) consists only of one element if and
only if the functional f is differentiable at x, i.e. ∂f(x) ∈ X ∗ with a slight abuse of notation.

The classical Definition 4.1 lacks of practical intuition. The following important theorem
links the concept of duality maps to the convex optimization tool of subdifferentials, giving a
more simple and heuristic meaning to duality maps in terms of subdifferentials of the norm.

THEOREM 4.2 (see Asplund [3]). Let X be a Banach space and r > 1. Then, the duality
map JXr in Definition 4.1 is the subdifferential of the convex functional r-power norm of X ,
that is,

(4.2) JXr (x) = ∂

(
1

r
‖ · ‖r

)
(x), ∀x ∈ X .

Asplund’s Theorem suggests a practical way to compute duality maps, as the set of
subgradients of the r-power of the norm, not evident from Definition 4.1.

We highlight that only in a Hilbert spaceH and only for r = 2, the duality map reduces
to the identity operator, up to canonical isometric isomorphisms, so that with another slight
abuse of notation we can write JH2 (h) = ∂

(
1
2‖ · ‖

2
H
)

(h) = h for all h ∈ H. Moreover, by
Definition 4.1, we notice that 〈x∗, x〉 = ‖x‖r for any x∗ ∈ JXr (x), which is formally similar
to the identity 〈h, h〉 = ‖h‖2, involving the scalar product in a Hilbert space, for r = 2.

The duality map JXr is single-valued if and only if the Banach space X is smooth.
Moreover, ifX is also reflexive and strictly convex, thenX ∗ is smooth and JXr is invertible [40].
In this case, its inverse map is given by (JXr )−1 = JX

∗

r∗ , where JX
∗

r∗ is the duality map of the
dual space X ∗ with gauge function t 7→ tr

∗−1, being r∗ the Hölder conjugate of r, that is,
1
r + 1

r∗ = 1 or, equivalently, such that r + r∗ = rr∗.

4.2. Dual spaces and duality maps of Lebesgue spaces Lp. In this work, we just
consider the Lebesgue space Lp(Ω) of real functions, with 1 ≤ p < +∞ and Ω ⊆ Rn
a measurable set. Recall that Lp(Ω) is the Banach space composed by all the measurable

functions x : Ω −→ R such that ‖x‖p =
(∫

Ω
|x(t)|p dt

) 1
p < +∞, where ‖x‖p denotes its

norm.
For p > 1, let q > 1 be its Hölder conjugate. The Hölder inequality for Lebesgue spaces

states that, if xp ∈ Lp(Ω) and xq ∈ Lq(Ω), then the product function xpxq is absolutely
integrable, that is xpxq ∈ L1(Ω), and ‖xpxq‖1 ≤ ‖xp‖p‖xq‖q. The special case p = q = 2
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corresponds to the Cauchy-Schwarz inequality, being L2(Ω) a Hilbert space with scalar
product 〈x, z〉 =

∫
Ω
x(t)z(t) dt. The Hölder inequality is the key tool for proving that the

norm of Lp(Ω) can be equivalently computed as

(4.3) ‖x‖p = sup
g∈Lq(Ω),‖g‖q≤1

∫
Ω

|g(t)||x(t)| dt,

which allows to obtain many relations between Lp(Ω) and its dual space (Lp(Ω))
∗. Among

them, the isometric isomorphism of (Lp(Ω))
∗ and Lq(Ω) is crucial in devising regularization

algorithms [41]. More specifically, by basic functional analysis results, we know that for
any linear functional G ∈ (Lp(Ω))∗ there exists a unique function g ∈ Lq(Ω), called the
“representative”, such that

(4.4) G(x) =

∫
Ω

g(t)x(t) dt, ∀x ∈ Lp(Ω),

thus we can denote unambiguously G as Gg, with g ∈ Lq(Ω), and consider the injective
mapping Gg ∈ (Lp(Ω))∗ 7−→ g ∈ Lq(Ω). Notice that, thanks to (4.3),

(4.5) ‖Gg‖(Lp(Ω))∗ = sup
x∈Lp(Ω),‖x‖p≤1

|Gg(x)|= sup
x∈Lp(Ω),‖x‖p≤1

∫
Ω

|g(t)||x(t)| dt = ‖g‖q,

so that the representative function g has finite norm if and only if the linear operator Gg is
bounded, with equal corresponding norms. By the linearity of the integral w.r.t. the integrand,
there exists an isometric isomorphism between (Lp(Ω))∗ and Lq(Ω), for any 1 < p < +∞,
referred to as canonical isomorphism. Thanks to it, we can implicitly identify any linear
functional Gg ∈ (Lp(Ω))∗ with its associated representative function g ∈ Lq(Ω).

The space Lp(Ω) is smooth if and only if p > 1, hence its duality map JL
p(Ω)

r is a
single-valued function for every r ∈ (1,+∞). By Asplund’s Theorem 4.2, the duality map
J
Lp(Ω)
r = Jpr is directly computed. Thanks to the canonical isomorphism, it can be written as

(4.6) Jpr (x) = ‖x‖r−pp |x|p−1 sign(x) ∈ Lq(Ω), ∀x ∈ Lp(Ω),

instead of 〈Jpr (x), h〉=
∫

Ω
‖x‖r−pp |x(t)|p−1sign(x(t))h(t)dt, so that Jpr (x)=Gg ∈(Lp(Ω))∗

is written by means of its representative g = ‖x‖r−pp |x|p−1 sign(x) ∈ Lq(Ω), according
to (4.4), with an implicit use of the canonical isometric isomorphism (4.5). In particular, in the
Hilbert space L2(Ω), equation (4.6) shows that J2

2 reduces to the identity operator. We remark
that the key parameter of Jpr is p, which identifies the specific Banach space Lp, whereas r,
which identifies the power of the norm functional, acts basically as scaling factor for all the
components.

The discrete analogue ofLp(Ω) is `p, the Banach space composed by all the real sequences
x : N −→ R such that ‖x‖pp =

∑
i |xi|p < +∞, where ‖x‖p denotes its norm. The duality

map of x = (xn)n∈N ∈ `p with the gauge function t 7→ tr−1 is denoted again as Jpr (x), and
by means of the corresponding isometric isomorphisms between (`p)∗ and `q , it is written as

Jpr (x) =
(
‖x‖r−pp |xn|p−1 sign(xn)

)
n∈N ∈ `

q,

with a straightforward analogy with the continuous case (4.6) of Lp(Ω) [41].

4.3. The Bregman distance. It is known that the Bregman distance, due to the geo-
metrical properties of Banach spaces, is more appropriate for measuring the distance be-
tween two elements x and z instead of more conventional norm distances like ‖x− z‖r; see
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e.g., [11, 12, 27]. The Bregman distance from a point x ∈ X associated to a convex functional
f : X −→ R is defined as the difference between the functional evaluated at x and its linear
approximation around x, as follows:

DEFINITION 4.3 (see [7]). Let f : X −→ R be a convex and differentiable functional on
a Banach space X . Then, the Bregman distance ∆f : X × X −→ R of f between x ∈ X
and z ∈ X is defined as

∆f (x, z) = f(z)− f(x)− f ′(x)(z − x),

where f ′(x) : X −→ R is the differential of f at the point x.
The role of a Bregman distance is similar to the role of any metric. However, a Bregman

distance does not satisfy, in general, the triangle inequality nor symmetry. Moreover, the
Bregman distance is a generalization of the classical square norm distance in Hilbertian
contexts. Indeed, ifH is a Hilbert space, then for f(x) = 1

2‖x‖
2
H, the Bregman distance ∆f ,

now denoted as ∆2, reduces to the conventional squared norm distance:

∆2(x, z) =
1

2
‖x− z‖2H.

This can be explicitly and straightforwardly computed in the Lebesgue space L2.
In any Banach space X , by virtue of Asplund’s Theorem 4.2, the Bregman distance ∆f

for f(x) = 1
r‖x‖

r with r > 1, now denoted as ∆r, can be written as

(4.7) ∆r(x, z) =
1

r
‖x‖r − 1

r
‖z‖r − 〈JXr (z), x− z〉, ∀x, z ∈ X ,

where we implicitly consider a single-valued selection of JXr . If X is smooth and uniformly
convex, as Lp spaces with p > 1 where the iterative method in the next section is defined, for
any x, y the Bregman distance ∆r(x, y), with r > 1, is continuous, always nonnegative, and
null if and only if x = y. In addition, lim

n→+∞
‖xn−x‖ = 0 if and only if lim

n→+∞
∆r(x, xn) = 0,

which explains a kind of equivalence between Bregman and norm distances.

5. Iterative regularization in Banach spaces. In this section, we study iterative regular-
ization algorithms in Banach spaces for the solution of the functional equation

(5.1) Ax = y,

where A : X −→ Y is a continuous and linear operator between two Banach spaces X and Y ,
with given data y ∈ Y and unknown x ∈ X . In particular, we consider the Landweber dual
method [40] that is used in this paper to solve the FDEM inverse problem (3.4).

5.1. The Landweber method in Hilbert spaces. In this section, for the sake of simplic-
ity, before discussing the iterative regularization in Banach spaces, we briefly start dealing
with the basic Hilbertian case, that is, X and Y are both Hilbert spaces, which are always
smooth and uniformly convex. By virtue of Riesz’s theorem, which allows to identify a Hilbert
space with its dual up to the canonical isometric isomorphisms as sketched in Section 4, the
simplest iterative regularization algorithm for solving (5.1) is the descent method

(5.2) xk+1 = xk − αk∇f(xk),

where αk > 0 is a proper step size. Scheme (5.2) is applied for the minimization of the
least-squares residual functional f : X −→ R defined as

(5.3) f(x) =
1

2
‖Ax− y‖2Y ,
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associated to the solution of the linear equation (5.1). The gradient ∇f(xk) ∈ X is the
element such that [∂f(xk)](x) = 〈∇f(xk), x〉, so that ∇f(xk) ∈ X is the representative of
the (sub)differential ∂f(xk) ∈ X ∗. We remark that, even if the function is smooth, we use the
notation of the (sub)differential, since it allows us to distinguish between the (sub)differential,
element of the dual space, and its representative element of the primal space. In addition, by a
simple application of the chain rule to the (sub)differentiation of the 2-power residual (5.3),
taking into account the subdifferential of the squared norm in Hilbert spaces, we have

∇f(x) =

((
∂

(
1

2
‖ · ‖2Y

)∣∣∣∣
Ax−y

)∗
∂(Ax− y)

)∗
= ((Ax− y)∗A)

∗
= A∗(Ax− y),

(5.4)

where the superscript ∗ denotes the adjunction of linear operators, and the canonical isomor-
phism between X and X∗ is implicitly used.

Iteration (5.2), when coupled to an efficient stopping criterion can be referred to as implicit
regularization. In fact, the iteration number acts as a regularization parameter, according to
the semi-convergence property [4], without any explicit regularization penalty term. Since the
residual functional f is convex and differentiable, with∇f(xk) = A∗(Axk − y), (5.2) leads,
for any initial guess x0 ∈ X and fixed step length αk ≡ α ∈ (0, 2/‖A‖2), to the well-known
Landweber algorithm

(5.5) xk+1 = xk − αA∗(Axk − y),

which guarantees convergence to the minimum norm least-square solution x̃ ⊥ N(A) for
noiseless data [40]. Moreover, by considering the first-order condition∇f(xk) = 0, that is,
the normal equation A∗Ax = A∗y, the algorithm can be interpreted as a fixed point iterative
method for the operator P : X −→ X defined by P (x) = x− α(A∗(Ax− y)) [9].

It is useful to notice that iteration (5.5) can be written as

(5.6)

xk+1 = arg min
x∈X

1

2
‖x−

(
xk − α∇f(xk)

)
‖2X

= arg min
x∈X

{
1

2
‖x− xk‖2X + α〈∇f(xk), x〉

}
,

where 〈·, ·〉 denotes the scalar product of X . The latter minimization problem is well defined,
since the argument is coercive, being the sum of a quadratic functional and a linear one. Hence,
since the two terms are convex and differentiable, by first order stationary conditions we have
that (5.6) is equivalent to

∇
(

1

2
‖ · −xk‖2X + α〈∇f(xk), ·〉

)
(xk+1) = 0.

Formally, the minimization problem (5.6) can be recast in the framework of the theory of
proximal operators [37]. Let us define, for a fixed x′ ∈ X and a continuously differentiable
functional g, the proximal operator prox

∇g
: X −→ X as

(5.7) prox
∇g

(x′) = arg min
x∈X

{
1

2
‖x− x′‖2X + 〈∇g(x′), x〉

}
.

Then, the Landweber method (5.5) can be compactly written as

(5.8) xk+1 = prox
α∇f

(xk),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

FDEM INVERSION IN BANACH SPACES 183

by virtue of (5.2) and (5.6). The scheme (5.8) heuristically shows that the iteration
xk+1 ∈ X of (5.5) corresponds to the computation of a point which decreases 〈∇f(xk), x〉
and simultaneously is close (i.e., proximal) to the previous iteration xk ∈ X . The step size
α can be here thought of as a weight which balances between the two terms that are to be
simultaneously decreased, 1

2‖x− xk‖
2
X and 〈∇f(xk), x〉.

5.2. The Landweber method in Banach spaces. In [40], a generalization of the Landwe-
ber method to non-Hilbertian Banach spaces was first proposed under the hypothesis that X
is smooth and uniformly convex. In the following, to simplify the notation, we will consider
also Y to be a smooth Banach space. Such a generalization is not straightforward, because a
Banach space is not necessarily isomorphic to its dual, so that the iteration formula (5.5) is not
even formally consistent, since A∗ : Y∗ −→ X ∗ cannot be applied to Axk − y ∈ Y 6= Y∗, as
well as xk ∈ X cannot summed to ∂f(xk) ∈ X ∗ 6= X ; see [9].

As already sketched in Section 4.1, the key tool for consistency are the so-called duality
mappings, which allow generalizing the Landweber algorithm from Hilbert to Banach spaces.
Indeed, JYp (Axk − y) ∈ Y∗ can be an argument of the operator A∗, as well as JXr (xk) ∈ X ∗
can be summed to its result. On this formal ground, for fixed parameters p, r > 1, the
Landweber iteration scheme for the solution of (5.1) in smooth, reflexive and strictly convex
Banach spaces X and Y reads as

x∗k+1 = xk
∗ − αkA∗JYp (Axk − y),(5.9)

xk+1 = JX
∗

r∗ (x∗k+1),(5.10)

where αk > 0 is a proper variable step length and r∗ is the Hölder conjugate of r [40].
Chosen an initial guess x0 ∈ X (e.g., the null vector x0 = 0 ∈ X ), the iteration starts with
x∗0 = JXr (x0) ∈ X ∗. Since xk∗ = JXr (xk), the scheme (5.9)–(5.10) can be also written as a
single equation as follows

xk+1 = JX
∗

r∗
(
JXr (xk)− αkA∗JYp (Axk − y)

)
.(5.11)

By analogy, we notice that the descent step of the Hilbertian method (5.5) is now per-
formed in the dual space X ∗, since both xk∗ and A∗JYp (Axk − y) of (5.9) belong to X ∗.
Hence, this algorithm is also referred to as Landweber dual method for the minimization of
the p-power residual functional

(5.12) f(x) =
1

p
‖Ax− y‖pY .

It is worth noting that, similarly to (5.4),

∂f(x) =

((
∂

(
1

p
‖ · ‖pY

)∣∣∣∣
Ax−y

)∗
∂(Ax− y)

)∗
=
((
JYp (Ax− y)

)∗
A
)∗

= A∗JYp (Ax− y),

(5.13)

where now ∂f : X → X ∗ with ∂f(x) ∈ X ∗ is not isometrically isomorphic to any element of
the primal space X , but it really is an element of the dual, hence the need of duality maps in
the definition of (5.11). Moreover, this shows that the iterative step (5.9) is again a gradient
method, now written as

x∗k+1 = xk
∗ − αk∂f(xk)
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and computed in the dual space X ∗, with a strong analogy with the iterative step (5.2) of the
Hilbert setting, though computed in the primal space X in that case. Moreover, the role of the
duality map JYp in (5.9) is clear, as inner derivative of 1

p‖ · ‖
p
Y for the computation of ∂f(x).

We report the following result of [5], which also explains the role of the duality map JX
∗

r∗

of (5.10).
PROPOSITION 5.1 ([5]). Let X and Y be two smooth, reflexive, and uniformly convex

Banach spaces. Then, for p, r > 1, the Landweber iterative step (5.9) in Banach spaces

xk+1 = JX
∗

r∗
(
xk
∗ − αkA∗JYp (Axk − y)

)
,

for the iterative solution of the ill-posed linear equation Ax = y, corresponds to the solution
of the following minimization problem

xk+1 = arg min
x∈X

{
∆Xr (x, xk) + αk〈∂f(xk), x〉

}
where f : X −→ R is the functional f(x) = 1

p‖Ax − y‖
p
Y and ∆Xr denotes the Bregman

distance (4.7) of X .
Proof. Following (5.6), by using the Bregman distance ∆Xr of X instead of the norm

distance, we can write

xk+1 = arg min
x∈X

{
∆Xr (x, xk) + αk〈∂f(xk), x〉

}
= arg min

x∈X

{
1

r
‖x‖rX +

1

r∗
‖xk‖rX −

〈
JXr (xk), x

〉
+ αk 〈∂f(xk), x〉

}
.

Since the functional to minimize is convex, differentiable, and coercive, the minimum point
xk+1 is also a stationary point, hence

∂

(
1

r
‖ · ‖rX +

1

r∗
‖xk‖rX −

〈
JXr (xk), ·

〉
+ αk 〈∂f(xk), ·〉

)
(xk+1) = 0.

By considering the Asplund equivalence (4.2) for the first term, since the second term is
constant and the last two terms are linear, the latter equality leads to the following iterative
gradient-type iteration

JXr (xk+1)− JXr (xk) + αk∂f(xk) = 0,

which can be written as

xk+1 = JX
∗

r∗
(
JXr (xk)− αk∂f(xk)

)
.

Taking into account (5.13) for ∂f(xk), this is exactly the Landweber dual method in a Banach
space (5.11) for the minimization of the p-power residual functional (5.12).

The previous proposition follows the rationale of (5.7), which shows that the Hilbert
iteration (5.2) can be written as a conventional proximal step. Using the theory and rationales
of Banach spaces, Proposition 5.1 allows us to write the Landweber iterative step (5.9)–(5.10)
in Banach spaces as a proximal step with Bregman distance (4.7) as proximity measure in X .
More precisely, for a fixed x′ ∈ X and given a continuously differentiable functional g, by

defining the Bregman-proximal operator
∆Xr

prox
∂g

: X −→ X as

∆Xr
prox
∂g

(x′) = arg min
x∈X

(
∆Xr (x, x′) + 〈∂g(x′), x〉

)
,
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the basic iteration (5.9) reduces to

xk+1 =
∆Xr

prox
αk∂f

(xk),

which gives another useful interpretation of the Landweber dual algorithm in the context
of convex optimization. As a final comment, we mention that in [9], the Landweber dual
algorithm is shown to be a nonlinear version of well-known iterative projection algorithms for
linear systems, such as the ART (Algebraic Reconstruction Technique) and DROP (Diagonally
Relaxed Orthogonal Projection) methods [25].

6. Numerical tests. In this section, we study the accuracy of the regularization method
of Section 5.2, namely, the dual Landweber method in Banach spaces, when recovering
the electrical conductivity of the soil through the model (2.1), by solving (3.4). The goal
of our numerical experiments is to illustrate the advantages deriving from a Banach space
setting, in comparison to the numerical regularization methods used in [23] for the same
problem of interest. In [23], the authors adopted the Truncated (Generalized) Singular Value
Decomposition (T(G)SVD) as a regularization technique for (3.4). We refer the reader
to [18, 19, 21, 23] for an overview of these methods applied to geophysical problems. In
particular, as previously stated in Section 1, Banach spaces are known to better promote
the presence of discontinuities in the sought solution, hence we expect to observe some
improvements with respect to the TGSVD reconstructions of discontinuous distribution of the
electrical conductivity. To this aim, we consider the following discontinuous piecewise signal
as ground truth for the electrical conductivity of the soil

σ(z) =


0.2, z ∈ (0, 0.5),

2, z ∈ [0.5, 1.5],

0.2, z ∈ (1.5,∞).

Then, using the notation of Section 3 we set m = 20 and n = 500. These values correspond
to the following experimental set up: the measurements are collected at heights hi = 2i

m ,
for i = 1, . . . ,m, starting from the ground level up to 2 meters above the ground. The
underground soil is discretized in the interval [0, τ ], with 0 corresponding to the ground level
and τ to the underground level at depth τρ (where ρ is the intercoil distance measured in
meters), as {zk}nk=0 (i.e., z0 = 0 and zn = τ ), with τ = 30 in our simulations. We sample
the ground truth σ(z) in a vector σ ∈ Rn, so that σk = σ(zk), and generate a synthetic data
set for each collocation method described in Section 3 by computing the exact right-hand side
g = Fσ, where F is the coefficient matrix corresponding to each method. Then, we consider
a low noise regime and add additive white Gaussian noise (AWGN), with standard deviation
equal to 0.005 to the noise-free data g. The generated noisy acquisitions are displayed by the
blue curve in Figure 6.1. In orange, background signals are reported, as better clarified in the
following Section 6.1.

As a first step, we compute the solution of the discretized inverse problem (3.4), obtained
using the three collocation methods described, respectively, in Sections 3.1, 3.2, and 3.3, using
the dual Landweber method and the TGSVD regularization.

The GSVD approach is based on the generalized singular value decomposition [26] of
the matrix pair (A,L), in the form

A = UΣAZ
−1, L = V ΣLZ

−1,

where the matricesU and V are orthogonal, ΣA and ΣL are diagonal, andZ is square invertible.
We have used as a regularization operator L the discrete approximation of the first derivative.
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FIG. 6.1. Acquired noisy signals (blue) and background signals (orange, see Section 6.1.) corresponding to the
three collocations methods with an AWGN with standard deviation 0.005.

The minimizer of the least-squares residual ‖Fc− g‖2 (see system (3.4)), characterized by
the minimal semi-norm ‖Lc‖2, is then expressed in terms of the factorization of A, and a
regularized solution is obtained by truncating the representation to remove high-frequency
components, corresponding to small diagonal entries of ΣA; see [23] for details. In TGSVD,
the truncation parameter plays the role of a regularization parameter. In our numerical tests,
we choose the best possible value for it, i.e., the one which minimizes the 2-norm of the error.
The aim is to show the best results that the method can produce.

For the Landweber method in Banach spaces, we have considered the Lebesgue spaces
Y = Lp(Rm) and X = Lp(Rn) as acquisition and solution spaces, respectively, with p = 1.3
in both cases, and also as parameters of the duality mappings; see Section 6.4 for the choice of
p. Hence, in this setting, the iterative scheme defined by (5.9) and (5.10) reads as

c∗k+1 = c∗k − αkF ∗Jpp (Fck − g), ck+1 = Jp
∗

p∗ (c∗k+1).

The obtained results are reported in Figure 6.2. We observe that the Landweber method
in Banach spaces estimates the height of the peak present in the signal significantly better
than the TGSVD method. However, since working in Lebesgue spaces Lp with exponent p
close to 1 enforces sparsity in the signal, we observe that the Landweber method is not able to
reconstruct the non-zero constant background that is present in the conductivity ground truth
signal. Indeed, after well approximating the peak, the reconstructed signals then go to zero in
the deeper area of the inspected domain.

The previous test highlights the need of explicitly considering the background in the
model. Hence, we propose to solve by the Landweber method the following minimization
problem:

(6.1) c̄ = arg min
c∈Lp

1

p
‖F (c + b)− g‖pp ,

where b is the background vector chosen as described in the next section. The final recon-
structed signal is obtained as c̄ + b.

6.1. Landweber method in Banach spaces with background estimation. In our simu-
lated setting, let us initially assume that the constant value of the background signal is exactly
known to be 0.2. Hence, we repeat the previous test using a spatially constant background
equal to the true value, that is, we set b = 0.2 · (1, . . . , 1)T .
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FIG. 6.2. Reconstructions of the ground truth signal obtained with TGSVD regularization (green plots) and
with Landweber method in Lp with p = 1.3 (red plots), with respect to the three considered collocations methods.
On the left, plot of the signals on the whole interval [0, τ ] with τ = 30. On the right, zoom on the interval [0, 4].

The results are reported in Figure 6.3. It appears evident that the peak in the signal is
better identified by the Banach Landweber method, which now also reaches a better accuracy
in the reconstruction of the deep piecewise constant region, thanks to the introduction of the
background in the model. However, the exact value of the background is usually not known.
Hence, it is necessary to estimate it separately.

In order to obtain an estimate of the background to plug in (6.1), we assume to be able
to obtain measurements taken in correspondence of regions where the soil conductivity is
known to be constant. We point out here that the choice of constant values for the conductivity
in every layer comes from the possible presence of very conductive materials in resistive
mediums producing discontinuous distributions, which is present in real-world applications.
In order to simulate the background measurements, given the background constant ground
truth signal defined by σb(z) = 0.2, we repeat the same procedure described above to obtain
measurements of the background, displayed in orange in Figure 6.1, for each collocation
method described in Section 3: that is, we discretize σb as b = 0.2 · (1, . . . , 1)T , and then for
each collocation method we simulate the background measurements as gb = Fb, where F is
the coefficient matrix corresponding to each method. Then, an estimate best of the background
signal b is obtained using the TGSVD regularization method, in the three configurations
presented, to solve gb = Fb. The results are shown in Figure 6.4.

To obtain an estimate of the ground truth conductivity signal, we apply the Landweber
method in Banach spaces to (6.1), using the background best estimated in the previous step
with the corresponding collocation method. We observe in Figure 6.5 that the estimation of
the background does not compromise the accuracy of the Banach Landweber reconstructions,
which are really similar to the previous ones of Figure 6.3 obtained using the exact background
value.

The observation that some information on the background can improve the quality of
numerical results is relevant from the applicative point of view. It should be kept in account
when measuring data in the field. For example, when detecting the presence of pollutants in
agricultural land, EMI measurements should be repeated in a soil presumed free of pollution
to obtain an estimate of the background conductivity.
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FIG. 6.3. Reconstructions of the ground truth signal obtained by TGSVD regularization (green plots) and by
the Landweber method in Lp with p = 1.3 (red plots), with background estimated as b = 0.2 · (1, . . . , 1)T , with
respect to the three collocations methods considered. On the left, plot of the signals on the whole interval [0, τ ] with
τ = 30. On the right, zoom on the interval [0, 4].
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FIG. 6.4. Reconstruction of the background signal obtained by TGSVD regularization methods with respect to
the three collocation methods considered.

6.2. Landweber method in Lebesgue spaces with variable exponent. We now consider
as Banach spaces the unconventional Lebesgue spacesLp(·) with variable exponent, thoroughly
studied in [14, 24]. These spaces, as the name suggests, are defined in terms of a spatially
variable exponent, that is point-wise varying. They are particularly suited to enforce spatially
variant regularization thanks to the intrinsic flexibility given by the variable exponent. Here,
we consider X = LpX (·)(Rn) with variable exponent pX = (pkX )k=1,...,n as solution space
and Y = LpY(·)(Rm) with variable exponent pY = (piY)i=1,...,m as measurement space.
The variable exponent pY is obtained by linearly interpolating the acquired data g between
(pY)− = 1.1 and (pY)+ = 1.4, whilst the exponent pX is obtained with linear interpolation
between (pX )− = 1.1 and (pX )+ = 1.4 of the back-projected measured data F ∗g. For further
details on the variable exponent selection, we refer the reader to [1, 31].
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FIG. 6.5. Reconstructions of the ground truth signal obtained by TGSVD regularization (green plots) and by the
Landweber method in Lp with p = 1.3 (red plots), with the background estimated as in Figure 6.4, with respect to
the three collocations methods considered. On the left, plot of the signals on the whole interval [0, τ ] with τ = 30.
On the right, zoom on the interval [0, 4].

Due to the special definition of variable exponent Lebesgue spaces, the Landweber method
in Banach spaces cannot be directly applied but requires a different definition in terms of the
modular functions, for which we refer to [32, 33]. This new version of the Landweber method,
however, coincides exactly with the Landweber method in Banach spaces in the case of a
constant exponent. It can be seen as a generalization of the conventional method to the more
general setting of modular spaces.

In Figure 6.6, we compare the reconstructed signals obtained in classical Lebesgue spaces
with a constant exponent (red plots) and in variable exponent Lebesgue spaces (blue plots).
We observe that all the reconstructions are more precise and accurate than the one obtained
by TGSVD, displayed in green in Figure 6.5. Moreover, the choice of a variable exponent is
further improving the reconstruction of the peak, without requiring heavier computations.

6.3. Robustness with respect to increasing noise in the signal. It is natural to wonder
if the previous discussed regularization methods are robust with respect to different noise
intensities, and, in particular, with respect to increasing noise.

We consider here the same ground truth signal as before, and we simulate three different
noisy acquisitions with AWGN with standard deviation 0.01 (low noise regime), 0.02 (medium
noise regime), and 0.04 (high noise regime). Then, we reconstruct the signal by TGSVD,
by the Landweber method in Lp with p = 1.3 with background estimation, and by modular-
based Landweber method [31] in variable exponent Lebesgue spaces Lp(·) with background
estimation, with respect to the three considered collocations. Variable exponents are chosen as
described in the previous section.

In Figure 6.7, we report all the attained reconstructions. In the considered low noise
regime, we notice that the Landweber method in Banach spaces yields significantly better
reconstructions than TGSVD, with a more noticeable peak and a more precise reconstruction
of the background signal in the deeper part of the inspected domain. This behavior is more
accentuated using a variable exponent (blue plots) rather than a constant one in Lebesgue
spaces. However, with TGSVD it is still possible to clearly distinguish the peak in the
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FIG. 6.6. Reconstructions of the ground truth signal obtained in classical Lp with constant exponent p = 1.3
(red plots) and in Lebesgue spaces Lp(·) with variable exponent (blue plots). In both cases, the background is
estimated as in Figure 6.4, with respect to the three considered collocations methods. On the left, plot of the signals
on the whole interval [0, τ ] with τ = 30. On the right, zoom on the interval [0, 4].

conductivity profile. We remark that the behaviour of TGSVD on such test problems has
already been observed in [23] for smaller noise levels.

With a medium noise regime, the TGSVD reconstructions are less accurate (piecewise
constant-Bernstein) or not accurate at all (linear spline). Similarly, reconstructions provided
by the Landweber method in Lp with a constant exponent p = 1.3 are less precise than the
ones in a low noise regime, and they are more similar to the ones given by TGSVD (piecewise
constant-Bernstein). They still present a trustable estimate of the background in the deeper
part of the domain. On the other hand, the reconstructions obtained with variable exponent
Lebesgue spaces Landweber-type regularization are not affected by the increased noise level
in the acquisition: the peak is clearly visible and the background well estimated.

In the high noise regime, we see that the TGSVD method is not able to produce accurate
reconstructions of the conductivity profile, no matter the collocation used: the retrieved signals
are very far from the ground truth. With the Landweber method in Lp with a constant exponent
p = 1.3, the peak is still distinguishable from the background, but the accuracy is much worse
than in the medium and low noise settings. Instead, using a variable exponent we obtain much
more precise conductivity profile estimations, which do not get much worse increasing the
noise. The use of a variable exponent makes the Landweber method quite robust with respect
to increasing levels of noise in the data.

6.4. Choice of the exponent. In this section, we investigate the role of the chosen
exponent in the accuracy of the reconstruction of conductivity profiles with the Landweber
method in Banach spaces, namely, Lebesgue spaces Lp with a constant exponent p and variable
exponent Lebesgue spaces Lp(·). We consider a low noise regime (AWGN with standard
deviation 0.01) and compare the conductivity profile estimated by TGSVD regularization, by
Landweber method in Lp with p = 1.1, p = 1.2, p = 1.3, and p = 1.4, and by modular-based
Landweber method in variable exponent Lebesgue spaces with exponents between 1.1 and 1.4,
selected as described in Section 6.2.

It is well known that values of the exponent close to 1 are especially well-suited to retrieve
sparse solutions, edges, and discontinuities. Hence, we study the restored conductivity profiles
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(a) Low noise regime: AWGN with standard deviation 0.01.
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(b) Medium noise regime: AWGN with standard deviation 0.02.
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(c) High noise regime: AWGN with standard deviation 0.04.

FIG. 6.7. Reconstructions of the ground truth signal obtained by TGSVD regularization (green plots) and by
Landweber method in classical Lp with constant exponent p = 1.3 (red plots) and in Lebesgue spaces Lp(·) with
variable exponent (blue plots), with respect to the three considered collocations methods. The background is estimated
as in Figure 6.4. The plot is zoomed on the interval [0, τ ] with τ = 10.
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for the constant values p = 1.1, p = 1.2, p = 1.3, and p = 1.4, and with a variable exponent
between 1.1 and 1.4. The rationale is that choosing an exponent close to 1 results in a better
reconstruction of discontinuities and in a more enhanced peak. Thus, we expect to obtain a
better reconstruction of the piecewise constant conductivity of the soil by choosing a smaller
value for the constant exponent p.

As a first comment, we can see in Figure 6.7(a) (blue and green lines) and Figure 6.8 that
all the Banach reconstructions result in better estimating the peak and the flat background in
the deeper area of the inspected domain than the TGSVD ones.
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(a) p = 1.1.
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(b) p = 1.2.
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(c) p = 1.3.
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(d) p = 1.4.

FIG. 6.8. Results with various constant choices of the exponent.

Regarding the behavior of the reconstructions with respect to the choice of the exponent,
we observe in Figure 6.8 that the reconstruction of the background is good for all the exponent;
in particular, in 0 it is better for 1.1, and it gets worse increasing the value of the exponent,
because 0 is a value close to the discontinuity (hence, better retrieved by small exponents
p). As for the peak, it is reconstructed fairly well for all the values and we notice that, for
exponents closer to 1, the height of the peak increases making it more noticeable. One may
think that an exponent p ≈ 1 is a bad choice, since it leads to overestimated reconstruction of
the peak. However, we remark that we are not so interested in estimating the exact point-wise
values of the conductivity but more in understanding if there are discontinuities: this means
that the reconstruction of the peak obtained with 1.1 is not necessarily worse than the one
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obtained with 1.4. The best reconstruction attained with a constant value corresponds to
p = 1.2. However, we observe in Figure 6.9 that the variable exponent estimation is visually
more accurate than all the previous ones and does not require a precise tuning of the parameter.

In the variable exponent case, the reconstruction is very good (as for p = 1.1) but it
presents some issues at 0, being the most difficult point where to estimate the conductivity,
as it is at the border and also close to a discontinuity. The bad behavior at 0 is linked to the
automatic selection of the variable exponent, which is based on the data. Indeed, the variable
exponent is higher near the origin (because the signal is higher there), and this results in
a worse reconstruction. This problem could be solved by choosing the variable exponent
differently (manually), but an automatic selection leads to an overall good reconstruction
without requiring heavy tuning, hence it is preferred.
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FIG. 6.9. Results with a variable exponent p(·) between 1.1 and 1.4.

We conclude the numerical section with a comment regarding the influence of the dis-
cretization scheme on the numerical results. We observe that there are not big differences in
their performance. Linear splines produce the worst results for TGSVD in Figures 6.2, 6.3,
and 6.5, while Bernstein polynomials are less effective than the other two approaches in
approximating the background signal in Figure 6.4. The three approaches are more or less
equivalent when the Landweber method in Banach spaces is employed, with the possible
exception of Figure 6.8(a), where the linear spline interpolation reconstruction presents a peak
whose height is significantly closer to the real amplitude of the solution. No particular differ-
ences are observed for a variable choice of the exponent. Concluding, the piecewise constant
approximation appears to be the more convenient discretization scheme for the discontinuous
solutions considered in our experimentation, since it gives good results and is the simpler to
implement.

7. Conclusions. In this paper we proposed an iterative regularization method in Banach
spaces for the inversion of a linear model for FDEM data. The method is based on the
so-called dual Landweber method. Numerical experiments highlight the advantages of the
proposed numerical approach when discontinuities are present in the solution. An experimental
procedure for estimating the background signal and improve the accuracy of the result is also
proposed. Future research will focus on extending the results of this paper to the nonlinear
case and exploring higher-dimensional problems.
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