A REVIEW OF MAXIMUM-NORM A POSTERIORI ERROR BOUNDS FOR TIME-SEMIDISCRETISATIONS OF PARABOLIC EQUATIONS

TORSTEN LINSS†, NATALIA KOPTEVA‡, GORAN RADOJEV§, AND MARTIN OSSADNIK†

Abstract. A posteriori error estimates in the maximum norm are studied for various time-semidiscretisations applied to a class of linear parabolic equations. We summarise results from the literature and present some new improved error bounds. Crucial ingredients are certain bounds in the L_1-norm for the Green’s function associated with the parabolic operator and its derivatives.

Key words. parabolic problems, maximum-norm a posteriori error estimates, backward Euler, Crank–Nicolson, extrapolation, discontinuous Galerkin–Radau, backward differentiation formulae, Green’s function

AMS subject classifications. 65M15, 65M60

1. Introduction. Consider the linear parabolic equation:

\begin{equation}
Ku := \partial_t u + Lu = f, \quad \text{in } Q := \Omega \times (0, T],
\end{equation}

with a second-order linear elliptic operator L in a spatial domain $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary and some function $f \in C(0, T; L_\infty(\Omega))$, subject to the initial condition

\begin{equation}
u(x, 0) = u^0(x), \quad \text{for } x \in \bar{\Omega},
\end{equation}

and the Dirichlet boundary condition

\begin{equation}
u(x, t) = 0, \quad \text{for } (x, t) \in \partial \Omega \times [0, T].
\end{equation}

The initial datum u^0 is assumed to be compatible with the boundary conditions, i.e., $u^0|_{\partial \Omega} = 0$.

Following [7] and [5], the authors of the present study have published a number of results on residual-type a posteriori error estimates in the maximum norm for parabolic equations utilising and merging various approaches and considering various classes of temporal discretisation [5, 6, 11, 12, 15, 17]. In this survey, we review these results in a unified manner. Revisiting those results and their proofs, we are able to present some improvements — namely sharper error bounds — for the implicit Euler method, the Crank–Nicolson method, and the dG(1)-method. These improvements are made possible by using local bounds for the Green’s function rather than global stability results. Details will be highlighted in the course of the paper. We also present some new results (most notably Theorems 4.5 and 5.2). Furthermore, numerical results are given to compare the various approaches.

The general idea is to set up a parabolic PDE for the error with the residual on the right-hand side. Then the error (at final time T) can be represented by means of the Green’s function associated with K and that residual. To this end, the time-discrete approximations need to be extended to a function defined on $[0, T]$. Furthermore, bounds in the L_1-norm for the Green’s function and its time-derivatives are required; see Section 2 for details.

*Received December 23, 2022. Accepted November 29, 2023. Published online on February 29, 2024. Recommended by Christian Vergara.
†Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Universitätsstraße 11, 58095 Hagen, Germany ({torsten.linss, martin.ossadnik}@fernuni-hagen.de).
‡Department of Mathematics and Statistics, University of Limerick, Limerick, V94 T9PX, Ireland (natalia.kopteva@ul.ie).
§Department of Mathematics and Computer Science, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia (goran.radojev@dmi.uns.ac.rs).
In the present paper we study semidiscretisations in time only. However, these are essential building blocks in deriving error estimates for full (space-and-time) discretisations. Using elliptic reconstructions, a concept introduced by Makridakis and Nochetto [16], they can be combined with error estimators for discretisations of elliptic problems to give error bounds for parabolic problems; see, e.g., [2, 14] in the context of L_2-norm and H^1-norm error estimation.

The paper is organised as follows. In Section 2 we specify our general assumptions for the a posteriori error analysis, in particular we stipulate the validity of certain bounds for the Green’s function of the parabolic problem. Thereafter, we present result for various discretisations:

- the simple first-order implicit Euler method (Section 4),
- the second-order Crank–Nicolson method (Section 5),
- an extrapolated Euler method of second order (Section 6),
- the third-order discontinuous Galerkin method with polynomials of degree 1 ($dG(1)$ for short), which is equivalent to the Runge–Kutta–Radau-IIA method (Section 7), and finally
- the backward-differentiation formula of order 2 (Section 8).

We complement the theoretical finds with results of numerical experiments. The test problem is introduced in Section 3.

2. The Green’s function. In this section we consider the Green’s function G associated with the operator K in (1.1). It will be used to express the error of a numerical approximation in terms of its residual in the differential equation. For definitions and properties of fundamental solutions and Green’s functions of parabolic operators, we refer the reader to the survey by Friedman [9], in particular Chapter 1.

For fixed $x \in \Omega$, the Green’s function associated with K and x solves

$$\begin{align*}
\partial_t G + L^* G &= 0, & \text{in } \Omega \times \mathbb{R}^+, \\
G \big|_{\partial \Omega} &= 0, \\
G(0) &= \delta_x = \delta(\cdot - x),
\end{align*}$$

with δ denoting the Dirac δ-distribution. Let $\langle \cdot, \cdot \rangle$ denote both the duality pairing on $H^{-1}(\Omega) \times H^1_0(\Omega)$ and the $L_2(\Omega)$-scalar product. Then for all $w \in W^{1,1}([0, T], H^1_0(\Omega))$ and $t \in (0, T)$, we have

$$w(x, t) = \langle G(t), w(0) \rangle + \int_0^t \langle G(t - s), (Kw)(s) \rangle \, ds.$$

We will make frequent use of this representation of a function w in terms of Kw.

Throughout the paper we shall assume there exist non-negative constants $\kappa_0, \kappa_1, \kappa_2, \kappa'_1, \kappa'_2, \text{ and } \gamma$ such that (with formally setting $\kappa'_0 = 0$)

$$\|\partial^p_t G(t)\|_{1, \Omega} \leq \left(\frac{\kappa_p}{t^p} + \kappa'_p\right) e^{-\gamma t} =: \varphi_p(t), \quad \text{for all } x \in \Omega, \ t \in [0, T],$$

and $p = 0, 1, 2$.

Here $\|\cdot\|_{p, \Omega}, \ p \in [1, \infty]$, denotes the standard norm in $L_p(\Omega)$.

2.1. Problems that satisfy (2.2). A number of problems that satisfies these assumptions are gathered in [13, §2.1]. Let us mention some of those.
(i). For the heat equation

\[u_t - \Delta u = \varphi(x, t) \quad \text{in } \Omega \subset \mathbb{R}^n, \quad n \in \mathbb{N}, \]

we have (2.2) with \(\kappa_0 = 1, \kappa_p' = 0 \), and \(\kappa_p = p! \sqrt{2\pi} \Gamma(1/2-n/2+1). \)

(ii). For the singularly perturbed reaction-diffusion equation

\[u_t - \varepsilon^2 u_{xx} + r(x) u = \varphi(x, t) \quad \text{in } \Omega = (0, 1), \]

with \(0 < \varepsilon \ll 1, r \in C^{0,1}[0,1], \gamma = 0 > 0 \), the bounds of (2.2) hold true with \(\gamma = 0, \kappa_0 = 1, \kappa_1 = \sqrt{2/(\pi \varepsilon)}, \) and \(\kappa_1' = \kappa_0 \|r \|_{\infty,[0,1]} + \mathcal{O}(\varepsilon), \varepsilon \to 0; \) see [11, §2]. Furthermore,

\[\kappa_2 = \frac{4}{\sqrt{\pi}} \int_{\mathbb{R}} |4s^4 - 12s^2 + 3| e^{-s^2} ds + c_0 \approx 0.70015 + c_0, \]

with an arbitrary \(c_0 > 0 \), and \(\kappa_2' = \|r \|_{\infty,[0,1]}^2 (1 + \kappa_2^2 c_0^{-1}) + \mathcal{O}(\varepsilon). \)

(iii). For the reaction-diffusion equation

\[u_t - \varepsilon^2 \Delta u + r(x) u = \varphi(x, t) \quad \text{in } \Omega \subset \mathbb{R}^n, \quad n > 1, \]

with \(\varepsilon \in (0, 1), r \in C^{0,1}(\Omega), r \geq \gamma^2 \geq 0 \), one has the estimate (2.2) with \(\gamma^2 = \gamma^2 / 2, \kappa_0 = 1, \kappa_p = p! \sqrt{2\pi} \Gamma(1/2-n/2+1), \) and \(\kappa_p' = 0; \) see [12, §12] for \(p = 1 \). Then the bound for \(p = 2 \) can be obtained employing [4, Corollary 5].

Remark 2.1. In the context of our investigations, the bounds above are exemplary. The constants \(\kappa_2 \) and \(\gamma \) reappear in our a posteriori error bounds later. This means that any improvement in these bounds, i.e., smaller \(\kappa \)’s or larger \(\gamma \), will yield sharper error bounds.

2.2. Auxiliary calculations

The rest of this section is rather technical as we will pre-compute some coefficients that feature in our error bounds later. They appear after Hölder’s inequality and (2.2) have been applied to integrals involving (derivatives of) the Green’s function. The calculations are elementary, albeit tedious. The results may be verified using MAPLE. Those integrals are of the form

\[\int_{t_{j-1}}^{t_j} \xi(s) \varphi_p(T - s) ds, \quad \text{with } 0 \leq t_{j-1} < t_j \leq T, \quad p = 0, 1, 2, \]

and a function \(\xi \in C^0[t_{j-1}, t_j]. \)

In a first step, these are bounded as follows

\[\left| \int_{t_{j-1}}^{t_j} \xi(s) \varphi_p(T - s) ds \right| \leq e^{-\gamma(T-t_j)} \int_{t_{j-1}}^{t_j} |\xi(s)| \left(\frac{\kappa_p}{(T-s)^p} + \kappa_p' \right) ds. \]

(2.3)

Sharper bounds are obtained for particular \(p \) and for functions \(\xi \) that are polynomials in \(s \) (with \(\tau_j := t_j - t_{j-1} \)):

\[\left| \int_{t_{j-1}}^{t_j} \xi(s) \varphi_0(T - s) ds \right| \leq \kappa_0 e^{-\gamma(T-t_j)} \int_{t_{j-1}}^{t_j} |\xi(s)| ds, \]

(2.4)

\[0 \leq \int_{t_{j-1}}^{t_j} \varphi_1(T - s) ds = e^{-\gamma(T-t_j)} \vartheta_j, \quad \vartheta_j := \left\{ \kappa_1 \ln \left(1 + \frac{\tau_j}{T-t_j} \right) + \kappa_1' \tau_j \right\} \]

(2.5)
where

\[0 \leq \int_{t_j-1}^{t_j} (t_j - s) \varphi_1(T - s) ds = e^{-\gamma(T-t_j)} \varrho_j, \]

(2.6)

\[\varrho_j := \left\{ \kappa_1 \left[\tau_j - (T-t_j) \ln \left(1 + \frac{\tau_j}{T-t_j} \right) \right] + \kappa_1' \frac{\tau_j^2}{2} \right\}. \]

Another example that appears frequently is, for \(k = 0, 1, \ldots, \)

\[\Phi_{k,j} := \kappa_1 \mu_{k,j} + \kappa_1' \frac{\tau_j^{k+2}}{(k+1)(k+2)} \quad \text{and} \quad \mu_{k,j} := \int_{t_j-1}^{t_j} \frac{(t_j - s)^k (s-t_{j-1})}{T-s} ds. \]

The last integral can be computed recursively:

\[\mu_{0,j} = -\tau_j + (T-t_{j-1}) \ln \left(1 + \frac{\tau_j}{T-t_j} \right), \]

\[\mu_{k,j} = \frac{\tau_j^{k+1}}{k(k+1)} + (t_j - T) \mu_{k-1,j}, \quad k = 1, 2, \ldots \]

However, when \(t_j \) is close to 0, destructive cancellation occurs because the two summands are of like magnitude but of different sign. In this case an alternative is to compute \(\mu_{k,j} \) using a suitable truncation of the series expansion

\[\mu_{k,j} = \tau_j^{k+1} \sum_{\ell=1}^{\infty} \frac{(-1)^{\ell+1}}{\ell+k)(\ell+k+1)} \left(\frac{\tau_j}{T-t_j} \right)^\ell. \]

In our numerical experiments we used the first 5 terms of this expansion.

Furthermore, for \(k > 0, \)

\[\int_{t_j-1}^{t_j} (t_j - s)^k (s-t_{j-1}) \partial_t G(T-s) ds = \int_{t_j-1}^{t_j} \frac{d}{ds} \left[(t_j - s)^k (s-t_{j-1}) \right] G(T-s) ds. \]

Application of (2.2), gives the alternative bound

\[\left| \int_{t_j-1}^{t_j} (t_j - s)^k (s-t_{j-1}) \partial_t G(T-s) ds \right| \leq e^{-\gamma(T-t_j)} \Phi_{k,j}, \]

(2.8)

\[\Phi_{k,j} := \kappa_0 \int_{t_j-1}^{t_j} \left| \frac{d}{ds} \left[(t_j - s)^k (s-t_{j-1}) \right] \right| ds. \]

Combining (2.7) and (2.8) gives

\[\int_{t_j-1}^{t_j} (t_j - s)^k (s-t_{j-1}) \partial_t G(T-s) ds \leq e^{-\gamma(T-t_j)} \min \{ \Phi_{k,j}, \Phi_{k,j}^* \} =: \Psi_{k,j}. \]
3. Test problem. Throughout the paper we shall give numerical results for the linear reaction-diffusion equation

\[(3.1a) \quad \partial_t u - u_{xx} + (5x + 6)u = e^{-4t} - \cos(\pi(x + t)^3) \quad \text{in} \quad (-1, 1) \times (0, 1),\]

subject to the initial condition

\[(3.1b) \quad u(x, 0) = u^0(x) = \sin \frac{\pi(1 + x)}{2} \quad \text{for} \quad x \in [-1, 1],\]

and the Dirichlet boundary condition

\[(3.1c) \quad u(x, t) = 0 \quad \text{for} \quad (x, t) \in \{-1, 1\} \times [0, 1].\]

The Green’s function for this problem satisfies [4, Corollary 5]

\[\|G(t)\|_{1, \Omega} \leq e^{-t/2}, \quad \|\partial^p G(t)\|_{1, \Omega} \leq \frac{3}{2^{p/2}} \frac{p!18^{p-1}}{t^p} e^{-t/2}, \quad p \in \{1, 2\}.\]

The elliptic problems obtained after semi-discretisation in time are solved using a spectral collocation method with polynomials of degree 31. This allows to solve those problems almost to machine accuracy. We are interested in the errors and error estimates at final time \(T\). A reference solution is computed using \(dG(2)\) in time. This is a method of order 5; cf. [8, 10].

4. The implicit Euler method. We consider the first-order backward Euler discretisations in time applied to problem (1.1). Let an arbitrary mesh in time be given by

\[T_M := \{t_j\}_{j=0}^M, \quad 0 = t_0 < t_1 < \cdots < t_M = T.\]

For \(j = 1, \ldots, M\), we set

\[I_j := (t_{j-1}, t_j), \quad \tau_j := t_j - t_{j-1}, \quad \text{and} \quad \tau := \max_{j=1, \ldots, M} \tau_j.\]

Furthermore, for \(\varsigma \in [0, 1]\), let \(t_{j-\varsigma} := t_j - \varsigma \tau_j\) and \(v^{j-\varsigma} := v(t_{j-\varsigma})\).

We discretise the abstract parabolic problem (1.1) in time on the mesh \(T_M\) using the first-order backward Euler method as follows. We associate an approximate solution \(U^j \in H^1_0(\Omega)\) with the time level \(t_j\) and require it to satisfy

\[(4.1) \quad \delta_t U^j + LU^j = f^j \quad \text{in} \quad \Omega, \quad j = 1, \ldots, M; \quad U^0 = u^0,\]

where

\[\delta_t U^j := \frac{U^j - U^{j-1}}{\tau_j} \quad \text{and} \quad f^j := f(\cdot, t_j).\]

§4.1. The central idea is to extend \(U^j\) to a piecewise linear function \(\hat{U}\) that is defined on all of the interval \([0, T]\) and then invoke (2.1) with \(w = u - \hat{U}\). To this end, for any function \(v\) defined on \(T_M\), \(t_j \mapsto v^j\), we denote by \(\hat{v}\) its piecewise linear interpolant, i.e.,

\[\hat{v}(s) := v^j - (t_j - s)\delta_t v^j = v^{j-1} + (s - t_{j-1})\delta_t v^j = v^{j-1/2} + (s - t_{j-1/2})\delta_t v^j, \quad s \in I_j, \quad j = 1, \ldots, M.\]
Recalling (1.1), the residual of \hat{U} in the differential equation admits the representation

$$
(\mathcal{K}(u - \hat{U}))(s) = f(s) - \partial_t \hat{U}(s) - \mathcal{L}(U^j - (t_j - s)\delta_t U^j)
$$

$$
= f(s) - f^j + (t_j - s)\delta_t (LU)^j, \quad s \in I_j.
$$

Invoking (2.1), we obtain for the error at final time $T = t_M$

$$
u(x, T) - U^M(x) = (u - \hat{U})(x, T)
$$

$$
= \sum_{j=1}^{M} \left\{ \int_{I_j} \langle \mathcal{G}(T - s), f(s) - f^j \rangle \, ds + \int_{I_j} (t_j - s) \langle \mathcal{G}(T - s), \delta_t (LU)^j \rangle \, ds \right\}
$$

$$
= \sum_{j=1}^{M} \left\{ \int_{I_j} \langle \mathcal{G}(T - s), f(s) - f^j \rangle \, ds + \int_{I_j} (t_j - s) \langle \partial_t \mathcal{G}(T - s), \delta_t U^j \rangle \, ds \right\},
$$

because $(\partial_t + \mathcal{L}^+) \mathcal{G} = 0$. Using the Hölder inequality and (2.2), we obtain two bounds:

$$
\|u(T) - U^M\|_{\infty, \Omega} \leq \sum_{j=1}^{M} \left\{ \int_{I_j} \varphi_0(T - s) \|f(s) - f^j\|_{\infty, \Omega} \, ds + \int_{I_j} (t_j - s) \varphi_0(T - s) \, ds \|\delta_t (LU)^j\|_{\infty, \Omega} \right\}
$$

and

$$
\|u(T) - U^M\|_{\infty, \Omega} \leq \sum_{j=1}^{M} \left\{ \int_{I_j} \varphi_1(T - s) \|f(s) - f^j\|_{\infty, \Omega} \, ds + \int_{I_j} \varphi_1(T - s)(t_j - s) \, ds \|\delta_t U^j\|_{\infty, \Omega} \right\}.
$$

Upon noting that the φ_i, $i = 0, 1$, are non-increasing, we obtain the following theorems. The first resembles the result given in [5, §4.3, Theorem 4.2] while the second was derived in [12, §4, Theorem 4.1]. A version of the latter is also given in [7, §1, Theorem 1.3] but without providing a proof and without fixing the constants.

Theorem 4.1. The maximum-norm error of the backward Euler time discretisation (4.1) satisfies the a posteriori bound

$$
\|u(T) - U^M\|_{\infty, \Omega} \leq \sum_{j=1}^{M} e^{-\gamma(T-t_j)} \left(\eta_j + \eta_{\delta LU} \right)
$$

with

$$
\eta_j := \kappa_0 \int_{I_j} \|f(s) - f^j\|_{\infty, \Omega} \, ds \quad \text{and} \quad \eta_{\delta LU} := \frac{\kappa_0 \gamma_j^2}{2} \|\delta_t (LU)^j\|_{\infty, \Omega}.
$$
Theorem 4.2. The maximum-norm error of the backward Euler time discretisation (4.1) satisfies the a posteriori bound

\[\|u(T) - U^M\|_{\infty,\Omega} \leq \sum_{j=1}^{M} e^{-\gamma(T-t_j)} \left(\eta_f^j + \eta_{\delta U}^j \right), \]

with \(\eta_f^j \) as in Theorem 4.1, \(\eta_{\delta U}^j := q_j \|\delta U^j\|_{\infty,\Omega} \), and \(q_j \) from (2.6).

The derivation of Theorem 4.2 in [12] uses a different, global argument employing a piecewise constant and discontinuous interpolant of the \(U^j \). In doing so, it passed unnoticed that these bounds can be combined by locally taking, for each \(j = 1, \ldots, M \), the smaller of the two bounds in (4.4). We arrive at the following novel result.

Theorem 4.3. The maximum-norm error of the backward Euler time discretisation (4.1) satisfies the a posteriori bound

\[\|u(T) - U^M\|_{\infty,\Omega} \leq \sum_{j=1}^{M} e^{-\gamma(T-t_j)} \left(\eta_f^j + \eta_{\min}^j \right), \quad \text{with} \quad \eta_{\min}^j := \min \left\{ \eta_{\delta U}^j, \eta_{\delta L U}^j \right\} \]

and the notation from Theorems 4.1 and 4.2.

Remark 4.4. The integral defining \(\eta_f^j \) can (in general) not be evaluated exactly but needs to be approximated. Possible options are

\[\int_{I_j} \|f(s) - f^j\|_{\infty,\Omega} \, ds \approx \frac{T_j}{2} \|f^{j-1} - f^j\|_{\infty,\Omega} \quad \text{trapezoidal rule,} \]

\[\int_{I_j} \|f(s) - f^j\|_{\infty,\Omega} \, ds \approx \frac{T_j}{6} \left(\|f^{j-1} - f^j\|_{\infty,\Omega} + 4 \|f^{j-1/2} - f^j\|_{\infty,\Omega} \right) \quad \text{Simpson’s rule.} \]

Application of quadrature introduces additional error terms. They are associated with oscillations of the RHS \(f \) and of higher order in \(\tau \). In the language of a posteriori error for elliptic equations they are referred to as “higher-order terms” and are typically ignored [3].

Numerical results. Table 4.1 displays the results of our test computations for (3.1). The first column contains the number of mesh intervals used on the spatial domain \([0, 1]\). To avoid special effects from uniform meshes, we have chosen the mesh sizes to satisfy \(\tau_j = 2\tau_{j-1} \) for \(j = 2, 4, 6, \ldots, M \). The second column of the table displays the actual errors of the backward

<table>
<thead>
<tr>
<th>(M)</th>
<th>err</th>
<th>\text{Theorem 4.1}</th>
<th>\text{Theorem 4.2}</th>
<th>\text{Theorem 4.3}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>est</td>
<td>eff</td>
<td>est</td>
</tr>
<tr>
<td>256</td>
<td>1.045 \cdot 10^{-4}</td>
<td>7.333 \cdot 10^{-2}</td>
<td>1/702</td>
<td>3.970 \cdot 10^{-2}</td>
</tr>
<tr>
<td>512</td>
<td>5.175 \cdot 10^{-5}</td>
<td>3.664 \cdot 10^{-2}</td>
<td>1/708</td>
<td>2.003 \cdot 10^{-2}</td>
</tr>
<tr>
<td>1024</td>
<td>2.575 \cdot 10^{-5}</td>
<td>1.831 \cdot 10^{-2}</td>
<td>1/711</td>
<td>1.011 \cdot 10^{-2}</td>
</tr>
<tr>
<td>2048</td>
<td>1.284 \cdot 10^{-5}</td>
<td>9.155 \cdot 10^{-3}</td>
<td>1/713</td>
<td>5.106 \cdot 10^{-3}</td>
</tr>
<tr>
<td>4096</td>
<td>6.412 \cdot 10^{-6}</td>
<td>4.577 \cdot 10^{-3}</td>
<td>1/714</td>
<td>2.578 \cdot 10^{-3}</td>
</tr>
<tr>
<td>8192</td>
<td>3.204 \cdot 10^{-6}</td>
<td>2.288 \cdot 10^{-3}</td>
<td>1/714</td>
<td>1.302 \cdot 10^{-3}</td>
</tr>
<tr>
<td>16384</td>
<td>1.601 \cdot 10^{-6}</td>
<td>1.144 \cdot 10^{-3}</td>
<td>1/715</td>
<td>6.576 \cdot 10^{-4}</td>
</tr>
<tr>
<td>32768</td>
<td>8.006 \cdot 10^{-7}</td>
<td>5.721 \cdot 10^{-4}</td>
<td>1/715</td>
<td>3.320 \cdot 10^{-4}</td>
</tr>
<tr>
<td>65536</td>
<td>4.002 \cdot 10^{-7}</td>
<td>2.860 \cdot 10^{-4}</td>
<td>1/715</td>
<td>1.676 \cdot 10^{-4}</td>
</tr>
</tbody>
</table>
Euler semidiscretisation (4.1). We observe convergence of order 1—each time the number of mesh intervals is doubled, the error is divided by (approximately) two.

Columns 3 and 4 contain the a posteriori error bounds provided by Theorem 4.1 and its efficiency, i.e., the actual error divided by the error estimator. There is a strong correlation between the two. However, the errors are overestimated by a factor of about 700.

In columns 5 and 6 we have the corresponding numbers for Theorem 4.2. It gives sharper bounds than Theorem 4.1, but the efficiency is slightly deteriorating with the logarithm of the mesh size. (Our test problem somewhat favours Theorem 4.2. There are other equations where Theorem 4.1 gives sharper bounds.)

Finally, in the last two columns of Table 4.1 we present our results for Theorem 4.3. It gives sharper bounds than both Theorems 4.1 and 4.2, which had to be expected from its derivation. Moreover, we do not witness any deterioration of the efficiency with a refinement of the mesh. Since the error bound of Theorem 4.3 contains the minimum of two terms, \(\eta_j^f \delta U \) and \(\eta_j^{2\delta U} \), it is interesting to study when which term is active. We will do this in a broader context later.

§4.2. The preceding error bounds all contain a piecewise constant approximation of the RHS \(f \) of the PDE. Now we shall involve its piecewise linear interpolation \(\hat{f} \). To this end we use \(\hat{f}(t) = f_j - (t_j - t) \delta_t f_j \) and rewrite the residuum in (4.2) as

\[
\left(K(u - \hat{U}) \right)(t) = (f - \hat{f})(t) + (t_j - t) \delta_t (LU - f)^j \quad t \in I_j.
\]

In view of (4.1) we set \(\delta_t U^0 := f^0 - \mathcal{L}U^0 \), introduce

\[
\delta_t^2 v^j := \frac{\delta_t v^j - \delta_t v^{j-1}}{\tau_j}, \quad j = 1, \ldots, M,
\]

and obtain

\[
\left(K(u - \hat{U}) \right)(t) = (f - \hat{f})(t) - (t_j - t) \delta_t^2 U^j, \quad t \in I_j, \quad j = 1, \ldots, M.
\]

Proceeding as before, we get the following theorem:

Theorem 4.5. The maximum-norm error of the backward Euler time discretisation (4.1) satisfies the a posteriori bound

\[
\| u(T) - U^M \|_{\infty, \Omega} \leq \sum_{j=1}^{M} e^{-\gamma(T-t_j)} \left(\eta_j^f + \eta_j^{\delta^2 U} \right)
\]

with

\[
\eta_j^f := \kappa_0 \int_{I_j} \left\| (f - \hat{f})(s) \right\|_{\infty, \Omega} \, ds, \quad \eta_j^{\delta^2 U} := \frac{\kappa_0 \tau_j^2}{2} \left\| \delta_t^2 U^j \right\|_{\infty, \Omega}.
\]

Remark 4.6. Again, the integrals composing \(\eta_j^f \) need to be approximated. This time the trapezoidal rule would always give zero. One possibility is Simpson’s rule which gives

\[
\int_{I_j} \left\| (f - \hat{f})(s) \right\|_{\infty, \Omega} \, ds \approx \frac{2\tau_j}{3} \left\| (\hat{f} - f)^j - 1/2 \right\|_{\infty, \Omega} = \frac{\tau_j}{3} \left\| f^j - 2f^{j-1/2} + f^{j-1} \right\|_{\infty, \Omega}.
\]

Taking minima locally for each time level \(j = 1, \ldots, M \), Theorem 4.3 and Theorem 4.5 can be combined to give the following sharpened result.
TABLE 4.2

Error estimators of Theorems 4.5 and 4.7 for the Euler method applied to (3.1). Simpson’s rule is used to approximate η_j^f, η_j^L.

<table>
<thead>
<tr>
<th>M</th>
<th>err</th>
<th>Theorem 4.5</th>
<th>Theorem 4.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>est</td>
<td>eff</td>
<td>est</td>
</tr>
<tr>
<td>256</td>
<td>1.045 · 10^{-4}</td>
<td>9.900 · 10^{-3}</td>
<td>1/95</td>
</tr>
<tr>
<td>512</td>
<td>5.175 · 10^{-5}</td>
<td>4.796 · 10^{-3}</td>
<td>1/93</td>
</tr>
<tr>
<td>1024</td>
<td>2.575 · 10^{-5}</td>
<td>2.360 · 10^{-3}</td>
<td>1/92</td>
</tr>
<tr>
<td>2048</td>
<td>1.284 · 10^{-5}</td>
<td>1.171 · 10^{-3}</td>
<td>1/91</td>
</tr>
<tr>
<td>4096</td>
<td>6.412 · 10^{-6}</td>
<td>5.834 · 10^{-4}</td>
<td>1/91</td>
</tr>
<tr>
<td>8192</td>
<td>3.204 · 10^{-6}</td>
<td>2.911 · 10^{-4}</td>
<td>1/91</td>
</tr>
<tr>
<td>16384</td>
<td>1.601 · 10^{-6}</td>
<td>1.454 · 10^{-4}</td>
<td>1/91</td>
</tr>
<tr>
<td>32768</td>
<td>8.006 · 10^{-7}</td>
<td>7.269 · 10^{-5}</td>
<td>1/91</td>
</tr>
<tr>
<td>65536</td>
<td>4.002 · 10^{-7}</td>
<td>3.634 · 10^{-5}</td>
<td>1/91</td>
</tr>
</tbody>
</table>

THEOREM 4.7. The maximum-norm error of the backward Euler time discretisation (4.1) satisfies the a posteriori bound

$$\| u(T) - U^M \|_{\infty, \Omega} \leq \sum_{j=1}^{M} e^{-\gamma(T-t_j)} \min \left\{ \eta_j^f + \eta_j^{\min}, \eta_j^L + \eta_j^{\delta^2 U} \right\},$$

with the notation from Theorems 4.1–4.5.

Numerical results and discussions. Table 4.2 contains our results for Theorems 4.5 and 4.7. Both give sharper bounds than Theorems 4.1–4.3. This was expected for Theorem 4.7.

How do the various components of the error estimators behave? Figure 4.1 depicts plots of the four terms η_j^f, $\eta_j^{\delta^2 U}$, η_j^L, and $\eta_j^{\delta U}$. We have chosen a uniform mesh as otherwise there would be oscillations because the components are correlated with powers of the local mesh step size. Also the term η_j^f is omitted because it is of higher order and close to zero. For the same reason graphs of $\eta_j^{\delta^2 U}$ and $\eta_j^{\delta^2 U} + \eta_j^f$ would be virtually indistinguishable.

Fig. 4.1. The various parts of the error estimators in Theorems 4.1–4.7, uniform time stepping, $M = 256$ steps.
First, we notice that $\eta_{\delta LU}$ and $\eta_{\delta^2 U}$ attain large values near initial time. Second, $\eta_{\delta U}$ becomes large towards the final time. This can be explained by the behaviour of the ϱ_j in Theorem 4.2. At final time $t_M = T$, we have $\varrho^M = \tau_M$. But further back in time, they become second order: $\varrho_j \sim \tau_j^2$.

Theorems 4.1 and 4.2 differ in the use of $\eta_{\delta^2 LU}$ (solid red line) and $\eta_{\delta U}$ (dashed yellow line). On most of the domain we have $\eta_{\delta^2 LU} > \eta_{\delta U}$, only for the last few steps the relation is reversed. This illustrates how Theorem 4.3 takes advantage by picking the minimum of the two at each time step.

Finally, one notices that for times $t \geq 0.3$ the terms η_j and $\eta_{\delta^2 LU}$ take very similar values. This suggests that in deriving Theorem 4.1 a triangle inequality might have been applied inadequately. To illustrate this we look at the two representations of the residuum used above:

\[
\begin{align*}
(f(s) - f^j) \delta U_j^j & = (f - \hat{f})(s) + (t_j - s) \delta(LU - f)\delta U_j^j, \\
& \rightarrow \eta_j^j, \\
& \rightarrow \eta_{\delta^2 LU}^j, \\
& \rightarrow \eta_j^j, \\
& \rightarrow \eta_{\delta U}^j.
\end{align*}
\]

Generically, the term η_j^j is of order 3 (in τ_j), while the other three terms are of order 2 only. Therefore, asymptotically we have

\[
\eta_{\delta^2 LU}^j \leq (1 + O(\tau_j)) \left(\eta_j^j + \eta_{\delta^2 LU}^j \right) \quad (\tau_j \to 0).
\]

Thus, in general Theorem 4.5 will give sharper bounds than Theorem 4.1. In practice Theorem 4.7 should be given preference as it gives the sharpest error bound.

§4.3. Concluding our study of the backward-Euler scheme, we like to review an idea presented in [13]. The primary intention of the authors was to eliminate the logarithmic dependence on the time step size observed in Theorem 4.2.

Let

\[
W^j := \frac{1}{2} \left[\tau_j \delta U^j - \tau_M \delta U^M \right], \quad j = 1, \ldots, M.
\]

The expectation in [13] was that as j approaches M, the W^j behave similar to $T - t_j$ and therefore compensate for the term $T - s$ in the denominator of the bound φ_1 for G_t. Then,

\[
(t_j - s) \delta U^j = \frac{\tau M}{2} \delta U^M + W^j + (t_{j-1/2} - s) \delta U^j, \quad s \in (t_{j-1}, t_j), \quad j = 1, \ldots, M.
\]

Define

\[
\omega(s) := \frac{(t_j - s)(s - t_{j-1})}{2}, \quad s \in \bar{I}_j, \quad j = 1, \ldots, M,
\]

and note that

\[
t_{j-1/2} - s = \omega'(s), \quad s \in I_j.
\]
Fix $J \in \{1, \ldots, M\}$. Integration by parts for the interval $[t_{j-1}, t_M]$ applied to the second term on the RHS of (4.3) gives
\[u(x, T) - U_M(x) = \sum_{j=1}^{M} \int_{t_{j-1}}^{t_j} \langle \mathcal{G}(T-s), f(s) - f^j \rangle \, ds \]
\[+ \sum_{j \in \{1, \ldots, J, M\}} \int_{t_{j}} \langle \partial_t \mathcal{G}(T-s), \delta_t U^j \rangle \, ds \]
\[- \sum_{j=J}^{M-1} \left\{ \int_{t_j} \omega(s) \langle \partial_t^2 \mathcal{G}(T-s), \delta_t U^j \rangle \, ds - \int_{t_j} \langle \partial_t \mathcal{G}(T-s), W^j \rangle \, ds \right\} \]
\[- \frac{T_M}{2} \left(\mathcal{G}(T-t_{M-1}) - \mathcal{G}(T-t_{j-1}), \delta_t U^M \right). \]

The first and second integral are estimated as in the derivation of Theorem 4.3. To the third and fourth integral we apply (2.3). The last one is bounded using Hölder’s inequality again and (2.2).

Theorem 4.8. For any $J \in \{1, \ldots, M\}$, the maximum-norm error of the backward Euler time discretisation (4.1) satisfies the a posteriori bound
\[\|u(T) - U_M\|_{\infty, \Omega} \leq \sum_{j=1}^{M} e^{-\gamma(T-t_j)} \eta_j^j + \sum_{j \in \{1, \ldots, J, M\}} e^{-\gamma(T-t_j)} \min \left\{ \eta_{\delta U}^j, \eta_{\delta \mathcal{G}U}^j \right\} \]
\[+ \sum_{j=J}^{M-1} \left\{ \eta_{\delta U, *}^j + \eta_{W}^j \right\} \]
\[+ \frac{K_0 T_M}{2} \left(e^{-\gamma(T-t_M)} + e^{-\gamma(T-t_{j-1})} \right) \| \delta_t U_M \|_{\infty, \Omega}, \]
with η_j^j and $\eta_{\delta \mathcal{G}U}^j$ from Theorem 4.1 and $\eta_{\delta U}^j$ from Theorem 4.2 and the new terms
\[\eta_{\delta U, *}^j := \left(\kappa_2 \mu_j^j + \frac{\kappa_2^2 T_j^3}{6} \right) \| \delta_t U^j \|_{\infty, \Omega}, \quad \eta_{W}^j := \partial_j \| W^j \|_{\infty, \Omega}, \quad \mu_j^j := \int_{t_j} \frac{\omega(s)}{(T-s)^2} \, ds, \]
and ∂_j defined in (2.5).

Remark 4.9. In [13] the result is derived for $J = 1$ and with only $\eta_{\delta U}^j$ in the second sum instead of $\min \left\{ \eta_{\delta U}^j, \eta_{\delta \mathcal{G}U}^j \right\}$.

The drawback of this approach is that in order to compute the W^j, one has to know U_M and U_{M-1}. Hence, one either has to perform two runs for $j = J, \ldots, M$, the first to determine $\delta_t U_M$ and the second to compute the W^j, or one needs to store the approximations at those time levels.

Numerical results. Table 4.3 displays our numerical results for Theorem 4.8. We witness a slight improvement over the error bounds of Theorems 4.3 but not over Theorem 4.7.

5. The Crank–Nicolson method. We discretise the abstract parabolic problem (1.1) in time on the mesh $T_{j\delta}$ using the second-order Crank–Nicolson method as follows. We associate an approximate solution $U^j \in H_0^1(\Omega)$ with the time level t_j and require it to satisfy
\[\delta_t U^j + \mathcal{L} U^{j-1/2} = f^{j-1/2} \quad \text{in } \Omega, \quad j = 1, \ldots, M; \quad U^0 = u^0, \]
Error estimator of Theorem 4.8, \(J = 1 \), for the Euler method applied to the test problem (3.1). Simpson’s rule is used again to estimate the \(\eta_1^{j} \).

<table>
<thead>
<tr>
<th>(M)</th>
<th>err</th>
<th>est</th>
<th>eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>(1.045 \cdot 10^{-4})</td>
<td>3.596 \cdot 10^{-2}</td>
<td>1/344</td>
</tr>
<tr>
<td>512</td>
<td>(5.175 \cdot 10^{-5})</td>
<td>1.778 \cdot 10^{-2}</td>
<td>1/344</td>
</tr>
<tr>
<td>1024</td>
<td>(2.575 \cdot 10^{-5})</td>
<td>8.833 \cdot 10^{-3}</td>
<td>1/343</td>
</tr>
<tr>
<td>2048</td>
<td>(1.284 \cdot 10^{-5})</td>
<td>4.396 \cdot 10^{-3}</td>
<td>1/342</td>
</tr>
<tr>
<td>4096</td>
<td>(6.412 \cdot 10^{-6})</td>
<td>2.190 \cdot 10^{-3}</td>
<td>1/342</td>
</tr>
<tr>
<td>8192</td>
<td>(3.204 \cdot 10^{-6})</td>
<td>1.092 \cdot 10^{-3}</td>
<td>1/341</td>
</tr>
<tr>
<td>16384</td>
<td>(1.601 \cdot 10^{-6})</td>
<td>5.446 \cdot 10^{-4}</td>
<td>1/340</td>
</tr>
<tr>
<td>32768</td>
<td>(8.006 \cdot 10^{-7})</td>
<td>2.716 \cdot 10^{-4}</td>
<td>1/339</td>
</tr>
<tr>
<td>65536</td>
<td>(4.002 \cdot 10^{-7})</td>
<td>1.355 \cdot 10^{-4}</td>
<td>1/338</td>
</tr>
</tbody>
</table>

i.e.,

\[
\frac{U^{j} - U^{j-1}}{\tau_{j}} + \frac{LU^{j} + LU^{j-1}}{2} = \frac{f^{j} + f^{j-1}}{2} \quad \text{in} \quad \Omega, \quad j = 1, \ldots, M; \quad U^{0} = u^{0}.
\]

§5.1. We extend the \(U^{j} \) to a globally defined function using piecewise linear interpolation:

\[
\hat{U}(s) = U^{j} - (t_{j} - s) \delta_{t}U^{j} = \hat{U}^{j-1/2} + (s - t_{j-1/2}) \delta_{t}U^{j}, \quad s \in I_{j}, \quad j = 1, \ldots, M.
\]

The residuum of \(\hat{U} \) in the PDE admits the representation

\[
\left(K(u - \hat{U}) \right) (s) = f(s) - \partial_{t}\hat{U}(s) - \mathcal{L} \left(\hat{U}^{j-1/2} + (s - t_{j-1/2}) \delta_{t}U^{j} \right), \quad s \in I_{j}.
\]

Let \(\psi^{j} := \left(LU - f \right)^{j} \). Then by (5.1), we have

\[
\partial_{t}\hat{U}(s) = \delta_{t}U^{j} = \hat{f}^{j-1/2} - \mathcal{L}\hat{U}^{j-1/2} = -\hat{\psi}^{j-1/2}
\]

for \(s \in I_{j} \). This gives

\[
\left(K(u - \hat{U}) \right) (s) = f(s) - \hat{f}^{j-1/2} + (t_{j-1/2} - s) \delta_{t}(\mathcal{L}U)^{j} = f(s) - \hat{f}(s) + (t_{j-1/2} - s) \delta_{t}\psi^{j}, \quad s \in I_{j}.
\]

We substitute into (2.1) and obtain

\[
u(x, T) - U^{M}(x) = \sum_{j=1}^{M} \left\{ \int_{I_{j}} \left\langle \mathcal{G}(T - s), (f - \hat{f})(s) \right\rangle \, ds
+ \int_{I_{j}} (t_{j-1/2} - s) \left\langle \mathcal{G}(T - s), \delta_{t}\psi^{j} \right\rangle \, ds \right\}.
\]

To the first integral we apply (2.4). When bounding the second one, note that \((t_{j-1/2} - s) = \frac{1}{2} \frac{d}{ds} (t_{j} - s) (s - t_{j-1}) \). Therefore, we can avail of (2.9) for \(k = 1 \). We arrive at the following theorem which is a slight modification of the result given in [12, §5, Theorem 5.1].
THEOREM 5.1. The maximum-norm error of the Crank–Nicolson method (5.1) satisfies
the a posteriori error bound
\[\| u(T) - U^M \|_{\infty, \Omega} \leq \sum_{j=1}^{M} e^{-\gamma(T-t_j)} \left(\eta_f^j + \eta_{\delta \psi}^j \right) \]
with \(\eta_f^j \) as in Theorem 4.5.

\[\eta_f^j := \Psi_{1,j} \left\| \delta_t \psi^j \right\|_{\infty, \Omega}, \quad \psi^j := (LU - f)^j, \]
and \(\Psi_{1,j} \) from (2.9).

§5.2. When studying the backward Euler semidiscretisation, the use of a higher order
interpolant of the RHS \(f \) turned out to be useful. This time, we define a piecewise quadratic
interpolant \(\tilde{f} \) by
\[\tilde{f}(s) := \hat{f}(s) + \beta_j \omega(s), \quad s \in I_j, \quad \text{with} \quad \beta_j := -4 f^j - 2 f^{j-1/2} + f^{j-1} \approx -\left(f'' \right)^{j-1/2}. \]

It interpolates \(f \) at the mesh points of \(T_M \) and at the midpoint of its mesh intervals. Let
\(L^{-1} \beta^j := q^j \in H^1_0(\Omega) \) be the unique solution of \(L q^j = \beta^j \). Then,
\[\int_{I_j} \omega(s) \left\langle G(T-s), \beta^j \right\rangle \, ds = \int_{I_j} \omega(s) \left\langle G(T-s), L q^j \right\rangle \, ds \]
\[= - \int_{I_j} \omega(s) \left\langle \partial_t G(T-s), q^j \right\rangle \, ds = - \int_{I_j} \omega'(s) \left\langle G(T-s), q^j \right\rangle \, ds \]
because \(L^* G = -\partial_t G \) and by integration by parts. Then, from (5.2),
\[u(x,T) - U^M(x) = \sum_{j=1}^{M} \left\{ \int_{I_j} \left\langle G(T-s), (f - \tilde{f})(s) \right\rangle \, ds \right. \]
\[+ \int_{I_j} \omega'(s) \left\langle G(T-s), \delta_t q^j - q^j \right\rangle \, ds \right\}. \]

Using the Hölder inequality, (2.4) and (2.9), we obtain our next result.

THEOREM 5.2. The maximum-norm error of the Crank–Nicolson method (5.1) satisfies
the a posteriori bound
\[\| u(T) - U^M \|_{\infty, \Omega} \leq \sum_{j=1}^{M} e^{-\gamma(T-t_j)} \left(\eta_f^j + \eta_{\delta \psi q}^j \right) \]
with \(q^j \in H^1_0(\Omega) \) solving \(L q^j = \beta^j \).

\[\eta_f^j := \kappa_0 \int_{I_j} \left\| (f - \tilde{f})(s) \right\|_{\infty, \Omega} \, ds, \quad \eta_{\delta \psi q}^j := \frac{\Psi_{1,j}}{2} \left\| \delta_t \psi^j - q^j \right\|_{\infty, \Omega}, \]
\[\psi^j := (LU - f)^j, \text{and } \Psi_{1,j} \text{ from (2.9)}. \]
Remark 5.3. The integral defining η_J^j can (in general) not be evaluated exactly but needs to be approximated. For example, Simpson’s rule can be applied on the two subintervals $[t_{j-1}, t_{j-1/2}]$ and $[t_{j-1/2}, t_j]$ to give
\[
\int_{t_j} \left\| (f - \tilde{f})(s) \right\|_{\infty, \Omega} \, ds \approx \frac{T_j}{3} \left\{ \left\| (f - \tilde{f})^{3/4} \right\|_{\infty, \Omega} \right\}.
\]

Remark 5.4. The above choice of a piecewise quadratic interpolation of f corresponds to a piecewise quadratic reconstruction $\tilde{U}(s) = \tilde{U}(s) + \beta^j \omega(s)$ of the approximations U^j.

In [1] the authors also used a special piecewise quadratic reconstruction of the U^j in an a posteriori error analysis but in the context of error estimation in L_2-type norms.

Again, taking minima locally for each time level $j = 1, \ldots, M$, the bounds of the previous two theorems can be combined to give the sharpened result:

Theorem 5.5. The maximum-norm error of the Crank–Nicolson method (5.1) satisfies the a posteriori bound
\[
\| u(T) - U^M \|_{\infty, \Omega} \leq \sum_{j=1}^{M} e^{-\gamma(T-t_j)} \min \left\{ \eta^j_f + \eta^j_{\delta^j}, \eta^j_{\delta^j} + \eta^j_{\delta^j} \right\},
\]

with η^j_f as in Theorem 4.5, $\eta^j_{\delta^j}$ in Theorem 5.1, and η^j_f and $\eta^j_{\delta^j}$ from Theorem 5.2.

Numerical results. Numerical results for the Crank–Nicolson method are given in Table 5.1. For our test problem, the estimator of Theorem 5.1 overestimates the errors by a factor of almost 2000. In contrast, Theorems 5.2 and 5.5 yield sharper error bounds. Of course with Theorem 5.5 giving the best. However, for all three, the efficiency slightly deteriorates as the mesh is refined.

§5.3. Concluding our study of the Crank–Nicolson method, we review an idea presented in [13]. Let
\[
W^j_\psi := \frac{1}{12} \left[\tau^2_\psi \delta^j - \tau^2_\psi \delta^j \psi^M \right] \quad \text{and} \quad \tilde{\omega}(s) := \omega(s) - \frac{\tau^2_\psi}{12}, \ s \in I_j, \ j = 1, \ldots, M.
\]
We employ our standard machinery and arrive at the next theorem:

The expectation in [13] was that for \(j \to M \), the \(W_j^j \) behave similar to \(T - t_j \) and therefore compensate for the term \(T - s \) in the denominator of the bound \(\varphi_1 \) for \(\mathcal{G}_t \); see (2.2). Then,

\[
\omega(s) \delta_t \psi^j = \frac{\tau_j^2}{12} \delta_t \psi^M + W_j^j + \hat{\omega}(s) \delta_t \psi^j, \quad s \in I_j, \quad j = 1, \ldots, M.
\]

Define

\[
\pi(s) := \int_{t_{j-1}}^s \hat{\omega}(\sigma) \, d\sigma = \frac{1}{6} (t_j - s) (t_{j-1/2} - s) (t_{j-1} - s), \quad s \in I_j, \quad j = 1, \ldots, M.
\]

Fix \(J \in \{1, \ldots, M\} \). Integration by parts applied to parts of the RHS of (5.2) gives

\[
u(x, T) - U^M(x)
= \sum_{j=1}^M \int_{I_j} \left\langle \mathcal{G}(T - s), (f - \hat{f})(s) \right\rangle \, ds
+ \sum_{j=1}^M \int_{I_j} \omega(s) \left\langle \partial_t \mathcal{G}(T - s), \delta_t \psi^j \right\rangle \, ds
+ \sum_{j=1}^{M-1} \left\{ \int_{I_j} \pi(s) \left\langle \partial_t^2 \mathcal{G}(T - s), \delta_t \psi^j \right\rangle \, ds + \int_{I_j} \left\langle \partial_t \mathcal{G}(T - s), W_j^j \right\rangle \, ds \right\}
+ \frac{\tau_j^2}{12} \left\langle \mathcal{G}(T - t_{M-1}) - \mathcal{G}(T - t_{J-1}), \delta_t \psi^M \right\rangle.
\]

We employ our standard machinery and arrive at the next theorem:

Theorem 5.6. For any \(J \in \{1, \ldots, M\} \) the maximum-norm error of the Crank–Nicolson method (5.1) satisfies the a posteriori bound

\[
\left\| \nu(T) - U^M \right\|_{\infty, \Omega} \leq \sum_{j=1}^M e^{-\gamma(T-t_j)} \eta_j^j + \sum_{j=1}^M e^{-\gamma(T-t_j)} \eta_j^{\delta_t
\psi}
+ \sum_{j=1}^{M-1} e^{-\gamma(T-t_j)} \left\{ \eta_j^{\delta_t
\psi} + \eta_j^{W \psi} \right\}
+ \frac{\kappa_0 \tau_j^2}{12} \left(e^{-\gamma(T-t_{M-1})} + e^{-\gamma(T-t_{J-1})} \right) \left\| \delta_t \psi^M \right\|_{\infty, \Omega},
\]

with \(\eta_j^j \) and \(\eta_j^{\delta_t \psi} \) from Theorems 4.5 and 5.1 and the new terms

\[
\eta_j^{\delta_t \psi, s} := \left(\kappa_2 \sigma_j^s + \frac{\kappa_2 \tau_j^s}{144} \right) \left\| \delta_t \psi^j \right\|_{\infty, \Omega}, \quad \eta_j^{W \psi} := \hat{\nu}_j \left\| W_j^j \right\|_{\infty, \Omega}, \quad \sigma_j^s := \int_{I_j} \left(T - s \right)^2 \, ds.
\]

Note, that Remark 4.9 holds accordingly. Numerical results are presented in Table 5.2. They are very similar to those of Theorem 5.1 but worse than Theorems 5.2 and 5.5. Hence, those should be preferred.

6. Extrapolated Euler method. This extrapolation method combines two approximations by the backward Euler-method on the mesh \(\mathcal{T}_M \) and on a mesh that is twice as fine. They are defined by

The expectation in [13] was that for \(j \to M \), the \(W_j^j \) behave similar to \(T - t_j \) and therefore compensate for the term \(T - s \) in the denominator of the bound \(\varphi_1 \) for \(\mathcal{G}_t \); see (2.2). Then,
Table 5.2

Error estimator of Theorem 5.6, $J = 1$, for the Crank–Nicolson method applied to the test problem (3.1); Simpson’s rule to estimate the n_j^k.

<table>
<thead>
<tr>
<th>M</th>
<th>err</th>
<th>Theorem 5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>est</td>
<td>eff</td>
</tr>
<tr>
<td>256</td>
<td>$4.284 \cdot 10^{-7}$</td>
<td>$7.432 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>512</td>
<td>$1.048 \cdot 10^{-7}$</td>
<td>$1.858 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>1024</td>
<td>$2.592 \cdot 10^{-8}$</td>
<td>$4.649 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>2048</td>
<td>$6.445 \cdot 10^{-9}$</td>
<td>$1.163 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>4096</td>
<td>$1.607 \cdot 10^{-9}$</td>
<td>$2.910 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>8192</td>
<td>$4.011 \cdot 10^{-10}$</td>
<td>$7.283 \cdot 10^{-7}$</td>
</tr>
<tr>
<td>16384</td>
<td>$1.002 \cdot 10^{-10}$</td>
<td>$1.822 \cdot 10^{-7}$</td>
</tr>
<tr>
<td>32768</td>
<td>$2.503 \cdot 10^{-11}$</td>
<td>$4.560 \cdot 10^{-8}$</td>
</tr>
<tr>
<td>65536</td>
<td>$6.225 \cdot 10^{-12}$</td>
<td>$1.141 \cdot 10^{-8}$</td>
</tr>
</tbody>
</table>

One-step Euler: $V^0 = u^0$,

\begin{equation}
\delta_t V^j + L V^j = f^j, \quad j = 1, 2, \ldots, M, \tag{6.1a}
\end{equation}

Two-step Euler: $W^0 = u^0$, $W^j - W^{j-1}/2 - W_j^j/\tau_j = f_j - 1/2$,

\begin{equation}
\frac{W^{j-1/2} - W^{j-1}}{\tau_j/2} + LW^{j-1/2} = f^{j-1/2}, \quad j = 1, \ldots, M. \tag{6.1b}
\end{equation}

Extrapolation:

\begin{equation}
U^j := 2W^j - V^j, \quad j = 1, \ldots, M. \tag{6.1c}
\end{equation}

We follow [15] and consider a piecewise linear reconstruction \hat{U} of the approximations U^j, $j = 0, 1, \ldots, M$. First, adding the two equations in (6.1b) and subtracting (6.1a) yields

$$
\partial_t \hat{U} = \delta_t U^j = 2\delta_t W^j - \delta_t V^j = \frac{f^{j-1/2} - L}{\tau_j/2} \left(W^{j-1/2} + W^j - V^j \right).
$$

This implies for the residuum

\begin{equation}
\left(K(u - \hat{U}) \right)(s) = f(s) - \partial_t \hat{U}(s) - L\hat{U}(s)

= f(s) - f^{j-1/2} + L \left(W^{j-1/2} - W^j \right) + L \left(U^j - \hat{U}(s) \right). \tag{6.2}
\end{equation}

Next,

$$
U^j - \hat{U}(s) = -(s - t_j)\delta_t U^j = -(s - t_j - 1/2)\delta_t U^j + \frac{\tau_j}{2} \delta_t U^j,
$$

which implies

$$
L \left(U^j - \hat{U}(s) \right) = -(s - t_j - 1/2) L\delta_t U^j + \frac{1}{2} L \left(U^j - U^{j-1} \right).
$$
This is substituted into (6.2) to give
\[
\left(K(u - \bar{U}) \right)(s) = (f - \hat{f})(s) + \hat{f}^{j-1/2} - f^{j-1/2} + (t_{j-1/2} - s) \delta_t (L U - f)^j \\
+ L \left(W^{j-1/2} - W^{j-1} - \frac{V^j - V^{j-1}}{2} \right).
\]

Setting
\[
Z^j := W^{j-1/2} - W^{j-1} - \frac{V^j - V^{j-1}}{2},
\]
\[
F(s) := f(s) - f^{j-1/2}, \quad s \in (t_{j-1}, t_j), \quad j = 1, \ldots, M,
\]
and
\[
\psi^j := (L U - f)^j, \quad j = 0, \ldots, M,
\]
the residuum takes the form
\[
\left(K(u - \bar{U}) \right)(s) = (F - \hat{F})(s) + (t_{j-1/2} - s) \delta_t \psi^j + L Z^j.
\]

Then (2.1) yields
\[
u(x, T) - U^M(x) = \sum_{j=1}^M \left\{ \int_{I_j} \langle \mathcal{G}(T-s), (F - \hat{F})(s) + L Z^j \rangle \, ds \\
+ \int_{I_j} (t_{j-1/2} - s) \langle \mathcal{G}(T-s), \delta_t \psi^j \rangle \, ds \right\}.
\]

Using (2.4) and (2.9), we obtain
\[
\left| \int_{I_j} \langle \mathcal{G}(T-s), (F - \hat{F})(s) \rangle \, ds \right| \leq \kappa_0 e^{-\gamma(T-t_j)} \int_{I_j} \|(F - \hat{F})(s)\|_{\infty, \Omega} \, ds,
\]
\[
\left| \int_{I_j} (t_{j-1/2} - s) \langle \mathcal{G}(T-s), \delta_t \psi^j \rangle \, ds \right| \leq \frac{\Psi_{1,j}}{2} e^{-\gamma(T-t_j)} \|\delta_t \psi^j\|_{\infty, \Omega},
\]
and
\[
\int_{I_j} \langle \mathcal{G}(T-s), L Z^j \rangle \, ds \leq \kappa_0 \tau_j e^{-\gamma(T-t_j)} \|L Z^j\|_{\infty, \Omega}.
\]

Furthermore,
\[
\int_{I_j} \langle \mathcal{G}(T-s), L Z^j \rangle \, ds = \int_{I_j} \langle \mathcal{L}^* \mathcal{G}(T-s), Z^j \rangle \, ds = - \int_{I_j} \langle \partial_t \mathcal{G}(T-s), Z^j \rangle \, ds
\]
gives an alternative bound for (6.4):
\[
\left| \int_{I_j} \langle \mathcal{G}(T-s), L Z^j \rangle \, ds \right| \leq \int_{I_j} \varphi_1(T-s) \, ds e^{-\gamma(T-t_j)} \|Z^j(s)\|_{\infty, \Omega}.
\]
We arrive at the following theorem.

Theorem 6.1. The maximum-norm error of the extrapolated Euler method (6.1) satisfies the a posteriori error bound

\[
\| u(T) - U^M \|_{\infty, \Omega} \leq \eta^M_{eE} := \sum_{j=1}^M e^{-\tau(T-t_j)} \left(\eta^j_F + \eta^j_\Delta + \eta^j_Z \right),
\]

with the \(Z^j \) defined in (6.3),

\[
\eta^j_F := \kappa_0 \int_{t_j} (F - \hat{F})(s) \, ds, \quad \eta^j_\Delta := \frac{\varPsi_{j,2}}{2} \left\| \delta_t \psi^j \right\|_{\infty, \Omega},
\]

\[
\eta^j_Z := \min \left\{ \kappa_0 \tau_j \left\| L Z^j \right\|_{\infty, \Omega}, \vartheta_j \left\| Z^j \right\|_{\infty, \Omega} \right\}.
\]

Remark 6.2. The integrals composing \(\eta^j_F \) need to be approximated. One possibility is Simpson’s rule which gives

\[
\int_{t_j} \left\| (F - \hat{F})(s) \right\|_{\infty, \Omega} \, ds \approx \eta^j_{F, \text{simp}} := \frac{\tau_j}{6} \left\| f^j - 2 f^j - 1/2 + f^j - 1 \right\|_{\infty, \Omega}
\]

\[
\approx \frac{\tau_j^2}{24} \left\| \partial_t^2 f(t_j - 1/2) \right\|_{\infty, \Omega}.
\]

Remark 6.3. Theorem 6.1 can be used to establish an asymptotically exact error estimator for the underlying backward-Euler discretisation:

\[u(t_j) - V^j = u(t_j) - V^j + U^j - U^j = 2 (W - V)^j + u(t_j) - U^j, \quad j = 0, \ldots, M. \]

Application of the triangle inequality gives

\[
\| u(T) - V^M \|_{\infty, \Omega} \leq 2 \| W^M - V^M \|_{\infty, \Omega} + \eta^M_{eE}.
\]

Similarly,

\[
\| u(T) - W^M \|_{\infty, \Omega} \leq \| W^M - V^M \|_{\infty, \Omega} + \eta^M_{eE}.
\]
Table 6.2: Asymptotically exact error estimation for the backward Euler method according to Remark 6.3.

<table>
<thead>
<tr>
<th>M</th>
<th>$| u(T) - W^M |_{\infty,\Omega}$</th>
<th>\text{est}</th>
<th>\text{eff}</th>
<th>$| W^M - V^M |_{\infty,\Omega}$</th>
<th>v^M_{eE}</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>$5.203 \cdot 10^{-5}$</td>
<td>4.827 \cdot 10^{-4}</td>
<td>1/9</td>
<td>$5.249 \cdot 10^{-5}$</td>
<td>4.302 \cdot 10^{-4}</td>
</tr>
<tr>
<td>512</td>
<td>$2.582 \cdot 10^{-5}$</td>
<td>1.317 \cdot 10^{-4}</td>
<td>1/5</td>
<td>$2.593 \cdot 10^{-5}$</td>
<td>1.058 \cdot 10^{-4}</td>
</tr>
<tr>
<td>1024</td>
<td>$1.286 \cdot 10^{-5}$</td>
<td>3.933 \cdot 10^{-5}</td>
<td>1/3</td>
<td>$1.289 \cdot 10^{-5}$</td>
<td>2.644 \cdot 10^{-5}</td>
</tr>
<tr>
<td>2048</td>
<td>$6.417 \cdot 10^{-6}$</td>
<td>1.317 \cdot 10^{-5}</td>
<td>1/2</td>
<td>$6.424 \cdot 10^{-6}$</td>
<td>6.742 \cdot 10^{-6}</td>
</tr>
<tr>
<td>4096</td>
<td>$3.205 \cdot 10^{-6}$</td>
<td>4.905 \cdot 10^{-6}</td>
<td>1/2</td>
<td>$3.207 \cdot 10^{-6}$</td>
<td>1.699 \cdot 10^{-6}</td>
</tr>
<tr>
<td>8192</td>
<td>$1.602 \cdot 10^{-6}$</td>
<td>2.030 \cdot 10^{-6}</td>
<td>1/1</td>
<td>$1.602 \cdot 10^{-6}$</td>
<td>4.281 \cdot 10^{-7}</td>
</tr>
<tr>
<td>16384</td>
<td>$8.006 \cdot 10^{-7}$</td>
<td>9.087 \cdot 10^{-7}</td>
<td>1/1</td>
<td>$8.007 \cdot 10^{-7}$</td>
<td>1.079 \cdot 10^{-7}</td>
</tr>
<tr>
<td>32768</td>
<td>$4.003 \cdot 10^{-7}$</td>
<td>4.275 \cdot 10^{-7}</td>
<td>1/1</td>
<td>$4.003 \cdot 10^{-7}$</td>
<td>2.721 \cdot 10^{-8}</td>
</tr>
<tr>
<td>65536</td>
<td>$2.001 \cdot 10^{-7}$</td>
<td>2.070 \cdot 10^{-7}</td>
<td>1/1</td>
<td>$2.001 \cdot 10^{-7}$</td>
<td>6.859 \cdot 10^{-9}</td>
</tr>
</tbody>
</table>

Numerical results. Numerical results for the extrapolated Euler method are given in Table 6.1. They are clear illustrations for the bounds given in Theorem 6.1. The efficiency is around 500 but slowly decreasing (with $\ln M$) as the mesh is refined.

Table 6.2 illustrates Remark 6.3. Using extrapolation, an asymptotically exact error estimator for the underlying Euler method is obtained. This kind of error control for initial-value problems is well established (see, e.g., [10, II.4]): A higher-order method is used to estimate the error of a lower-order method. However, this approach does not guarantee upper bounds for the discretisation error because the error of the higher-order method is not controlled. Additional bounds like Theorem 6.1 cure this defect.

7. Discontinuous Galerkin method, dG(1). Given $U^0 = u^0$, we seek approximations $U_j^{j-2/3}, U^j \in H^1_{\text{loc}}(\Omega)$, of $u(t_{j-2/3})$ and $u(t_j)$ as solutions of

$$
U_j^{j-2/3} - U_j^{j-1} + \frac{\tau_j}{12} \left(5L U_j^{j-2/3} - LU_j^j \right) = \frac{\tau_j}{12} \left(5 f_j^{j-2/3} - f^j \right), \quad j = 1, \ldots, M.
$$

Let $\psi := f - LU$. Then (7.1) can be rewritten as

$$
U_j^{j-2/3} - U_j^{j-1} = \frac{\tau_j}{12} \left(5 \psi_j^{j-2/3} - \psi_j^j \right), \quad j = 1, \ldots, M.
$$

Let $\zeta(s) := 3(s - 1)(s - 1/3)$ and $Z(s) := \int_0^s \zeta(\sigma) \, d\sigma = s(s - 1)^2$,

and note that $\zeta'(s) = 6(s - 2/3)$.

Given a function v, we define a piecewise linear (possibly discontinuous) interpolant \bar{v} by

$$
\bar{v}(t) := v^j - \frac{3}{2} \frac{t_j - t}{\tau_j} \left(v^j - v^{j-2/3} \right), \quad t \in (t_{j-1}, t_j],
$$

and a continuous piecewise quadratic interpolant \tilde{v} by

$$
\tilde{v}(t) := v^j - \frac{3}{2} \frac{t_j - t}{\tau_j} \left(v^j - v^{j-2/3} \right) + \frac{v^j - 3v^{j-2/3} + 2v^{j-1}}{2} \zeta \left(\frac{t - t_{j-1}}{\tau_j} \right), \quad t \in I_j.
$$
Then, by (7.2)
\[\bar{U}'(t) = \frac{3(U^j - U^{j-2/3})}{2\tau_j} + 3 \frac{U^j - 3U^{j-2/3} + 2U^{j-1}}{\tau_j} \frac{t - t_{j-2/3}}{\tau_j} = \bar{\psi}(t). \]
This yields for the residuum
\[K(u - \bar{U})(t) = f(t) - (\bar{U}' + \bar{L}\bar{U})(t) = (f - \bar{f})(t) - \bar{U}'(t) + \bar{\psi}(t) \]
\[= (f - \bar{f})(t) + \frac{\psi^j - 3\psi^{j-2/3} + 2\psi^{j-1}}{2} \left(\frac{t - t_{j-1}}{\tau_j} \right), \quad t \in I_j. \]
Set
\[(7.3) \quad \chi^j := \frac{\psi^j - 3\psi^{j-2/3} + 2\psi^{j-1}}{2\tau_j^2}, \quad j = 1, \ldots, M. \]
Then the residuum can be rewritten into
\[\left(K(u - \bar{U}) \right)(t) = (f - \bar{f})(t) + 3\chi^j(t - t_j)(t - t_{j-2/3}) \]
\[= (f - \bar{f})(t) + \chi^j \frac{d}{dt} \left[(t - t_j)^2(t - t_{j-1}) \right], \quad t \in I_j, \]
where we have used integration by parts. Next, we multiply by the Green’s function and integrate over \((0, T)\) to obtain the following a posteriori error bound:

Theorem 7.1. The error of the dG(1) method (7.1) satisfies
\[\|u(T) - U^M\|_{\infty, \Omega} \leq \sum_{j=1}^{M} e^{-\gamma(T-t_j)} \left(\eta^j_f + \eta^j_\chi \right), \]
with \(\chi^j\) from (7.3),
\[\eta^j_f := \kappa_0 \int_{I_j} \left\| (f - \bar{f})(s) \right\|_{\infty, \Omega} ds \quad \text{and} \quad \eta^j_\chi := \Psi_{2,j} \left\| \chi^j \right\|_{\infty, \Omega}. \]
This result is a slight improvement over Theorem 6.1 in [12] as it employs local bounds for the Green’s function rather then a global argument. An a posteriori error bound for the dG(1)-method is also given in [7, §1, Theorem 1.3] but without a proof and without fixing the constants. Furthermore, a remark in [7] suggests this bound is only second-order time accurate, while Theorem 7.1 provides a bound of order 3.

Remark 7.2. Again, the integral defining \(\eta^j_f\) needs to be approximated. Simpson’s rule can be applied to give
\[\int_{I_j} \left\| (f - \bar{f})(s) \right\|_{\infty, \Omega} ds \approx \frac{2\tau_j}{3} \left\| (f - \bar{f})(t_{j-2/3}) \right\|_{\infty, \Omega} \]
\[= \frac{2\tau_j}{3} \left[\left| f^j + 9f^{j-2/3} - 8f^{j-1}
ight| - \left| f^{j-1/2} \right| \right] =: f^j_{\text{simp}}. \]

Numerical results. Numerical results for the dG(1)-method are presented in Table 7.1. The results are in agreement with Theorem 7.1. Again, looking at \(M = 2^{10}, \ldots, 2^{14}\), we witness a slight deterioration (with \(\ln M\)) when the mesh is refined. For larger \(M\) we are operating close to machine accuracy and the results get erratic.

ETNA

Kent State University and Johann Radon Institute (RICAM)

T. LINSS, N. KOPTEVA, G. RADOJEV, AND M. OSSADNIK

118
Again, we extend the error estimator of Theorem 7.1 for dG(1) applied to the test problem (3.1).

<table>
<thead>
<tr>
<th>(M)</th>
<th>(\text{err})</th>
<th>(\text{est})</th>
<th>(\text{eff})</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>(6.799 \cdot 10^{-8})</td>
<td>(5.739 \cdot 10^{-6})</td>
<td>1/84</td>
</tr>
<tr>
<td>512</td>
<td>(9.859 \cdot 10^{-9})</td>
<td>(7.270 \cdot 10^{-7})</td>
<td>1/74</td>
</tr>
<tr>
<td>1024</td>
<td>(1.296 \cdot 10^{-9})</td>
<td>(9.225 \cdot 10^{-8})</td>
<td>1/71</td>
</tr>
<tr>
<td>2048</td>
<td>(1.631 \cdot 10^{-10})</td>
<td>(1.170 \cdot 10^{-8})</td>
<td>1/72</td>
</tr>
<tr>
<td>4096</td>
<td>(2.032 \cdot 10^{-11})</td>
<td>(1.481 \cdot 10^{-9})</td>
<td>1/73</td>
</tr>
<tr>
<td>8192</td>
<td>(2.531 \cdot 10^{-12})</td>
<td>(1.872 \cdot 10^{-10})</td>
<td>1/74</td>
</tr>
<tr>
<td>16384</td>
<td>(3.169 \cdot 10^{-13})</td>
<td>(2.364 \cdot 10^{-11})</td>
<td>1/75</td>
</tr>
<tr>
<td>32768</td>
<td>(4.178 \cdot 10^{-14})</td>
<td>(2.984 \cdot 10^{-12})</td>
<td>1/71</td>
</tr>
<tr>
<td>65536</td>
<td>(2.645 \cdot 10^{-14})</td>
<td>(3.771 \cdot 10^{-13})</td>
<td>1/145</td>
</tr>
</tbody>
</table>

8. BDF-2. The backward differentiation formulae (BDF-\(k \)) are a family of multistep methods for the approximation of initial-(boundary) value problems and commonly used for stiff problems. Here we restrict ourselves to the simplest BDF-2 version; higher-order BDF-methods are studied in [17], too.

Given \(U^0 = u^0 \), we seek approximations \(U^j \in H_0^1(\Omega) \) of \(u(t_j) \) as solutions of

\[
\begin{align*}
\delta_t U^1 + \mathcal{L} U^1 &= f^1, \\
D_t U^j + \mathcal{L} U^j &= f^j, & j = 2, 3, \ldots, M,
\end{align*}
\]

where

\[
D_t v^n := \delta_t v^n + \tau_n \delta^2_t v^n, \quad \delta^2_t v^n := \frac{\delta_t v^n - \delta_t v^{n-1}}{\tau_n + \tau_{n-1}} \quad \text{and} \quad \delta_t v^n := \frac{v^n - v^{n-1}}{\tau_n}.
\]

Again, we extend the \(U^j \) to a piecewise linear function \(\hat{U} \) defined on \([0, T]\).

On the first interval, the discretisation (8.1a) consists of a single step of the implicit Euler method (4.1). In view of our discussions following Theorem 4.7, we use the argument that led to Theorem 4.3.

For \(s \in (t_{j-1}, t_j), j = 2, 3, \ldots, M \), the residuum satisfies

\[
\mathcal{K}(u - \hat{U})(s) = f(s) - \delta_t \hat{U}(s) - \mathcal{L} \hat{U}(s)
= (f - \hat{f})(s) - \delta_t U^j + (f - \mathcal{L} U^j) + \frac{(f - \mathcal{L} U)^j - (f - \mathcal{L} U)^{j-1}}{\tau_j} (s - t_j).
\]

By (8.1b) we have

\[
(f - \mathcal{L} U)^j = \begin{cases}
\delta_t U^j, & j = 1, \\
\delta_t U^j + \tau_j^2 U^j, & j = 2, \ldots, M.
\end{cases}
\]

Thus,

\[
\mathcal{K}(u - \hat{U})(s) = (f - \hat{f})(s) + 2 (s - t_{j-1/2}) \delta^2_t U^j
+ (s - t_j) \frac{\tau_{j-1}}{\tau_j} (\delta^2_t U^j - \delta^2_t U^{j-1}), \\
\left\{ \begin{array}{l}
\begin{array}{ll}
s \in (t_{j-1}, t_j), & s = (t_{j-1}, t_j), \\
\delta^2_t U^j, & \delta^2_t U^{j-1}, & j = j, \ldots, M,
\end{array}
\end{array} \right.
\]

and

\[
\mathcal{K}(u - \hat{U})(s) = (f - \hat{f})(s) + 2 (s - t_{j-1/2}) \delta^2_t U^j
+ (s - t_j) \frac{\tau_{j-1}}{\tau_j} \delta^2_t U^j, \\
\left\{ \begin{array}{l}
\begin{array}{ll}
s \in (t_1, t_2), & s \in (t_1, t_2)
\end{array}
\end{array} \right.
\]
The estimators to be close to these estimates be improved to give sharper error bounds. Ideally, one likes the efficiency of
are overestimated by a factor ranging from 50 to 1000. A natural question that arises is: Can these estimates be improved to give sharper error bounds. Ideally, one likes the efficiency of the estimators to be close to 1.

Numerical experiments have been conducted for those methods. They showed that the error
considered a posteriori error bounds for semidiscretisations of parabolic PDEs. In particular we have

\[\|u(T) - U^M\|_{\infty,\Omega} \leq e^{-\gamma(T-t_1)} \left(\eta_1^j + \min \left\{ \eta_{UL}, \eta_{UL}^j \right\} \right) + e^{-\gamma(T-t_2)} \left(\eta_1^2 + \frac{\tau_1 \tau_2}{2} \|\delta_2 U^2\|_{\infty,\Omega} \right) + \sum_{j=3}^M e^{-\gamma(T-t_j)} \left(\eta_1^j + \Psi_{1,j} \|\delta_2^j U^j\|_{\infty,\Omega} + \kappa_0 \frac{\tau_j^{-1} \tau_j}{2} \|\delta_2^j U^j - \delta_2^{j-1} U^{j-1}\|_{\infty,\Omega} \right), \]

with \(\eta_j^1 \) and \(\eta_{UL}^j \) from Theorem 4.1 and \(\eta_{UL}^j \) from Theorem 4.2.

Remark 8.2. The term \(\delta_2^j U^j - \delta_2^{j-1} U^{j-1} \) is a difference quotient of order 3. For a BDF-\(k \)
method the technique developed in [17] involves difference quotients of order \(2k - 1 \). Also
note that in the above analysis we had to consider the first two time steps separately. For the
BDF-\(k \) method different arguments will be required for the first \(2(k - 1) \) steps.

Numerical results. Numerical results for the BDF-2 method are given in Table 8.1. There
is a jump in the efficiency when going from \(M = 2^{10} \) to \(M = 2^{11} \) that we do not have an
explanation for. Apart from this, a slight deterioration (with \(\ln M \)) is observed again when the
mesh is refined.

9. Summary and open questions. In this paper we have reexamined (and improved)
a posteriori error bounds for semidiscretisations of parabolic PDEs. In particular we have considered
• the backward Euler method,
• the Crank–Nicolson method,
• the extrapolated Euler method,
• the discontinuous Galerkin method with polynomial degree 1, dG(1),
• the BDF-2 method.

Numerical experiments have been conducted for those methods. They showed that the error
are overestimated by a factor ranging from 50 to 1000. A natural question that arises is: Can these estimates be improved to give sharper error bounds. Ideally, one likes the efficiency of
the estimators to be close to 1.
In the framework of a posteriori error estimation and adaptivity for elliptic equations, lower bounds for the error turned out to be useful; see [3]. Typically, error estimation for elliptic problems is presented in Sobolev spaces. In contrast, we are considering the errors in L^∞, a Banach space with less structure! We are not aware of any lower a posteriori error bounds in L^∞. To the best of our knowledge this is still an important open problem. Also, the design and convergence in L^∞ of adaptive strategies remains open.

But there are further questions that may be of interest:

- Richardson extrapolation: *Is there an elegant way to derive error bounds for extrapolation of arbitrary order in a common framework?*
- Discontinuous Galerkin: The technique derived in [12, §6] for the dG(r) method gives a posteriori bounds with time accuracy of order $r + 2$, while the method converges with order $2r + 1$. Thus for $r \geq 2$ there is a discrepancy, and the efficiency of the estimator decays with the number of time steps (to the power of $r - 1$). *Is there an alternative analysis that gives efficient a posteriori estimators for the dG(r) methods?*
- The backward differentiation formulae (BDF-k): As noted in Remark 8.2, the estimators derived in [17] involve difference quotients of order $2k - 1$ while $k + 1$ seems to be the natural order. Further complications arise from the necessity to have k starting values. Again: *Is there an elegant way to derive error bounds for BDF methods of arbitrary order in a common framework?*
- Continuous Galerkin: Except for the special case of the Crank–Nicolson method no results are available yet.
- Finally, error estimation for operator splitting methods and ADI methods might be interesting as these are particularly efficient methods for parabolic equations.

REFERENCES

