
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 60, pp. 618–635, 2024.
Copyright © 2024, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol60s618

LSEMINK: A MODIFIED NEWTON–KRYLOV METHOD FOR
LOG-SUM-EXP MINIMIZATION∗

KELVIN KAN†, JAMES G. NAGY‡, AND LARS RUTHOTTO‡

Abstract. This paper introduces LSEMINK, an effective modified Newton–Krylov algorithm geared toward
minimizing the log-sum-exp function for a linear model. Problems of this kind arise commonly, for example, in
geometric programming and multinomial logistic regression. Although the log-sum-exp function is smooth and
convex, standard line-search Newton-type methods can become inefficient because the quadratic approximation
of the objective function can be unbounded from below. To circumvent this, LSEMINK modifies the Hessian by
adding a shift in the row space of the linear model. We show that the shift renders the quadratic approximation to
be bounded from below and that the overall scheme converges to a global minimizer under mild assumptions. Our
convergence proof also shows that all iterates are in the row space of the linear model, which can be attractive when
the model parameters do not have an intuitive meaning, as is common in machine learning. Since LSEMINK uses
a Krylov subspace method to compute the search direction, it only requires matrix-vector products with the linear
model, which is critical for large-scale problems. Our numerical experiments on image classification and geometric
programming illustrate that LSEMINK considerably reduces the time-to-solution and increases the scalability
compared to geometric programming and natural gradient descent approaches. It has significantly faster initial
convergence than standard Newton–Krylov methods, which is particularly attractive in applications like machine
learning. In addition, LSEMINK is more robust to ill-conditioning arising from the nonsmoothness of the problem.
We share our MATLAB implementation at a GitHub repository (https://github.com/KelvinKan/LSEMINK).

Key words. log-sum-exp minimization, Newton–Krylov method, modified Newton method, machine learning,
geometric programming

AMS subject classifications. 65K10

1. Introduction. We consider minimization problems of the form

(1.1) min
x∈Rn

f(x) =

N∑
k=1

w(k)
[
g(k)(x)− c(k)

>
J(k)x

]
,

where

g(k)(x) := log
(
1>m exp(J(k)x + b(k))

)
is the log-sum-exp function for a linear model defined by J(k) ∈ Rm×n and b(k) ∈ Rm,
c(k) ∈ Rm, 1m ∈ Rm is a vector of all ones, w(k)’s are weights, andN is the number of linear
models. Problem (1.1) arises commonly in machine learning and optimization. For example,
multinomial logistic regression (MLR) in classification problems [20, 37, 50] is formulated
as (1.1). In geometric programming [46, 51, 52], a non-convex problem can be convexified
through a reformulation to the form (1.1). The log-sum-exp function itself also has extensive
applications in machine learning. For instance, it can serve as a smooth approximation to the
element-wise maximum function [11, 38], where smoothness is desirable in model design
since gradient-based optimizers are commonly used. Moreover, the log-sum-exp function is
closely related to widely used softmax and entropy functions. For instance, the dual to an
entropy maximization problem is a log-sum-exp minimization problem [3, Example 5.5], and
the gradient of the log-sum-exp function is the softmax function [10].

∗Received July 10, 2023. Accepted August 21, 2024. Published online on December 19, 2024. Recommended
by Roland Herzog.

†Department of Mathematics, University of California, Los Angeles, USA
(kelvin.kan@math.ucla.edu).

‡Departments of Mathematics and Computer Science, Emory University, USA
({jnagy, lruthotto}@emory.edu).

618

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol60s618


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LSEMINK: A MODIFIED NEWTON–KRYLOV METHOD 619

Despite the smoothness and convexity of the log-sum-exp function, a standard implemen-
tation of line-search Newton-type methods can be problematic. To realize this, note that the
gradient and Hessian of the log-sum-exp function are given by

∇f(x) =

N∑
k=1

w(k)J(k)>(p(k) − c(k)) and ∇2f(x) =

N∑
k=1

w(k)J(k)>H(k)J(k),

with p(k) =
exp(J(k)x + b(k))

1>m exp(J(k)x + b(k))
and H(k) = diag(p(k))− p(k)p(k)>.

The Hessian is positive semi-definite and rank-deficient because the null space of the H(k)’s
contains 1m. Even more problematic is that when the p(k)’s are close to a standard basis
vector (which, for example, commonly occurs in MLR), the Hessian is close to the zero matrix
even when the gradient is non-zero. In Newton’s method, this means that the local quadratic
approximation can be unbounded from below. To be precise, it is unbounded from below if
and only if the gradient is not in the column space of the Hessian [1, Exercise 2.19].

Disciplined convex programming (DCP) packages (e.g., CVX [15]) can reliably solve
the log-sum-exp minimization problem through a reformulation. For instance, CVX first
formulates the problem using exponential cones [34, Section 5.2.6] and applies backend
solvers to solve the resulting problem directly (e.g., MOSEK [33]) or through successive
polynomial approximation (e.g., SPDT3 [47] and SeDuMi [45]). However, this approach can
be computationally demanding as the number of conic constraints scales with the product of
the number of rows in the linear models and the number of linear models. For instance, CVX
did not complete the image classification experiments for the whole dataset in Section 4.2 on a
standard laptop in thirty minutes, while LSEMINK finishes on the same hardware in thirty
seconds. Furthermore, the formulation relies on access to the elements of the J(k)’s, i.e., this
approach is not applicable in a matrix-free setting where the J(k)’s are not built explicitly and
only routines for performing matrix-vector products are provided.

Tikhonov regularization [9, 14, 17], which adds α
2 ‖x‖22 with α > 0 to the objective

function, avoids the cost of reformulation and alleviates the convergence issues with Newton-
type methods. The regularization shifts the Hessian by αI and renders it positive definite,
where I is the identity matrix. Nonetheless, Tikhonov regularization introduces a bias and
consequently changes the optimal solution. The regularization parameter α has to be chosen
judiciously—a large α renders the problem easier to solve and produces a more regular
solution but introduces more bias. In addition, one cannot use effective parameter selection
algorithms [4, 5, 13, 19, 49] for linear problems due to the nonlinearity of the log-sum-exp
function. On the other hand, first-order methods like gradient descent [3, 39] or AdaGrad [7],
which do not use the Hessian matrix, can avoid the problem. However, their convergence is
inferior to methods that utilize curvature information [8].

Modified Newton-type methods effectively tackle problems with rank-deficient or indefi-
nite Hessians and do not introduce bias. The idea is to add a shift to the Hessian so that at the
ith iteration, the scheme solves

(1.2) min
x

1

2
(x− xi)

>(∇2f(xi) + βiMi)(x− xi) +∇f(xi)
>(x− xi),

where βi is a parameter and the shift Mi renders the Hessian to be sufficiently positive
definite. The quadratic approximation is bounded from below since the modified Hessian is
positive definite. Hence, the convergence issues are avoided. The effect of the Hessian shift
is reminiscent of the Tikhonov regularization approach. Indeed, the scheme is sometimes
called a Tikhonov-regularized Newton update [42, Chapter 3.3]. However, the key conceptual

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

620 K. KAN, J. NAGY, AND L. RUTHOTTO

difference between (1.2) and Tikhonov regularization is that the former does not introduce
any bias to the problem [48], i.e., the optimal solution to the problem is independent of
the βi’s. There are different ways of defining Mi. For instance, Mi is spanned by some
of the eigenvectors of the Hessian [16, 39] or is a modification to the factorization of the
Hessian [12, 32, 35]. However, the computations needed for these approaches are intractable
for large-scale problems commonly arising in machine learning. A simple and computationally
feasible approach is to set Mi as the identity matrix [29, 30, 42], which will be used as a
comparing method in our numerical experiments.

In this paper, we propose LSEMINK, a novel modified Newton–Krylov method that
circumvents the drawbacks outlined above. The main novelty in our method is the Hessian
shift Mi =

∑N
k=1 w

(k)J(k)>J(k). This generates an update in the row space of the linear
model, as compared to the aforementioned modified Newton-type methods, which returns
an update in the parameter space of the linear model (i.e., the x-space). This property is
preferable in machine learning applications since model parameters often do not have an
intuitive meaning, while the row space of the linear model contains interpretable data features.
Note that standard convergence guarantees (e.g., [39, Chapter 6.2]), which often require
positive definiteness of the modified Hessian, do not apply to our method since our modified
Hessian can be rank-deficient. We show that the quadratic approximation is bounded from
below, and the overall scheme provably converges to a global minimum. Since a Krylov
subspace method is applied to approximately solve (1.2) to obtain the next iterate, LSEMINK
is suitable for large-scale problems where the linear models are expensive to build and are
only available through matrix-vector multiplications. Our numerical experiments on image
classification and geometric programming illustrate that LSEMINK considerably reduces the
time-to-solution, increases the scalability compared to DCP and natural gradient descent, and
has significantly faster initial convergence than standard Newton–Krylov methods.

This paper is organized as follows. In Section 2, we describe the proposed LSEMINK
algorithm. In Section 3, we provide a global convergence guarantee. In Section 4, we
demonstrate the effectiveness of LSEMINK using two numerical experiments motivated by
geometric programming and image classification, respectively. We finally conclude the paper
in Section 5.

2. LSEMINK. We propose LSEMINK, a modified Newton–Krylov method geared
toward log-sum-exp minimization problems of the form (1.1). At the ith iteration, we first
consider the quadratic approximation (1.2) with Mi =

∑N
k=1 w

(k)J(k)>J(k). That is,

min
x
qi(x) =

1

2
(x− xi)

>

(
∇2f(xi) + βi

N∑
k=1

w(k)J(k)>J(k)

)
(x− xi)

+∇f(xi)
>(x− xi)

=
1

2
(x− xi)

>

[
N∑
k=1

w(k)
(
J(k)>(H

(k)
i + βiI)J

(k)
)]

(x− xi)

+∇f(xi)
>(x− xi),

(2.1)

whose minimizer is given by xi + ∆xi, where ∆xi solves the Newton equation

(2.2) ∇2qi(xi)∆xi = −∇qi(xi),

and H
(k)
i is H(k) evaluated at xi. It is important to note that the Hessian shift in (2.1) is

different from the typical modified Newton approaches (e.g., eigenvalue modification [16, 39],

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LSEMINK: A MODIFIED NEWTON–KRYLOV METHOD 621

identity matrix [29, 30, 42], or modification to the factorization of the Hessian [12, 32, 35])
which seek to obtain a positive definite Hessian and lead to an update in the parameter space of
the linear model (i.e., the x-space). Instead, it generates an update direction in the row space
of the linear models. This is preferable, especially in machine learning applications, because
model parameters often do not have an intuitive meaning, while the row space of the linear
models contains data features and is explicable. Although the Hessian of (2.1) is rank-deficient
especially when the linear models are over-parametrized (i.e., the J(k)’s have more columns
than rows), it is positive definite in the row space of the linear model. Consequently, the
quadratic approximation is bounded from below, and the overall scheme provably converges
to a global minimum; see Section 3 for a detailed derivation.

An alternative formulation for (2.1) is

min
x

1

2
(x− xi)

>∇2f(xi)(x− xi) +∇f(xi)
>(x− xi) +

βi
2

N∑
k=1

w(k)‖J(k)(x− xi)‖22,

which can be interpreted as a Newton scheme with a proximal term acting on the row space
of the J(k)’s. This formulation shows that βi controls the step size in a nonlinear line-search
arc. To be precise, βi = 0 and ∞ correspond to a Newton update with step size 1 and
0, respectively, and the update is given nonlinearly for 0 < βi < ∞. The formulation
also shows that our proposed scheme bears similarity to L2-natural gradient descent (NGD)
methods [40, 43], which use the same proximal term. Nonetheless, unlike our approach,
L2-NGD methods generally do not directly incorporate Hessian information into its search
direction and approximate curvature information using only the linear model.

The crucial difference between the proximal term and Tikhonov regularization is that
the former does not introduce any bias [42, 48], i.e., the optimal solution is independent
of βi. Another advantage is that Tikhonov regularization requires parameter tuning, which
is commonly done using a grid search for nonlinear problems like (1.1). In our proposed
method, the βi’s are automatically selected by a backtracking Armijo line-search scheme.
The proposed scheme can also be perceived as a proximal-point algorithm acting on the
second-order approximation [42].

We compute the update direction ∆xi by approximately solving the Newton equation (2.2)
using a Krylov subspace method (e.g., a conjugate gradient method [3, 39]) and obtain the
next iterate xi+1 = xi + ∆xi. In particular, the Krylov subspace is given by

Kr(∇2qi(xi),∇qi(xi))

= Kr
(

N∑
k=1

w(k)
(
J(k)>(H

(k)
i + βiI)J

(k)
)
,
N∑
k=1

w(k)J(k)>(p
(k)
i − c(k))

)
,

(2.3)

where r is the dimension of the Krylov subspace and p
(k)
i is p(k) evaluated at xi. Since the

Krylov subspace method only requires routines to perform Hessian-vector multiplications,
LSEMINK is applicable to large-scale problems commonly arising in machine learning
applications where the linear models are only available through matrix-vector products. An
outline of the implementation of LSEMINK is presented in Algorithm 1.

LSEMINK has significantly faster initial convergence compared with standard Newton–
Krylov solvers. This is particularly attractive in applications that do not require high accuracy,
e.g., image classification. LSEMINK also considerably reduces the time-to-solution and has
better scalability compared to geometric programming and natural gradient descent approaches.
It avoids the respective drawbacks of the solvers outlined in Section 1. Moreover, it is more
robust to ill-conditioning arising from the nonsmoothness of the problem; see Section 4 for

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

622 K. KAN, J. NAGY, AND L. RUTHOTTO

Algorithm 1 Outline of LSEMINK for solving (1.1).

1: Inputs: Linear models x 7→ J(k)x, x 7→ J(k)>x, b(k), c(k), and weights w(k) for
k = 1, 2, . . . , N . Initial guess x0, initial β0.

2: Inputs: Tolerances xtol, gtol for Newton iterations. Tolerances ktol and kmaxiter for the
Krylov subspace method. Line search parameter γ ∈ (0, 1).

3: for i = 0, 1, 2, . . . do
4: compute f(xi),∇f(xi) and build routines for performing v 7→ ∇2f(xi)v
5: for j = 0, 1, 2, . . . do
6: compute ∆xi by applying Krylov-subspace methods to approximately solve

∇2qi(xi)∆xi = −∇qi(xi) with the current βi and the Krylov subspace
Kr(∇2qi(xi),∇qi(xi)) until the relative residue drops below ktol or the number of
iterations exceeds kmaxiter

7: if f(xi + ∆xi) < f(xi) + γ∇f(xi)
>∆xi then

8: set xi+1 = xi + ∆xi and break
9: else

10: set βi = 2βi
11: end if
12: end for
13: if ‖xi+1 − xi‖2/‖xi‖2 < xtol or ‖∇f(xi+1)‖2 < gtol then
14: break
15: end if
16: if j = 0 then
17: set βi+1 = 0.5 ∗ βi
18: else
19: set βi+1 = βi
20: end if
21: end for
22: Output: approximate solution xi+1.

numerical experiments. The implementation1 is easy to experiment with, as it only requires
minimal knowledge and input from the user.

3. Proof of global convergence. In this section, we prove the global convergence of
the proposed LSEMINK algorithm. It is noteworthy that existing convergence results cannot
be directly applied due to the rank-deficiency of our modified Hessian. For instance, it is
assumed in [39, Chapter 6.2] that the modified Hessian is positive definite and has a bounded
condition number. Our proof is modified from the approach in [28], which studies proximal
Newton-type methods for composite functions. We first state the main theorem.

THEOREM 3.1. Assume that f is defined in (1.1) and inf
x
f(x) is attained in R. Then

the sequence {xi}i generated by LSEMINK converges to a global minimum regardless of the
choice of the initial guess x0.

We note that Theorem 3.1 also applies to the case where the Newton equation (2.2) is
solved exactly. In the following, we will first discuss some properties of LSEMINK. We will
then state and prove four lemmas, which will aid the proof of Theorem 3.1.

For simplicity of exposition and without loss of generality, in this section, we drop the
superscript and focus on the case with only one linear model defined by J, b, and c, and the

1We provide a MATLAB implementation at https://github.com/KelvinKan/LSEMINK.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://github.com/KelvinKan/LSEMINK


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LSEMINK: A MODIFIED NEWTON–KRYLOV METHOD 623

weight w = 1. In this case, the Krylov subspace in (2.3) becomes

(3.1) Kr(∇2qi(xi),∇qi(xi)) = Kr(J>(Hi + βiI)J,J
>(pi − c)).

We note that our proof can straightforwardly be extended to the general case by setting

J = [J(1); . . . ;J(N)], c = [w(1)c(1); . . . ;w(N)c(N)],

pi = [w(1)p
(1)
i ; . . . ;w(N)p

(N)
i ], and Hi = blkdiag(w(1)H

(1)
i , . . . , w(N)H

(N)
i ),

where blkdiag denotes a block diagonal matrix.
Recall that the Krylov subspace in (3.1) is constructed to approximately solve the New-

ton equation and obtain the update direction ∆xi. This is equivalent to building a rank-r
approximation∇2qi(xi) ≈ ViTiV

>
i and computing the next iterate by

(3.2) xi+1 = arg min
x

1

2
(x− xi)

>ViTiV
>
i (x− xi) +∇f(xi)

>(x− xi).

Here, the columns of Vi ∈ Rn×r form an orthonormal basis for the Krylov subspace, and
Ti ∈ Rr×r. The precise structure of Ti depends on the Krylov subspace method. For instance,
if we use the conjugate gradient (CG) method, then Ti is tridiagonal [31, Section 3.1]. Since
∇f(xi) ∈ row(J) = col(J>(Hi + βiI)J) for βi > 0 and the Krylov subspace always
contains ∇f(xi), the column space of ViTiV

>
i always contains ∇f(xi). This means that

the quadratic function (3.2) is bounded from below [1] and admits a minimum. The iterate
xi+1 is the minimum-norm solution of (3.2) given by

(3.3) xi+1 = xi + ∆xi, where ∆xi = −ViT
−1
i V>i ∇f(xi).

Next, we state and prove some lemmas, which will be used to prove the main theorem.
LEMMA 3.2 (Update Direction). The update ∆xi generated by the iterative scheme (3.3)

satisfies

∆xi ∈ row(J),(3.4)

∆x>i ∇2qi(xi)∆xi = ∆x>i ViTiV
>
i ∆xi.(3.5)

Here, (3.4) means that the update direction is in the row space of the linear model.
Proof. By construction, the Krylov subspace (2.3) is a subspace of row(J), and by (3.3)

we have ∆xi ∈ col(Vi). Thus we have ∆xi ∈ col(Vi) ⊆ row(J), which proves (3.4).
To prove (3.5) we note that ∆xi ∈ col(Vi), and hence its projection onto the orthogonal

complement of col(Vi) vanishes. To be more precise, consider the full representation of the
Hessian of (2.1) obtained by performing n iterations of the Krylov subspace method

∇2qi(xi) = J>(Hi + βiI)J = ṼiT̃iṼ
>
i .

Here, Ṽi ∈ Rn×n is an orthogonal matrix, and its first r columns satisfy Ṽi(:, 1 : r) = Vi,
T̃i ∈ Rn×n, and its rth leading principal submatrix satisfies T̃i(1 : r, 1 : r) = Ti. The
structure of Ṽi depends on the Krylov subspace method. For instance, Ṽi is tridiagonal if we
use the CG method [31]. We have

∆x>i ∇2qi(xi)∆xi = ∆x>i ṼiT̃iṼ
>
i ∆xi

=
[
∆x>i Vi 0

]
Ṽi

[
V>i ∆xi

0

]
= ∆x>i ViTiV

>
i ∆xi .

Here, in the second step we used ∆xi ∈ col(Vi) ⊥ col(Ṽi(:, r + 1 : n)). This proves (3.5).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

624 K. KAN, J. NAGY, AND L. RUTHOTTO

LEMMA 3.3 (Descent Direction). The update ∆xi generated by (3.3) satisfies the descent
condition

(3.6) ∇f(xi)
>∆xi ≤ −∆x>i J

>(Hi + βiI)J∆xi .

Proof. Since xi+1 is a solution to (3.2), for any t ∈ (0, 1), we have

1

2
∆x>i ViTiV

>
i ∆xi +∇f(xi)

>∆xi ≤
1

2
(t∆xi)

>ViTiV
>
i (t∆xi) +∇f(xi)

>(t∆xi).

By rearranging the terms, we have

(1− t2)

2
∆x>i ViTiV

>
i ∆xi + (1− t)∇f(xi)

>∆xi ≤ 0

(1 + t)

2
∆x>i ViTiV

>
i ∆xi +∇f(xi)

>∆xi ≤ 0

∇f(xi)
>∆xi ≤ −

(1 + t)

2
∆x>i ViTiV

>
i ∆xi .

Letting t→ 1−, we obtain

(3.7) ∇f(xi)
>∆xi ≤ −∆x>i ViTiV

>
i ∆xi .

Combining (3.5) and (3.7), we obtain (3.6).

In the following lemma, we will make use of the fact that ∇f is Lipschitz continuous.
This is because the gradient of the log-sum-exp function is the softmax function, which is
Lipschitz continuous [10, 24].

LEMMA 3.4 (Armijo Line-Search Condition). Let λmin be the smallest nonzero eigen-
value of J>J and L be the Lipschitz constant for ∇f . For a line-search parameter γ ∈ (0, 1)
and

(3.8) βi ≥
L

2λmin(1− γ)
,

the following Armijo line-search condition holds:

(3.9) f(xi+1) ≤ f(xi) + γ∇f(xi)
>(xi+1 − xi).

In (3.8), the constant L is the global Lipschitz constant for ∇f . In practice, as long as βi
satisfies (3.8) with a local Lipschitz constant of∇f around xi, the Armijo condition (3.9) will
hold. Recall that a larger βi corresponds to a smaller step size in a nonlinear line-search arc.
The line-search scheme of LSEMINK adaptively chooses the value of βi so that the Armijo
condition is satisfied. If the Armijo condition is not satisfied, we then increase βi (decrease the
step size); see lines 7–11 of Algorithm 1. Theorem 3.4 guarantees that the Armijo condition
must hold for a large enough βi. Therefore, the line-search scheme must stop at some point and
identify a βi that satisfies the Armijo condition. Moreover, we decrease βi (increase the step
size) if the Armijo condition is satisfied before the line search; see lines 16–20 of Algorithm 1.
This allows LSEMINK to flexibly take a larger step and make more progress.

Proof of Lemma 3.4. First, note that

(3.10) ‖J(xi+1 − xi)‖2Hi+βiI ≥ βi‖J(xi+1 − xi)‖22 ≥ βiλmin‖(xi+1 − xi)‖22.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LSEMINK: A MODIFIED NEWTON–KRYLOV METHOD 625

Here, in the second step we used that (xi+1 − xi) ∈ row(J) = row(J>J) (Lemma 3.2),
row(J>J)⊥ = null(J>J), and λmin is the smallest nonzero eigenvalue of J>J. Next, we
have

f(xi+1) ≤ f(xi) +∇f(xi)
>(xi+1 − xi) +

L

2
‖xi+1 − xi‖22

≤ f(xi) +∇f(xi)
>(xi+1 − xi) + βiλmin(1− γ)‖xi+1 − xi‖22

≤ f(xi) +∇f(xi)
>(xi+1 − xi) + (1− γ)‖J(xi+1 − xi)‖2Hi+βiI

≤ f(xi) +∇f(xi)
>(xi+1 − xi)− (1− γ)∇f(xi)

>(xi+1 − xi)

= f(xi) + γ∇f(xi)
>(xi+1 − xi).

Here, the first, second, third, and fourth steps use the Lipschitz continuity of∇f , (3.8), (3.10),
and Lemma 3.3, respectively.

LEMMA 3.5 (Stationary Point). The iterative scheme (3.3) generates a fixed point x∗ if
and only if x∗ is a stationary point.

Proof. "⇐": Substituting ∇f(x∗) = 0 into (3.3), we obtain ∆x∗ = 0. Hence, x∗ is a
fixed point.
"⇒": Let v = x− x∗ for an arbitrary x. Since x∗ is a fixed point to (3.2), we have, for any
t ∈ R,

1

2
(tv)>V∗T∗V

>
∗ (tv) +∇f(x∗)

>(tv)

≥ 1

2
(x∗ − x∗)

>V∗T∗V
>
∗ (x∗ − x∗) +∇f(x∗)

>(x∗ − x∗).

Simplifying this, we obtain

t2

2
v>V∗T∗V

>
∗ v + t∇f(x∗)

>v ≥ 0,

∇f(x∗)
>v ≥ − t

2
v>V∗T∗V

>
∗ v.

Taking t → 0, we obtain ∇f(x∗)
>v ≥ 0 for any v. This implies ∇f(x∗) is a zero vector,

that is, x∗ is a stationary point.
Now, we are ready to prove the main theorem.
Proof of Theorem 3.1. The sequence {f(xi)}i is decreasing because the update directions

are descent directions (Lemma 3.3) and the Armijo line-search scheme guarantees sufficient
descent at each step (Lemma 3.4). By the continuity of f , it is closed [2, Proposition 1.1.2].
Since f is closed and attains its infimum in R, the decreasing sequence {f(xi)}i converges to
a limit.

By the sufficient descent condition (3.9), the convergence of {f(xi)}i, and γ > 0, the
term

∇f(xi)
>(xi+1 − xi)

converges to zero. Hence, by (3.6),

∆x>i J
>(Hi + βiI)J∆xi

converges to zero. Since (Hi + βiI) is positive definite and ∆xi ∈ row(J) (Lemma 3.2), ∆xi
converges to the zero vector.

This implies that xi converges to a fixed point of (3.3). By Lemma 3.5, xi converges to a
stationary point. By the convexity of f , xi converges to a global minimum.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

626 K. KAN, J. NAGY, AND L. RUTHOTTO

4. Numerical experiments. We perform two numerical experiments for minimizing
the log-sum-exp function for a linear model. We compare the performance of the proposed
LSEMINK method with three commonly applied line-search iterative methods and three
disciplined convex programming (DCP) solvers; see Section 4.1. In Section 4.2, we consider
multinomial logistic regression (MLR) arising in image classification. In Section 4.3, we
experiment with a log-sum-exp minimization problem arising in geometric programming. The
experimental results show that LSEMINK has much better initial convergence and is more
robust and scalable than the comparing methods.

4.1. Benchmark methods. We compare the proposed LSEMINK method with three
common line-search iterative schemes and three DCP solvers for machine learning and
geometric programming applications. Firstly, we implement a standard Newton-CG (NCG)
algorithm with a backtracking Armijo line search. Secondly, we compare with an L2-natural
gradient descent (NGD) method [40, 43] that approximately solves

min
x

1

2
∇f(xi)

>(x− xi) +
λi
2

N∑
k=1

w(k)‖J(k)(x− xi)‖22,

using the CG method to obtain the next iterate, where λi controls the step size and is determined
by a backtracking Armijo line-search scheme and the last term is a proximal term acting on
the row space of the linear model. This scheme bears similarity to LSEMINK as the proximal
term has the same effect as the shift in the Hessian of LSEMINK. However, it does not use
the Hessian and only approximates curvature information using the linear model. Thirdly, to
demonstrate the effectiveness of the Hessian modification in LSEMINK, we compare with a
standard modified Newton–Krylov (SMNK) scheme, which approximately solves (1.2) with
Mi = I using Lanczos tridiagonalization, which has the same iterates as the CG method up
to rounding errors but allows computations for the update direction to be re-used during line
search. For LSEMINK, the Newton equation (2.2) is approximately solved by CG. We note
that an update direction has to be re-computed for each attempted value of βi during line search.
In other words, unlike SMNK, the update direction computation cannot be re-used. However,
our experimental results show that LSEMINK is still efficient in terms of computational cost
thanks to the effectiveness of the modified Hessian. In each experiment, we use the same
maximum number of iterations and tolerance for the CG and Lanczos schemes across different
line-search iterative methods.

In addition, we apply CVX [15], a DCP package, paired with three different backend
solvers (SPDT3 [47], SeDuMi [45], and MOSEK [33]). The best precision for CVX is used in
the experiments; see [15] for detailed information.

Cost measurement. We measure the computational costs for different line-search iterative
methods in terms of work units. In particular, a work unit represents a matrix-vector product
with the linear models or their transpose. This is because these computations are usually the
most expensive steps. For instance, in the MLR experiments of Section 4.2, the J(k) matrices
of the linear models contain the propagated high-dimensional features of all the training data.
Note that the number of work units in one iteration can differ across different line-search
iterative methods since a different number of CG/Lanczos iterations or line-search updates can
be performed. In addition to work units, we also compare computational costs for all methods
in total runtime.

4.2. Experiment 1: image classification. Perhaps the most prominent example of log-
sum-exp minimization is multinomial logistic regression (MLR) in supervised classification.
Here, we experiment on an MLR problem for the classification of MNIST [27] and CIFAR-
10 [25] image datasets. The MNIST dataset consists of 60,000 28×28 hand-written images for

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LSEMINK: A MODIFIED NEWTON–KRYLOV METHOD 627

FIG. 4.1. Example images from the MNIST data set.

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

FIG. 4.2. Example images for the CIFAR-10 dataset.

digits from 0 to 9. The CIFAR-10 consists of 60,000 32× 32 color images equally distributed
for the following ten classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. Example images for the two datasets are shown in Figure 4.1 and Figure 4.2,
respectively.

Problem description. Let nf be the number of features, nc be the number of classes, and
∆nc be the probability simplex in Rnc . We use {y(k), c(k)}Nk=1 ⊂ Rnf ×∆nc to denote the
dataset, where y(k) and c(k) are the input feature and target output label, respectively. In our
experiments, we consider two feature extractors that enhance the features y(k) by propagating
it into a higher-dimensional space Rnp . The first feature extractor is the random feature model
(RFM) [18, 44]. It applies a nonlinear transformation given by

aRFM(y(k)) = σ(Zy(k) + b),

where σ is the element-wise ReLU activation function, Z ∈ Rnp×nf , and b ∈ Rnp are
randomly generated. The second feature extractor is performed by propagating the features
through the hidden layers of a pre-trained AlexNet [26]. In particular, the AlexNet was
pre-trained on the ImageNet dataset [6], which is similar to the CIFAR-10 dataset, using
MATLAB’s deep neural networks toolbox. This procedure is also known as transfer learning.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

628 K. KAN, J. NAGY, AND L. RUTHOTTO

These feature extractors can empirically enhance the generalization of the model, i.e., the
ability to classify unseen data correctly.

The goal of the supervised classification problem is to train a softmax classifier

(4.1) s(X,a(y(k))) =
exp(Xa(y(k)))

1nc1
>
nc

exp(Xa(y(k)))

such that s(X,a(y(k))) ≈ c(k). Here, X are model parameters, the exp and division are
applied element-wise, 1nc

is an nc-dimensional vector of all ones, and a : Rnf → Rnp

is a feature extractor. To this end, we first consider the sample average approximation
(SAA) [22, 23, 36] of an MLR problem formulated as

min
X∈Rnc×np

F (X) = − 1

N

N∑
k=1

c(k)
>

log
(
s(X,a(y(k)))

)
=

1

N

N∑
k=1

[
(c(k)

>
1nc) log

(
1>nc

exp(Xa(y(k)))
)
− c(k)

>
Xa(y(k))

]
=

1

N

N∑
k=1

[
log
(
1>nc

exp(Xa(y(k)))
)
− c(k)

>
Xa(y(k))

]
,

where the log operation is applied element-wise, and we use the fact that c(k)
>
1nc

= 1 since
c(k) ∈ ∆nc

. The feature extractor is assumed to be fixed since the focus is on the log-sum-exp
minimization problem. We vectorize the variable x = vec(X) so that the MLR problem
becomes

min
x∈Rncnp

f(x) =
1

N

N∑
k=1

[
log
(
1>nc

exp(J(k)x)
)
− c(k)

>
J(k)x

]
,

which is of the form of (1.1) and where J(k) = a(y(k))> ⊗ Inc
.

Experimental results. In the MLR experiments, the line-search iterative solvers stop when
the norm of gradient is below 10−14 or after 3,000 work units. We stop the CG and Lanczos
scheme when the norm of the relative residual drops below 10−3 or after 20 iterations.

We first perform a small-scale experiment in which only N = 100 training data are used
and a random feature model with dimension m = 1,000 is applied. Since under this setup
the data can be fit perfectly to achieve a zero training error, the model predictions (4.1) are
standard basis vectors, and the Hessian is a zero matrix at an optimum. In this situation, the
second-order approximation is unbounded from below, and the robustness of the solvers can
be tested. The results are reported in Table 4.1 and Figure 4.3. For the MNIST experiment,
the standard Newton-CG scheme fails to converge near the end where the Hessian vanishes.
For this, we report the values for the last iterate before the Hessian vanishes. The natural
gradient descent method has the slowest convergence and has yet to converge at the end. Both
the standard modified Newton–Krylov method and LSEMINK achieve the stopping criteria
under the specified work units. In particular, LSEMINK has superior convergence where the
objective function value is up to five orders of magnitude smaller than the second-best method
during optimization. It also has better initial convergence and the fastest time-to-solution. This
demonstrates the effectiveness of LSEMINK and the efficacy of its modified Hessian over
the standard one. SeDuMi, particularly SDPT3, can achieve very accurate results, but their
runtime is about 15 times more than the LSEMINK. MOSEK fails to obtain a solution.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LSEMINK: A MODIFIED NEWTON–KRYLOV METHOD 629

TABLE 4.1
Results on small-scale MLR experiments described in Section 4.2 in which the propagated random features

have dimension m = 1,000 and N = 100 training data are used. The final objective function value, gradient norm,
and total runtime are reported. The best results are highlighted in bold. Some results are not shown because the
corresponding scheme fails to return a solution. The tests are run on an Apple Macbook Pro with a 10-core M1 Max
CPU and 32 GB of memory, and the software platform is MATLAB R2022a.

Dataset NCG NGD SMNK LSEMINK SeDuMi SDPT3 MOSEK

MNIST
f 1.50e-15 1.54e-02 1.41e-15 8.37e-16 6.65e-15 0.00e+00 –

‖∇f‖2 1.16e-14 1.33e-01 2.68e-15 7.05e-15 2.05e-14 5.14e-140 –
Time 2.23s 2.58s 3.03s 1.70s 37.88s 28.51s –

CIFAR-10
f 1.31e-15 1.27e-02 4.26e-15 8.77e-16 7.93e-15 0.00e+00 –

‖∇f‖2 6.16e-15 7.43e-02 6.58e-15 7.33e-15 2.11e-14 1.65e-212 –
Time 1.95s 2.60s 3.02s 1.69s 31.60s 36.33s –

MNIST CIFAR-10

T
ra
in
in
g
E
rr
or

N
or
m

of
G
ra
d
ie
nt

0 1,000 2,000 3,000

101

10−3

10−7

10−11

10−15

NCG
NGD
SMNK
LSEMINK

0 1,000 2,000 3,000

101

10−3

10−7

10−11

10−15

Work Units

0 1,000 2,000 3,000

101

10−3

10−7

10−11

10−15

0 1,000 2,000 3,000

101

10−3

10−7

10−11

10−15

Work Units

FIG. 4.3. Experimental results on small-scale MLR experiments in which the propagated random features have
dimensions np = 1,000 and N = 100 training data are used.

We then experiment with n = 50,000 training data and 10,000 validation data. For the
MNIST dataset, we use an RFM to propagate the features to an m = 1,000-dimensional
space. For the CIFAR-10 dataset, features with dimension m = 9,216 are extracted from the
pool5 layer of a pre-trained AlexNet. Here, different feature extractors are used for the two
datasets because a better validation accuracy can be achieved. In Figure 4.4, the results for an
MLR problem are illustrated. In Figure 4.5, we report the performance for an MLR problem
with a Tikhonov regularization term α

2 ‖x‖22, where α = 10−3. Using our state-of-the-art
laptop, the CVX solvers cannot complete the experiments within thirty minutes, while the
line-search methods finish in thirty seconds. Hence, we focus on the latter methods in this
test. The figures show that the L2-natural gradient descent method is the slowest. The standard

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

630 K. KAN, J. NAGY, AND L. RUTHOTTO

MNIST CIFAR-10

T
ra
in
in
g
E
rr
or

T
ra
in
in
g
A
cc
u
ra
cy

V
al
id
at
io
n
A
cc
u
ra
cy

N
or
m

of
G
ra
d
ie
nt

0 1,000 2,000
10−3

10−2

10−1

100

101

102

NCG
NGD
SMNK
LSEMINK

0 1,000 2,000
0

0.2

0.4

0.6

0.8

1

0 1,000 2,000
0

0.2

0.4

0.6

0.8

1

0 1,000 2,000
10−4

10−3

10−2

10−1

100

101

Work Units

0 1,000 2,000

10−2

10−1

100

101

102

0 1,000 2,000
0

0.2

0.4

0.6

0.8

1

0 1,000 2,000
0

0.2

0.4

0.6

0.8

0 1,000 2,000
10−3

10−2

10−1

100

101

102

Work Units

FIG. 4.4. Experimental results on MLR without regularization. The x-axes report the number of work units.
Here, N = 50,000 training data and 10,000 validation data are used.

Newton-CG and standard modified Newton–Krylov methods underperform in the MNIST
and CIFAR-10 experiments, respectively. In contrast, LSEMINK is very competitive on both
datasets. Specifically, it has good initial convergence where the objective function value is
up to an order of magnitude smaller than the second-best scheme in the first few iterations.
Moreover, its results are comparable with the other methods in terms of final training error,
training accuracy, validation accuracy, and norm of the gradient.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LSEMINK: A MODIFIED NEWTON–KRYLOV METHOD 631

MNIST CIFAR-10

T
ra
in
in
g
E
rr
or

T
ra
in
in
g
A
cc
u
ra
cy

V
al
id
at
io
n
A
cc
u
ra
cy

N
or
m

of
G
ra
d
ie
nt

0 1,000 2,000
10−1

100

101

102
NCG
NGD
SMNK
LSEMINK

0 1,000 2,000
0

0.2

0.4

0.6

0.8

1

0 1,000 2,000
0

0.2

0.4

0.6

0.8

1

0 1,000 2,000

100

10−4

10−8

10−12

Work Units

0 1,000 2,000
10−1

100

101

102

0 1,000 2,000
0

0.2

0.4

0.6

0.8

1

0 1,000 2,000
0

0.2

0.4

0.6

0.8

0 1,000 2,000

10−1

100

101

Work Units

FIG. 4.5. Experimental results on MLR with a Tikhonov regularization α
2
‖x‖22, with α = 10−3. The x-axes

report the number of work units. Here, N = 50,000 training data and 10,000 validation data are used.

4.3. Experiment 2: geometric programming. We consider a log-sum-exp minimization
problem which commonly arises in geometric programming [46, 51, 52] and is used to test
optimization algorithms [21, 41]. In particular, it is formulated as

min
x
η log

(
1>m exp((Jx + b)/η)

)
,

where x ∈ Rn, J ∈ Rm×n, and η controls the smoothness of the problem. In particular, when
η → 0, the objective function converges to the point-wise maximum function max(Jx + b)
and its Hessian vanishes.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

632 K. KAN, J. NAGY, AND L. RUTHOTTO

TABLE 4.2
Results on geometric programming experiments described in Section 4.3. The final objective function value,

gradient norm, and total runtime are reported. The best results are highlighted in bold. Some results are not shown
because the corresponding scheme fails to return a solution. The tests are run on an Apple Macbook Pro with a
10-core M1 Max CPU and 32 GB of memory, and the software platform is MATLAB R2022a.

η NCG NGD SMNK LSEMINK SeDuMi SDPT3 MOSEK

1e-5
f – 7.48e+00 2.47e+00 1.44e+00 9.45e-01 9.45e-01 –

‖∇f‖2 – 4.68e+00 5.96e+00 5.65e+00 5.76e-03 2.52e-06 –
Time – 0.44s 1.43s 0.38s 2.18s 8.40s –

1e-3
f – 7.37e+00 9.48e-01 9.48e-01 – 9.48e-01 –

‖∇f‖2 – 4.68e+00 3.80e-13 7.50e-11 – 2.51e-06 –
Time – 0.40s 0.80s 0.27s – 17.85s –

1e-1
f 1.24e+00 2.43e+00 1.24e+00 1.24e+00 – – –

‖∇f‖2 2.72e-15 1.88e+00 2.38e-15 3.65e-15 – – –
Time 0.09s 0.35s 0.02s 0.02s – – –

We follow the experimental setups in [21, 41], which use m = 100, n = 20, and generate
the entries of J and b randomly. We perform the experiments with small values of η to test the
robustness of the methods. In particular, we test with η = 10−5, 10−3, and 10−1, respectively.
We stop the line-search iterative schemes after 10,000 work units. The CG and Lanczos
schemes stop when the relative residual drops below 10−3 or after 20 iterations.

The experimental results are shown in Table 4.2 and Figure 4.6. We see that the exper-
iments are very challenging as the standard Newton-CG method and all the CVX solvers
cannot return a solution in some or all the experiments. In particular, the standard Newton-CG
method breaks in the first iteration in two of the experiments. This is because the quadratic
approximation is unbounded from below. Both SeDuMi and SDPT3 algorithms fail in some
of the experiments. MOSEK fails in all the experiments. When the CVX solvers succeed in
returning a solution, they have significantly longer runtime (up to 60 times slower) compared to
the line-search methods. Similar to the previous experiments, the L2-natural gradient descent
method has the slowest convergence and has yet to converge after the specified work units. The
standard modified Newton–Krylov method and LSEMINK are robust in the experiments and
can return accurate solutions for η = 10−3 and 10−1. This indicates the effectiveness of the
Hessian modification in handling challenging optimization problems. Moreover, LSEMINK
converges faster than the comparing standard modified Newton–Krylov method in the early
stage. This indicates the effectiveness of the proposed Hessian modification over the standard
one. However, when η = 10−3 and 10−5, LSEMINK and all comparing methods cannot return
a solution with the desired gradient norm. This is because the convergence of gradient-based
methods like LSEMINK requires the differentiability of the objective function. However, for a
small η, the objective function is close to being non-differentiable. Moreover, this also implies
that the gradient is close to being discontinuous, which can be a reason of the oscillating
gradient norm in Figure 4.6 when η = 10−5.

5. Conclusion. We present LSEMINK, a modified Newton–Krylov algorithm tailored
for optimizing the log-sum-exp function for a linear model. The novelty of our approach
is incorporating a Hessian shift in the row space of the linear model. This does not change
the minimizers and renders the quadratic approximation to be bounded from below and
the overall scheme to provably converge to a global minimum under standard assumptions.
Since the update direction is computed using Krylov subspace methods which only require
matrix-vector products with the linear model, LSEMINK is applicable to large-scale problems.
Numerical experiments on image classification and geometric programming illustrate that
LSEMINK has significantly faster initial convergence than standard Newton–Krylov methods,
which is particularly attractive in applications like machine learning, considerably reduces the
time-to-solution, and is more scalable compared to DCP solvers and natural gradient descent

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LSEMINK: A MODIFIED NEWTON–KRYLOV METHOD 633

Objective function Norm of gradient

η
=
10

−
5

η
=
10

−
3

η
=
10

−
1

0 5 10
1.5

3

4.5

6

7.5
NCG
NGD
SMNK
LSEMINK

0 5 10

1

2.5

5

7.5

0 5 10

2.5

5

7.5

Work Units

0 5 10

1.5

3

4.5

6

0 5 10

101

10−2

10−5

10−8

10−11

10−14

0 5 10

101

10−2

10−5

10−8

10−11

10−14

10−16

Work Units

FIG. 4.6. Experimental results on geometric programming. The x-axes report the number of work units (in
thousands). The results for the standard Newton-CG scheme are not shown because it fails in the first iteration.

methods. Also, LSEMINK is more robust to ill-conditioning arising from the nonsmoothness
of the problem. We provide a MATLAB implementation at https://github.com/
KelvinKan/LSEMINK.

Acknowledgements. This work was supported in part by NSF awards DMS 1751636,
DMS 2038118, DMS-2208294, AFOSR grant FA9550-20-1-0372, and US DOE Office of
Advanced Scientific Computing Research Field Work Proposal 20-023231. The authors would
like to thank Samy Wu Fung for sharing the code for propagating the features of the CIFAR-10
dataset with AlexNet.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://github.com/KelvinKan/LSEMINK
https://github.com/KelvinKan/LSEMINK


ETNA
Kent State University and

Johann Radon Institute (RICAM)

634 K. KAN, J. NAGY, AND L. RUTHOTTO

REFERENCES

[1] A. BECK, Introduction to Nonlinear Optimization, SIAM, Philadelphia, 2014.
[2] D. BERTSEKAS, Convex Optimization Theory, Athena Scientific, Nashua, 2009.
[3] S. P. BOYD AND L. VANDENBERGHE, Convex Optimization, Cambridge University Press, Cambridge, 2004.
[4] D. CALVETTI, G. H. GOLUB, AND L. REICHEL, Estimation of the L-curve via Lanczos bidiagonalization,

BIT Numer. Math., 39 (1999), pp. 603–619.
[5] J. CHUNG, J. G. NAGY, AND D. P. O’LEARY, A weighted GCV method for Lanczos hybrid regularization,

Electron. Trans. Numer. Anal., 28 (2007/08), pp. 149–167.
https://etna.ricam.oeaw.ac.at/vol.28.2007-2008/pp149-167.dir/pp149-167.pdf

[6] J. DENG, W. DONG, R. SOCHER, L.-J. LI, K. LI, AND L. FEI-FEI, Imagenet: a large-scale hierarchical
image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE Conference
Proceedings, Los Alamitos, 2009, pp. 248–255.

[7] J. DUCHI, E. HAZAN, AND Y. SINGER, Adaptive subgradient methods for online learning and stochastic
optimization., J. Mach. Learn. Res., 12 (2011), pp. 2121–2159.

[8] J. C. DUNN, Newton’s method and the Goldstein step-length rule for constrained minimization problems,
SIAM J. Control Optim., 18 (1980), pp. 659–674.

[9] H. W. ENGL, M. HANKE, AND A. NEUBAUER, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.
[10] B. GAO AND L. PAVEL, On the properties of the softmax function with application in game theory and

reinforcement learning, Preprint on arXiv, 2017. https://arxiv.org/abs/1704.00805
[11] A. GHODOUSIAN, A. N. AZAD, AND H. AMIRI, Log-sum-exp optimization problem subjected to Lukasiewicz

fuzzy relational inequalities, Preprint on arXiv, 2022. https://arxiv.org/abs/2206.09716
[12] P. E. GILL AND W. MURRAY, Newton-type methods for unconstrained and linearly constrained optimization,

Math. Programming, 7 (1974), pp. 311–350.
[13] G. H. GOLUB, M. HEATH, AND G. WAHBA, Generalized cross-validation as a method for choosing a good

ridge parameter, Technometrics, 21 (1979), pp. 215–223.
[14] I. GOODFELLOW, Y. BENGIO, AND A. COURVILLE, Deep Learning, MIT Press, Cambridge, 2016.
[15] M. GRANT, S. BOYD, AND Y. YE, CVX: MATLAB software for disciplined convex programming, 2008.

https://cvxr.com/cvx
[16] J. GREENSTADT, On the relative efficiencies of gradient methods, Math. Comp., 21 (1967), pp. 360–367.
[17] P. C. HANSEN, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.
[18] G.-B. HUANG, Q.-Y. ZHU, AND C.-K. SIEW, Extreme learning machine: theory and applications, Neuro-

computing, 70 (2006), pp. 489–501.
[19] K. KAN, J. G. NAGY, AND L. RUTHOTTO, Avoiding the double descent phenomenon of random feature models

using hybrid regularization, Preprint on arXiv, 2020. https://arxiv.org/abs/2012.06667
[20] K. KAN, S. W. FUNG, AND L. RUTHOTTO, PNKH-B: A projected Newton-Krylov method for large-scale

bound-constrained optimization, SIAM J. Sci. Comput., 43 (2021), pp. S704–S726.
[21] D. KIM AND J. A. FESSLER, Adaptive restart of the optimized gradient method for convex optimization,

J. Optim. Theory Appl., 178 (2018), pp. 240–263.
[22] S. KIM, R. PASUPATHY, AND S. G. HENDERSON, A guide to sample average approximation, in Handbook of

Simulation Optimization, M. C. Fu, ed., Springer, New York, 2015, pp. 207–243.
[23] A. J. KLEYWEGT, A. SHAPIRO, AND T. HOMEM-DE-MELLO, The sample average approximation method

for stochastic discrete optimization, SIAM J. Optim., 12 (2002), pp. 479–502.
[24] W. KONG, W. KRICHENE, N. MAYORAZ, S. RENDLE, AND L. ZHANG, Rankmax: an adaptive projec-

tion alternative to the softmax function, in Advances in Neural Information Processing Systems, 33,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds., NIPS Proceedings, 2020, pp. 633–
643.

[25] A. KRIZHEVSKY, Learning multiple layers of features from tiny images, Tech. Report., University of Toronto,
Toronto, 2009.

[26] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, ImageNet classification with deep convolutional
neural networks, Commun. ACM, 60 (2017), pp. 84–90.

[27] Y. LECUN, The MNIST database of handwritten digits, Web Resource, 1998.
https://yann.lecun.com/exdb/mnist/

[28] J. D. LEE, Y. SUN, AND M. A. SAUNDERS, Proximal Newton-type methods for minimizing composite
functions, SIAM J. Optim., 24 (2014), pp. 1420–1443.

[29] K. LEVENBERG, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math.,
2 (1944), pp. 164–168.

[30] D. W. MARQUARDT, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl.
Math., 11 (1963), pp. 431–441.

[31] G. MEURANT AND Z. STRAKOŠ, The Lanczos and conjugate gradient algorithms in finite precision arithmetic,
Acta Numer., 15 (2006), pp. 471–542.

[32] J. J. MORÉ AND D. C. SORENSEN, On the use of directions of negative curvature in a modified Newton

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://etna.ricam.oeaw.ac.at/vol.28.2007-2008/pp149-167.dir/pp149-167.pdf
https://arxiv.org/abs/1704.00805
https://arxiv.org/abs/2206.09716
https://cvxr.com/cvx
https://arxiv.org/abs/2012.06667
https://yann.lecun.com/exdb/mnist/


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LSEMINK: A MODIFIED NEWTON–KRYLOV METHOD 635

method, Math. Programming, 16 (1979), pp. 1–20.
[33] MOSEK APS, MOSEK optimization toolbox for MATLAB, User’s Guide and Reference Manual, Version, 4,

2019. https://docs.mosek.com/
[34] , MOSEK modeling cookbook, 2020. https://docs.mosek.com/
[35] S. G. NASH, Newton-type minimization via the Lanczos method, SIAM J. Numer. Anal., 21 (1984), pp. 770–

788.
[36] A. NEMIROVSKI, A. JUDITSKY, G. LAN, AND A. SHAPIRO, Robust stochastic approximation approach to

stochastic programming, SIAM J. Optim., 19 (2009), pp. 1574–1609.
[37] E. NEWMAN, L. RUTHOTTO, J. HART, AND B. VAN BLOEMEN WAANDERS, Train like a (Var)Pro: efficient

training of neural networks with variable projection, SIAM J. Math. Data Sci., 3 (2021), pp. 1041–1066.
[38] F. NIELSEN AND K. SUN, Guaranteed bounds on the Kullback–Leibler divergence of univariate mixtures,

IEEE Signal Process. Letters, 23 (2016), pp. 1543–1546.
[39] J. NOCEDAL AND S. WRIGHT, Numerical Optimization, Springer, New York, 2006.
[40] L. NURBEKYAN, W. LEI, AND Y. YANG, Efficient natural gradient descent methods for large-scale optimiza-

tion problems, Preprint on arXiv, 2022. https://arxiv.org/abs/2202.06236
[41] B. O’DONOGHUE AND E. CANDÈS, Adaptive restart for accelerated gradient schemes, Found. Comput.

Math., 15 (2015), pp. 715–732.
[42] N. PARIKH AND S. BOYD, Proximal algorithms, Found. Trends Optimization, 1 (2014), pp. 127–239.
[43] R. PASCANU AND Y. BENGIO, Revisiting natural gradient for deep networks, Preprint on arXiv, 2013.

https://arxiv.org/abs/1301.3584
[44] A. RAHIMI AND B. RECHT, Random features for large-scale kernel machines, in Advances in Neural

Information Processing Systems, 20, J. Platt, D. Koller, Y. Singer, and S. Roweis, eds., NIPS Proceedings,
2007.

[45] J. F. STURM, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods
Softw., 11/12 (1999), pp. 625–653.

[46] C.-L. TSENG, Y. ZHAN, Q. P. ZHENG, AND M. KUMAR, A MILP formulation for generalized geometric
programming using piecewise-linear approximations, European J. Oper. Res., 245 (2015), pp. 360–370.

[47] R. H. TÜTÜNCÜ, K.-C. TOH, AND M. J. TODD, Solving semidefinite-quadratic-linear programs using
SDPT3, Math. Programming, 95, Ser. B (2003), pp. 189–217.

[48] A. VIDAL, S. WU FUNG, L. TENORIO, S. OSHER, AND L. NURBEKYAN, Taming hyperparameter tuning in
continuous normalizing flows using the JKO scheme, Preprint on arXiv, 2022.
https://arxiv.org/abs/2211.16757

[49] C. R. VOGEL, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.
[50] S. WU FUNG, S. TYRVÄINEN, L. RUTHOTTO, AND E. HABER, ADMM-softmax: An ADMM approach for

multinomial logistic regression, Electron. Trans. Numer. Anal., 52 (2020), pp. 214–229.
https://etna.ricam.oeaw.ac.at/vol.52.2020/pp214-229.dir/pp214-229.pdf

[51] X. XI, J. XU, AND Y. LOU, Log-sum-exp optimization based on continuous piecewise linearization techniques,
in 2020 IEEE 16th International Conference on Control & Automation (ICCA), IEEE Conference
Proceeings, Los Alamitos, 2020, pp. 600–605.

[52] Y. ZHAN, Q. P. ZHENG, C.-L. TSENG, AND E. L. PASILIAO, An accelerated extended cutting plane approach
with piecewise linear approximations for signomial geometric programming, J. Global Optim., 70 (2018),
pp. 579–599.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://docs.mosek.com/
https://docs.mosek.com/
https://arxiv.org/abs/2202.06236
https://arxiv.org/abs/1301.3584
https://arxiv.org/abs/2211.16757
https://etna.ricam.oeaw.ac.at/vol.52.2020/pp214-229.dir/pp214-229.pdf

