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EFFICIENT THIRD-ORDER TENSOR-ORIENTED DIRECTIONAL SPLITTING
FOR EXPONENTIAL INTEGRATORS∗

FABIO CASSINI§‡

Abstract. Suitable discretizations of popular multidimensional operators (for instance of diffusion or diffusion-
advection type) by tensor product formulas lead to matrices with d-dimensional Kronecker sum structure. For
evolutionary partial differential equations containing such operators and when integrating in time with exponential
integrators, it is then of paramount importance to efficiently approximate the actions of ϕ-functions of the arising
matrices. In this work we show how to produce directional split approximations of third order with respect to the
time step size. These approximations conveniently employ tensor-matrix products (the so-called µ-mode product
and the related Tucker operator, realized in practice with high-performance level 3 BLAS operations) and allow for
the effective usage of exponential Runge–Kutta integrators up to order three. The technique can also be efficiently
implemented on modern computer hardware such as Graphic Processing Units. This approach is successfully tested
against state-of-the-art techniques on two well-known physical models that lead to Turing patterns, namely the 2D
Schnakenberg and the 3D FitzHugh–Nagumo systems, on different hardware and software architectures.

Key words. exponential integrators, µ-mode product, directional splitting, ϕ-functions, Kronecker sum, Turing
patterns, Graphic Processing Units
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1. Introduction. We are interested in the solution of stiff systems of ordinary differential
equations (ODEs) of the type

(1.1a) u′(t) = Ku(t) + g(t,u(t)) = f(t,u(t)), u(0) = u0,

using exponential integrators [22]. The stiff part is represented by the matrix K ∈ CN×N ,
which we assume to have d-dimensional Kronecker sum structure

(1.1b) K = Ad ⊕ · · · ⊕A1 = A⊗1 + · · ·+A⊗d,

with

(1.1c) A⊗µ = Id ⊗ · · · ⊗ Iµ+1 ⊗Aµ ⊗ Iµ−1 ⊗ · · · ⊗ I1, µ = 1, . . . , d.

Here, Aµ ∈ Cnµ×nµ , and Iµ is the identity matrix of size nµ. Moreover, g(t,u(t)) is a
nonlinear function of t and of the unknown u(t) ∈ CN , with N = n1 · · ·nd. Throughout
the paper, the symbol ⊗ denotes the Kronecker product of matrices, while ⊕ is employed for
the Kronecker sum of matrices. Systems of the form (1.1) naturally arise when discretizing
in space some partial differential equations (PDEs) defined on tensor product domains and
with appropriate boundary conditions. In those cases, Aµ are matrices that correspond to
differential or fractional one-dimensional operators after a discretization with (nonuniform)
finite differences [8, 9] or tensor product finite or spectral elements [17, 33], and they usually
encapsulate boundary conditions. Typical examples are (systems of) evolutionary PDEs that
contain diffusion-advection-absorption or Schrödinger operators, amongst others.

In the last years, exponential integrators proved to be a valuable alternative for the efficient
integration of systems with Kronecker sum structure (1.1) [5, 7, 8, 9, 12, 13, 17, 18, 23, 25, 29,
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30, 33, 34, 40]. In particular, it is shown in [7, 8] that the well-known exponential Runge–Kutta
method of order two, ETD2RK,

(1.2)
un2 = un + τϕ1(τK)f(tn,un),

un+1 = un2 + τϕ2(τK)(g(tn+1,un2)− g(tn,un)),

where τ denotes the time step size, can be directionally split, obtaining the so-called ETD2RKDS
integrator. There, it is also shown that the latter strongly outperforms other well-established
methods in the solution of stiff diffusion-advection-reaction models. The ϕ-functions ap-
pearing in exponential integrators are exponential-like matrix functions defined for a generic
matrix X ∈ CN×N as

ϕ0(X) = exp(X), ϕ`(X) =
1

(`− 1)!

∫ 1

0

exp((1− θ)X)θ`−1dθ, ` > 0.

They can also be expressed in terms of the Taylor expansion

ϕj(X) =

∞∑
k=0

Xk

(k + j)!
, j ≥ 0.

Concerning their computation and action to a vector, we refer to [1, 4, 15, 28, 37, 38] for
algorithms suitable for small-sized matrices, to [2, 10, 11, 14, 20, 31, 35] for large and sparse
matrices, and to [6, 9, 12, 13, 17, 29, 30, 33] when X is a Kronecker sum. The key points to
develop the directional split integrator based on method (1.2) were the observation that

(1.3)
ϕ1(τK) = ϕ1(τAd)⊗ · · · ⊗ ϕ1(τA1) +O(τ2),

ϕ2(τK) = 2d−1ϕ2(τAd)⊗ · · · ⊗ ϕ2(τA1) +O(τ2),

and that the actions of the right-hand sides can be efficiently realized in tensor form with
Tucker operators (see the next section and [9, 12] for insights on the relevant tensor-matrix
operations). However, the second-order accuracy of the formulas with respect to the time step
size essentially limits their applicability to schemes of at most order two.

In this paper we aim at introducing directional split approximations of third order with
respect to τ for ϕ-functions of matrices with d-dimensional Kronecker sum structure. The
formulas derived in Section 2 allow for the efficient construction and employment of, for
instance, exponential Runge–Kutta integrators of order three for ODEs systems with Kronecker
sum structure. In particular, since the realization of the approximations heavily exploits BLAS
operations, the resulting schemes can also be efficiently implemented on modern hardware
architectures such as multi-core Central Processing Units (CPUs) and Graphic Processing
Units (GPUs). The effectiveness of the approach and the performance results for two popular
systems of diffusion-reaction equations are shown in the numerical examples of Section 3. We
finally draw conclusions in Section 4.

2. Third-order directional splitting. We focus here on three-stage exponential Runge–
Kutta integrators of the form

(2.1a)

un2 = un + c2τϕ1(c2τK)f(tn,un),

un3 = un + c3τϕ1(c3τK)f(tn,un) + τa32(τK)dn2,

un+1 = un + τϕ1(τK)f(tn,un) + τ(b2(τK)dn2 + b3(τK)dn3),

where

(2.1b) dni = g(tn + ciτ,uni)− g(tn,un), i = 2, 3,
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c2 and c3 are scalars, while a32(·), b2(·), and b3(·) are (linear combinations of) ϕ-functions.
From [21, Section 5.2] we know that we can construct integrators of order three in which the
coefficients a32(·), b2(·), and b3(·) involve just the functions ϕ1 and ϕ2. Therefore, we will
fully develop our approximation techniques using these two functions only. The generalization
to higher-order ϕ-functions is straightforward and is briefly discussed in Remark 2.4.

The starting point for the realization of efficient directional split exponential integrators is
the following formula for the matrix exponential of the Kronecker sum K [9, 12]:

exp(τK)v = exp(τA⊗1) · · · exp(τA⊗d)v

= (exp(τAd)⊗ · · · ⊗ exp(τA1))v

= vec(V ×1 exp(τA1)×2 · · · ×d exp(τAd)).

(2.2)

Here V ∈ Cn1×···×nd is an order-d tensor such that vec(V ) = v, with vec representing the
operator that stacks the input tensor by columns, and ×µ denotes the µ-mode product, i.e., a
tensor-matrix product along the direction µ. The concatenation of µ-mode products is referred
to as Tucker operator. Since these are core concepts in the manuscript, we briefly describe
them in the following. A thorough explanation with full details can be found, for instance,
in [12, 26, 27]. Given a generic order-d tensor T ∈ Cn1×···×nd (with elements denoted as
ti1...id) and a matrix Lµ ∈ Cnµ×nµ with elements `µij , the µ-mode product of T with Lµ
(denoted as T ×µ Lµ) is the tensor S ∈ Cn1×···×nd defined elementwise as

si1...id =

nµ∑
jµ=1

ti1...iµ−1jµiµ+1...id`
µ
iµjµ

.

This corresponds to multiplying the matrix Lµ onto the µ-fibers of the tensor T , i.e., the
vectors along direction µ that are generalizations of columns and rows of a matrix to the tensor
case. The concatenation of µ-mode products with the matrices L1, . . . , Ld, that is, the tensor
S with elements

si1...id =

nd∑
jd=1

· · ·
n1∑
j1=1

tj1...jd

d∏
µ=1

`µiµjµ ,

is denoted by T ×1 L1 ×2 · · · ×d Ld and is called Tucker operator. In terms of compu-
tational cost, a single µ-mode product requires O(Nnµ) floating-point operations (with
N = n1 · · ·nd), and it can be implemented by a single (full) matrix-matrix product. In
practice, this can be realized with a single GEMM (GEneral Matrix Multiply) call of level 3
BLAS (Basic Linear Algebra Subprograms), whose highly optimized implementations are
available essentially for any kind of modern computer architecture (we mention, for in-
stance, [24, 36, 39]). Consequently, the Tucker operator has an overall computational cost of
O(N(n1 + · · ·+nd)), and it can be realized with d GEMM calls of level 3 BLAS. Finally, the
connection between the Kronecker product and the Tucker operator is given by the formula
(see [12, Lemma 2.1])

(2.3) (Ld ⊗ · · · ⊗ L1)t = vec(T ×1 L1 ×2 · · · ×d Ld), t = vec(T ).

Let us now return to the action of the matrix exponential. First of all, notice that in the
case d = 2, formula (2.2) simply reduces to

(2.4) exp(τ(A⊗1 +A⊗2))v = vec
(
exp(τA1)V exp(τA2)T

)
,
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since for order-2 tensors (i.e., matrices) 1- and 2-mode products are just the standard matrix-
matrix and matrix-matrix-transpose multiplications, respectively. Hence, after computing the
small-sized matrix exponential functions, formula (2.4) can be efficiently realized with two
GEMM calls. In general, the advantage of the tensor approach in formula (2.2) is that it allows
to compute the action exp(τK)v through a single Tucker operator without assembling the
matrix itself or computing Kronecker products. In fact, we just rely on high-performance
BLAS after the computation of the small-sized matrix exponentials exp(τAµ). We remark that
the main cost of the procedure lies in the computation of the Tucker operator, while computing
the needed matrix exponentials is of negligible burden [9]. Concerning the functions ϕ`, with
` > 0, which are needed for the exponential integrators considered in this work, we notice that
the first equality in formula (2.2) is not valid anymore. However, in [7] it is shown that

ϕ`(τK)v = `!d−1ϕ`(τA⊗1) · · ·ϕ`(τA⊗d)v +O(τ2)

= `!d−1 (ϕ`(τAd)⊗ · · · ⊗ ϕ`(τA1))v +O(τ2)

= vec
(
`!d−1V ×1 ϕ`(τA1)×2 · · · ×d ϕ`(τAd)

)
+O(τ2),

(2.5)

of which the expressions (1.3) are particular cases. When d = 2, the formula simply reduces
to

(2.6) ϕ`(τ(A⊗1 +A⊗2))v = vec
(
ϕ`(τA1)(`!V )ϕ`(τA2)T

)
+O(τ2),

which can again be realized with two GEMM calls after computing the small-sized ϕ-functions.
Similarly to the action of the matrix exponential, the generic d-dimensional formulation (2.5)
requires one Tucker operator and can be implemented with d GEMM calls as floating-point op-
erations. Clearly, the approximation (2.5) cannot be directly employed in the formulation (2.1)
since it would lead to an order reduction of the resulting integrator. In the following sections
we will then look for third-order directional split approximations of the ϕ-functions similar to
formula (2.5), in the sense that their realization will require only few Tucker operators (which,
we emphasize again, constitute the major computational cost of computing the approximation).

2.1. Two-term two-dimensional splitting. To increase the approximation order of
formula (2.6), we look for a combination of the form

ϕ`(τ(A⊗1 +A⊗2)) = η1,2ϕ`1(α1,2τA2)⊗ ϕ`1(α1,1τA1)

+ η2,2ϕ`2(α2,2τA2)⊗ ϕ`2(α2,1τA1) +O(τ3),
(2.7)

where `i > 0 and ηi,2, αi,µ ∈ C (with i = 1, 2 and µ = 1, 2) are parameters to be determined.
By a Taylor expansion we directly obtain the conditions

η1,2
`1!2

+
η2,2
`2!2

=
1

`!
,(2.8a)

η1,2α1,1

`1!(`1 + 1)!
+

η2,2α2,1

`2!(`2 + 1)!
=

1

(`+ 1)!
,

η1,2α1,2

`1!(`1 + 1)!
+

η2,2α2,2

`2!(`2 + 1)!
=

1

(`+ 1)!
,(2.8b)

η1,2α
2
1,1

`1!(`1 + 2)!
+

η2,2α
2
2,1

`2!(`2 + 2)!
=

1

(`+ 2)!
,

η1,2α
2
1,2

`1!(`1 + 2)!
+

η2,2α
2
2,2

`2!(`2 + 2)!
=

1

(`+ 2)!
,(2.8c)

η1,2α1,1α1,2

(`1 + 1)!2
+
η2,2α2,1α2,2

(`2 + 1)!2
=

2

(`+ 2)!
.(2.8d)

Thus, we have the following result:
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THEOREM 2.1. The coefficients in Table 2.1 are the solutions of the system (2.8) for
` = 1, 2, with `1 = 1 and `2 = 2.

TABLE 2.1
Coefficients for the two-term two-dimensional splitting (2.7) with `1 = 1 and `2 = 2.

` = 1 ` = 2

η1,2 − 5
4

7
4 ±

3
√
2

2 i − 4
3

2
3 ±

2
√
3

3 i

α1,1 ± 4
√
10

15 + 4
3

12
11 ∓

4
√
2

11 i ±
√
33
8 + 9

8
3
4 ∓

√
3
4 i

α1,2 ∓ 4
√
10

15 + 4
3

12
11 ∓

4
√
2

11 i ∓
√
33
8 + 9

8
3
4 ∓

√
3
4 i

η2,2 9 −3∓ 6
√

2i 22
3 − 2

3 ∓
8
√
3

3 i

α2,1 ± 2
√
10
9 + 16

9
4
3 ∓

2
√
2

3 i ± 3
√
33

22 + 3
2

6
7 ∓

3
√
3

7 i

α2,2 ∓ 2
√
10
9 + 16

9
4
3 ∓

2
√
2

3 i ∓ 3
√
33

22 + 3
2

6
7 ∓

3
√
3

7 i

Proof. By writing η2,2 in terms of η1,2 from equation (2.8a) and α2,1 and α2,2 in terms
of α1,1 and α1,2, respectively, from equations (2.8b), we get two quadratic equations in α1,1

and α1,2 from (2.8c). Their solution (dependent on η1,2) gives four possible pairs. If we now
substitute each pair into equation (2.8d), then we get one quartic equation in η1,2 with no
admissible solution, one quartic equation in η1,2 with two complex conjugate solutions, and
two linear equations in η1,2, each of which has one real solution. Substituting back gives the
desired coefficients.

Notice that formula (2.7) allows for a third-order approximation of the ϕ-functions, which,
thanks to equivalence (2.3), requires the computation of two Tucker operators in tensor form.

2.2. Two-term d-dimensional splitting with complex coefficients. In dimension d we
consider an approximation of the form

ϕ`(τ(A⊗1 + · · ·+A⊗d)) = η1,dϕ`1(α1,dτAd)⊗ · · · ⊗ ϕ`1(α1,1τA1)

+ η2,dϕ`2(α2,dτAd)⊗ · · · ⊗ ϕ`2(α2,1τA1) +O(τ3),
(2.9)

which again can be realized in tensor form with two Tucker operators. Similarly to the previous
case, the coefficients have to satisfy the nonlinear system

η1,d
`1!d

+
η2,d
`2!d

=
1

`!
,(2.10a)

η1,dα1,µ

`1!d−1(`1 + 1)!
+

η2,dα2,µ

`2!d−1(`2 + 1)!
=

1

(`+ 1)!
, µ = 1, . . . , d,(2.10b)

η1,dα
2
1,µ

`1!d−1(`1 + 2)!
+

η2,dα
2
2,µ

`2!d−1(`2 + 2)!
=

1

(`+ 2)!
, µ = 1, . . . , d,(2.10c)

η1,dα1,µα1,ν

`1!d−2(`1 + 1)!2
+

η2,dα2,µα2,ν

`2!d−2(`2 + 1)!2
=

2

(`+ 2)!
, µ, ν = 1, . . . , d, µ < ν.(2.10d)

THEOREM 2.2. For ` = 1, 2, d > 2, `1 = 1, and `2 = 2, there exists no real solution
to the system (2.10). On the other hand, the solutions of the system (2.10) are given by the
complex coefficients in Table 2.2.
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TABLE 2.2
Complex coefficients for the two-term d-dimensional splitting (2.9) with l1 = 1 and l2 = 2.

` = 1 ` = 2

η1,d
7
4 ±

3
√
2

2 i 2
3 ±

2
√
3

3 i

α1,µ
12
11 ∓

4
√
2

11 i 3
4 ∓

√
3
4 i

η2,d 2d−2
(
−3∓ 6

√
2i
)

2d−2
(
− 2

3 ∓
8
√
3

3 i
)

α2,µ
4
3 ∓

2
√
2

3 i 6
7 ∓

3
√
3

7 i

Proof. Since `1 = 1 and `2 = 2, we have from equation (2.10a) that η2,d = 2d
(
1
`! − η1,d

)
.

Substituting in the expressions (2.10b)–(2.10d), we obtain a set of equations that does not
depend on d anymore. Let us then consider, among them, the equations for µ = µ1 and µ = µ2,
with µ1 6= µ2. Their solutions correspond to the ones obtained for the two-dimensional case
(see Table 2.1 for a summary), i.e., η1,d = η1,2, η2,d = 2d−2η2,2, α1,µ1

= α1,1, α1,µ2
= α1,2,

α2,µ1
= α2,1, and α2,µ2

= α2,2. This has to be valid for each µ1 6= µ2, which implies
α1,µ = α1,1 and α2,µ = α2,1, for µ = 1, . . . , d, and hence excludes the real solutions.

Notice that in case d = 2 the coefficients in Table 2.2 reduce to the complex coefficients
in Table 2.1.

2.3. Three-term d-dimensional splitting with real coefficients. The approximation in
the d-dimensional case derived in the previous section required, in tensor form, two complex
Tucker operators to be computed. Here, we present an alternative formula for d > 2 which
works entirely in real arithmetic but needs three Tucker operators. We write our ansatz as

ϕ`(τ(A⊗1 + · · ·+A⊗d)) = η1,dϕ`1(α1,dτAd)⊗ · · · ⊗ ϕ`1(α1,1τA1)

+ η2,dϕ`2(α2,dτAd)⊗ · · · ⊗ ϕ`2(α2,1τA1)

+ η3,dϕ`3(α3,dτAd)⊗ · · · ⊗ ϕ`3(α3,1τA1) +O(τ3)

(2.11)

and look for the coefficients which satisfy the nonlinear system

η1,d
`1!d

+
η2,d
`2!d

+
η3,d
`3!d

=
1

`!
,(2.12a)

η1,dα1,µ

`1!d−1(`1 + 1)!
+

η2,dα2,µ

`2!d−1(`2 + 1)!
+

η3,dα3,µ

`3!d−1(`3 + 1)!
=

1

(`+ 1)!
,(2.12b)

η1,dα
2
1,µ

`1!d−1(`1 + 2)!
+

η2,dα
2
2,µ

`2!d−1(`2 + 2)!
+

η3,dα
2
3,µ

`3!d−1(`3 + 2)!
=

1

(`+ 2)!
,(2.12c)

η1,dα1,µα1,ν

`1!d−2(`1 + 1)!2
+

η2,dα2,µα2,ν

`2!d−2(`2 + 1)!2
+

η3,dα3,µα3,ν

`3!d−2(`3 + 1)!2
=

2

(`+ 2)!
, µ < ν.(2.12d)

In this notation, the indices µ and ν run from 1 to d. Then, we have the following result:
THEOREM 2.3. Let `1 = `3 = 1 and `2 = 2. Consider the additional conditions

η1,dα
3
1,µ

4!
+
η2,dα

3
2,µ

2!d−15!
+
η3,dα

3
3,µ

4!
=

1

(`+ 3)!
,(2.12e)

η1,dα1,µα1,να1,ξ

2!3
+
η2,dα2,µα2,να2,ξ

2d−33!3
+
η3,dα3,µα3,να3,ξ

2!3
=

6

(`+ 3)!
, µ < ν < ξ,(2.12f)

which correspond to matching the third-order terms A3
⊗µ and A⊗µA⊗νA⊗ξ in the Taylor

expansion. Again, in this notation the indices µ, ν, and ξ run from 1 to d. Then, for ` = 1 and
` = 2, the coefficients in Table 2.3 are the only solutions of the system (2.12).
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TABLE 2.3
Real coefficients for the three-term d-dimensional splitting (2.11) with `1 = `3 = 1 and `2 = 2.

` = 1 ` = 2

η1,d
2243
1350 ±

440521
675
√
2991111

19
27 ±

151
27
√
2391

α1,µ
3(5161±

√
2991111)

15869
3(121±

√
2391)

490

η2,d − 12544
675 · 2

d−3 − 196
27 · 2

d−3

α2,µ
45
28

9
7

η3,d
2243
1350 ∓

440521
675
√
2991111

19
27 ∓

151
27
√
2391

α3,µ
3(5161∓

√
2991111)

15869
3(121∓

√
2391)

490

Proof. We first consider the system (2.12) in the case d = 3. Then, to determine its solu-
tions we use standard arguments of Gröbner basis theory [16]. We assume the lexicographic
ordering

α1,1 > α1,2 > α1,3 > α2,1 > α2,2 > α2,3 > α3,1 > α3,2 > α3,3 > η1 > η2 > η3,

and we let µ = 1, 2, 3. Then, for ` = 1, a Gröbner basis of the ideal associated to the system is

{
570887639987− 724578693084η3 + 218051991900η23 , 12544 + 675η2,

− 2243 + 675η1 + 675η3,−45 + 28a2,µ,

6486012633 + 13981255498α3,µ − 12113999550η3,

− 33768359205 + 13981255498α1,µ + 12113999550η3

}
,

while for ` = 2 it is{
840350− 2453166η3 + 1743039η23 , 196 + 27η2,−38 + 27η1 + 27η3,

81474 + 73990α3,µ − 193671η3,−9 + 7α2,µ,−191100 + 73990α1,µ + 193671η3

}
.

The desired solutions of the system (2.12) are hence equivalently given by the zeros of the
polynomials in the Gröbner basis. Simple calculations lead to the coefficients summarized in
Table 2.3. Finally, using arguments similar to the ones in the proof of Theorem 2.2, we get the
result for the d-dimensional case.

REMARK 2.4. As mentioned at the beginning of the section, we focused our attention to
the functions ϕ1 and ϕ2 only since the class of integrators that we consider requires at most
the latter. Clearly, using a similar approach, one could obtain formulas for different ` and `i.

2.4. Implementation details. The directional splitting approximations introduced above
(i.e., the formulas (2.7), (2.9), and (2.11)) allow for an efficient tensor-oriented approximation
of the actions of ϕ-functions needed in third-order exponential integrators of the form (2.1),
thanks to the equivalence (2.3). For the numerical examples presented in Section 3, we
will employ in particular the time marching scheme with coefficients c2 = 1

3 , c3 = 2
3 ,

a32(·) = 4
3ϕ2(c3·), b2(·) = 0, and b3(·) = 3

2ϕ2(·) (see also tableau (5.8) in [21]). More
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explicitly, we have

(2.13)

un2 = un +
τ

3
ϕ1

(τ
3
K
)
f(tn,un),

un3 = un +
2τ

3
ϕ1

(
2τ

3
K

)
f(tn,un)

+
4τ

3
ϕ2

(
2τ

3
K

)(
g
(
tn +

τ

3
,un2

)
− g(tn,un)

)
,

un+1 = un + τϕ1(τK)f(tn,un)

+
3τ

2
ϕ2(τK)

(
g

(
tn +

2τ

3
,un3

)
− g(tn,un)

)
.

We label this method EXPRK3 when no directional splitting approximations are used. In
this case, in our experiments, the needed linear combinations of actions of ϕ-functions
are computed using the very efficient incomplete orthogonalization Krylov-based technique
described in [31].

When the directional splitting approximations are actually employed in the scheme (2.13),
we label the resulting methods EXPRK3DS_REAL (if we use real coefficients) and
EXPRK3DS_CPLX (if we use complex coefficients). In more detail, as set of directional
splitting coefficients, we always employ the ones corresponding to the choice of the symbol
’+’ in α1,1 or α1,µ (see Tables 2.1, 2.2, and 2.3). The use of a different set of coefficients did
not provide qualitatively different results in the examples. The pseudocodes of the directional
splitting schemes EXPRK3DS_REAL and EXPRK3DS_CPLX (assuming a constant time step
size) are given in Appendix A (Algorithms 1 and 2). Both schemes require the computation
of small-sized matrix ϕ-functions of the matrices Aµ (once and for all before the actual time
integration starts). This is done in practice by employing a rational Padé approach with
modified scaling and squaring [38], and, as already mentioned above, the computational cost
of this phase is negligible (see the timings reported in Section 3). We also remark that in the
time integration all the relevant operations are performed in a tensor fashion, without the need
to assemble the matrix K itself or to compute Kronecker products. In fact, the needed approx-
imations of actions of ϕ-functions (i.e., the application of formulas (2.7), (2.9), and (2.11)
to a vector) are realized in tensor form by employing Tucker operators (i.e., exploiting the
equivalence (2.3)). Notice that even the action of the matrix K on a vector (needed to evaluate
f(tn,un)) is realized in tensor form thanks to the equivalence (see [12, formula (9)])

(2.14) Kt = (Ad ⊕ · · · ⊕A1)t = vec

(
d∑

µ=1

(T ×µ Aµ)

)
, vec(T ) = t.

In practice, in our numerical experiments we compute the Tucker operator and the action
of K by exploiting the high efficiency of level 3 BLAS, as thoroughly explained in [9, 12]
and briefly summarized after formula (2.2). More specifically, when performing experiments
in the MATLAB environment, we employ the functions tucker and kronsumv from the
package KronPACK [12], which directly exploit the multithreaded MATLAB routines to
perform GEMM. Concerning the experiments in CPU and GPU using C++ and CUDA, we
directly call level 3 BLAS from efficient libraries available on the hardware (Intel MKL [24]
and cuBLAS [36], respectively) to realize the needed tensor operations. Notice that, in this
context, we expect consistent speedups in terms of wall-clock time by employing GPUs
instead of CPUs, since these kinds of operations are very well implemented on the former
(see also the discussions in [9]). In addition, the evaluation of the nonlinearity g and the
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(pointwise) summation or multiplication operations, for instance, are performed by proper
CUDA kernels, i.e., exploiting a massive parallelism. This is also an area in which GPUs
greatly outperform the corresponding multithreaded version on CPUs. As a matter of fact, in
our GPU implementations of Algorithms 1 and 2, the only communication with the CPU is for
the solution of the linear systems in the Padé approximation of the ϕ-functions, which was
faster if performed on the CPU. This is expected, since it is a small-sized task for which GPUs
are not highly optimized. Apart from that, all the remaining code is executed directly on the
GPU.

Finally, we remark that in order to perform a single integration step with Algorithms 1
and 2, we need an action of Kronecker sum and 10 and 15 Tucker operators, respectively. The
cost of evaluating Tucker operators, independently of the considered hardware, is much lower
compared to that of computing actions of exponentials and/or linear combinations of actions
of ϕ-functions without directional splitting (as needed by the EXPRK3 integrator (2.13)). This
has already been observed and discussed in full details, for instance in [9, 13]. Therefore, we
may plausibly expect that the proposed integrators EXPRK3DS_REAL and EXPRK3DS_CPLX
will perform well (compared to EXPRK3) in terms of simulation wall-clock time, even if in
principle they may introduce a directional splitting error (see the next section for specific
results on the performed numerical experiments).

3. Numerical examples. In this section we present an application of the proposed ap-
proximations for efficiently solving two popular systems of PDEs, namely the two-component
2D Schnakenberg and 3D FitzHugh–Nagumo models, using exponential integrators. Such
models are important in the context of biochemical reactions and electric current flows, since
they lead to the formation of so-called Turing patterns [3, 19, 32]. For both examples we first
perform a semidiscretization in space using second-order uniform centered finite differences,
with nµ = n discretization points per direction, encapsulating the boundary conditions (homo-
geneous Neumann, in fact) directly into the relevant matrices. This leads to a system of ODEs
in the form

(3.1)
[
u′(t)
v′(t)

]
=

[
K1 0
0 K2

] [
u(t)
v(t)

]
+

[
g1(t,u(t),v(t))
g2(t,u(t),v(t))

]
=

[
f1(t,u(t),v(t))

f2(t,u(t),v(t))

]
,

where u(t) and v(t) represent the two components of the system of PDEs, while K1 and K2

are matrices having Kronecker sum structure. Since the matrix of the system (3.1) is block
diagonal, the needed actions of the matrix ϕ-functions can be performed separately for K1

and K2 using the techniques presented above (see also [8]).
For both examples, we perform several experiments which are briefly described in the

following.
• First of all, we test the accuracy of the third-order directional split integrators

EXPRK3DS_REAL and EXPRK3DS_CPLX and measure the performance against other
methods in MATLAB (using the software MathWorks MATLAB® R2022a). To this
aim, we fix the number of spatial discretization points, the final simulation time,
and we let vary the number of time steps. As term of comparison we consider the
second-order directional split integrator proposed in [8] (denoted as ETD2RKDS),
which corresponds to the popular ETD2RK scheme (i.e., tableau (5.3) in [21] with
c2 = 1) with second-order directional splitting of the involved ϕ-functions. More-
over, we also present the results with the ETD2RK and the EXPRK3 integrators
(without directional splitting), where, as mentioned in Section 2.4, the actions of the
ϕ-functions are approximated with the incomplete orthogonalization Krylov-based
technique [31] (input tolerance and incomplete orthogonalization parameter set to
1e-6 and 2, respectively). The error is always measured in the infinity norm with
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respect to a reference solution computed with the EXPRK3DS_REAL method and a
sufficiently large number of time steps. The hardware used for this experiment is
a standard laptop equipped with an Intel Core i7-10750H CPU (6 physical cores)
and 16GB of RAM. On the same hardware we perform a similar simulation using
C++ to emphasize that the proposed procedures are effective also in this framework.
In more detail, we test the accuracy and the performances of the directional split
exponential integrators ETD2RKDS, EXPRK3DS_REAL, and EXPRK3DS_CPLX in
double precision arithmetic. The gcc compiler version is 8.4.0, the Intel OneAPI
MKL library version 2021.4.0 is used for BLAS, and OpenMP is employed for basic
parallelization.

• Then, we perform a simulation with the proposed third-order integrators to show that
we are able to retrieve the expected Turing pattern. For this aim we fix the number
of spatial discretization points, we set a large final simulation time, and we let vary
the number of time integration steps. We measure the performances on the same
hardware employed previously using different software architectures, i.e., MATLAB
and C++ with double precision arithmetic. We also present results using CUDA
(single precision arithmetic, nvcc compiler and CUDA version 10.1, BLAS provided
by cuBLAS, and CUDA kernels for massive parallelization). In this case the GPU
employed is the mobile one provided with the laptop, i.e., an NVIDIA GeForce GTX
1650 Ti card (4GB of dedicated memory). Even if this is clearly a consumer-level
GPU (and, in particular, not suitable for double precision arithmetic), it can still be
effectively employed for the relatively small simulations under consideration at this
stage.

• Finally, we present some results on professional CPU and GPU hardware. Once again,
we first test the accuracy and the performances of ETD2RKDS, EXPRK3DS_REAL,
and EXPRK3DS_CPLX by fixing the number of spatial discretization points, the final
simulation time, and by letting vary the number of time steps. Double precision
arithmetic is employed for both the CPU and the GPU. Then, we perform a simula-
tion using the proposed third-order integrators for an increasing number of spatial
discretization points (i.e., we increase the number of degrees of freedom). In this
case we employ double precision arithmetic for the CPU results and both double and
single precision arithmetic for the GPU ones. The CPU hardware is a dual socket
Intel Xeon Gold 5118 with 2× 12 cores, while the GPU is a single NVIDIA V100
card (equipped with 16 GB of RAM). When calling BLAS on the CPU, we use the
Intel OneAPI MKL library version 2020.1.0, while on the GPU we employ cuBLAS
from CUDA 11.2. For the parallelization we again employ OpenMP and CUDA
kernels for the CPU and the GPU, respectively.

We remark that in all the examples presented here, the EXPRK3DS_CPLX integrator is outper-
formed by the EXPRK3DS_REAL scheme. Nevertheless, we decided to report also the results
of the former for all the experiments. In fact, the complex method could still be convenient in
other instances, such as the integration of complex-valued PDEs. We believe that having an
idea of the overall computational cost may then be of scientific interest.

The MATLAB code to reproduce the examples (fully compatible with GNU Octave) is
publicly available in a GitHub repository1.

1Available at https://github.com/cassinif/Expds3, commit 1321521.
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3.1. Two-dimensional Schnakenberg model. We consider the following Schnakenberg
model in two space dimensions (see [3, 8, 18])

(3.2)

{
∂tu = δu∆u+ ρ(au − u+ u2v),

∂tv = δv∆v + ρ(av − u2v),

defined in the spatial domain Ω = (0, 1)2 with homogeneous Neumann boundary conditions.
The parameters are set to δu = 1, δv = 10, ρ = 1000, au = 0.1, and av = 0.9 so that the
equilibrium (ue, ve) = (au + av, av/(au + av)2) is susceptible of a Turing instability. The
initial data are u0 = ue + 10−5 · U(0, 1) and v0 = ve + 10−5 · U(0, 1), where U(0, 1) denotes
the uniformly distributed random variable in (0, 1).

We start by performing simulations in MATLAB with the spatial domain discretized by
n = 150 point per direction, i.e., the total number of degrees of freedom is N = 2 · 1502.
The final time is set to T = 0.25. The number of time steps ranges from 3000 to 6000 for
the second-order integrators, while from 1000 to 2500 for the third-order ones. The results
are collected in an error decay plot and in a work-precision diagram in Figure 3.1. First
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FIG. 3.1. Results in MATLAB (standard laptop) for the simulation of the 2D Schnakenberg model (3.2) with
n = 150 spatial discretization points per direction up to final time T = 0.25. Left plot: error decay, with reference
slope lines of order two (dashed) and three (solid). Right plot: work-precision diagram.

of all, notice that all the integrators show the expected order of convergence. Moreover,
we observe that the third-order integrators EXPRK3DS_CPLX and EXPRK3DS_REAL have
larger errors compared to the classical EXPRK3 method, plausibly because of the introduced
directional splitting approximation. Nevertheless, the gain in efficiency in terms of wall-
clock time is neat (see the right plot of Figure 3.1). In fact, the work-precision diagram is
separated into two parts. On the right-hand side we have the most expensive integrators, i.e.,
ETD2RK and EXPRK3 implemented with a general-purpose technique for computing actions
of ϕ-functions. On the left-hand side we have the directional split integrators, which always
perform better with respect to their original counterparts. Considering in more detail the third-
order directional split schemes, we observe that EXPRK3DS_CPLX and EXPRK3DS_REAL do
not show a considerable difference in terms of achieved accuracy. Hence, as expected, the
one that employs just real arithmetic is cheaper. Overall, for stringent accuracies, the best
performant integrator is EXPRK3DS_REAL, and in particular it outperforms the ETD2RKDS
scheme already available in the literature. We then perform a similar simulation using C++.
We report the results of the directional split integrators ETD2RKDS, EXPRK3DS_REAL, and
EXPRK3DS_CPLX in Figure 3.2. The conclusions are essentially the same as drawn from the
MATLAB experiment, i.e., the integrator that performs best is EXPRK3DS_REAL.
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FIG. 3.2. Results in C++ (standard laptop) for the simulation of the 2D Schnakenberg model (3.2) with
n = 150 spatial discretization points per direction up to final time T = 0.25. Left plot: error decay, with reference
slope lines of order two (dashed) and three (solid). Right plot: work-precision diagram.

Then, we compare on different software architectures the results of the third-order in-
tegrators EXPRK3DS_REAL and EXPRK3DS_CPLX, i.e., the ones that employ the proposed
approximations, to achieve the expected stationary pattern (a cos-like structure with modes
(3, 5), (5, 3) [18]). To this aim, we set the final simulation time to T = 2, and we let vary the
number of time steps, while the space discretization is the same as for the previous experiments
(i.e., n = 150 points per direction). A representative of the obtained pattern in the u component
is shown in Figure 3.3, and the results of the experiment are collected in Table 3.1. Notice
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FIG. 3.3. Turing pattern (u component) for the 2D Schnakenberg model (3.2) obtained at final time T = 2 with
n = 150 spatial discretization points per direction.

that, as expected, the wall-clock time of all the simulations is proportional to the number of
time steps. In fact, after the computation of the small-sized ϕ-functions, the integrators are
direct, and their total computational burden could be easily predicted by performing a single
time step, similarly to what was stated for the ETD2RKDS scheme in [8]. Also, remark that
the wall-clock time needed to compute the ϕ-functions is negligible compared to that of the
time marching of the methods, and, again as expected, the EXPRK3DS_CPLX integrator is
computationally more expensive than EXPRK3DS_REAL. We observe that the employment of
GPUs in this context is really effective. In fact, even if we are using a basic consumer-level
GPU card, we can still obtain the Turing pattern in a short amount of time.
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TABLE 3.1
Wall-clock time (in seconds) for the simulation of the 2D Schnakenberg model (3.2) up to T = 2 with n = 150

spatial discretization points per direction (i.e., N = 2 · 1502 degrees of freedom). The time integrators are
EXPRK3DS_REAL (top) and EXPRK3DS_CPLX (bottom), with varying number of time steps, using different software
architectures (standard laptop). In brackets we report the portion of time needed for computing the ϕ-functions.

Number of steps MATLAB double C++ double CUDA single
2000 10.03 (0.26) 4.38 (0.21) 0.93 (0.05)
4000 18.87 (0.25) 8.63 (0.20) 1.76 (0.06)
6000 28.69 (0.27) 13.09 (0.21) 2.61 (0.06)

Number of steps MATLAB double C++ double CUDA single
2000 23.61 (0.74) 12.98 (0.61) 2.41 (0.12)
4000 46.11 (0.75) 26.12 (0.60) 4.77 (0.11)
6000 70.89 (0.77) 39.20 (0.62) 6.84 (0.11)

We proceed by presenting some performance results doing simulations with professional
hardware (see the beginning of Section 3 for the details). Similarly to what was performed
previously, we first test the directional split integrators on problem (3.2) with the spatial
domain discretized by n = 300 point per direction, i.e., the total number of degrees of freedom
is N = 2 · 3002. The final time is set to T = 0.25. The number of time steps ranges from
3000 to 6000 for the second-order integrators, while from 1000 to 2500 for the third-order
ones. For the computations, we use double precision arithmetic. The outcome is collected
in the error decay plot and in the work-precision diagram in Figure 3.4. As we can see, the
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FIG. 3.4. Results in C++ and CUDA (professional hardware) for the simulation of the 2D Schnakenberg
model (3.2) with n = 300 spatial discretization points per direction up to final time T = 0.25. Left plot: error decay,
with reference slope lines of order two (dashed) and three (solid). Right plot: work-precision diagram.

results are coherent with what was observed in the previous experiments using a standard
laptop. In particular, all the integrators have the expected order of convergence, and the
specific hardware employed (CPU or GPU) does not influence the resulting error. On the other
hand, the effectiveness of the usage of GPUs in this context is clear. In fact, we observe a
speedup of roughly a factor of 10 in favour of the GPUs, and the integrator that performs
best is EXPRK3DS_REAL. To conclude, we perform a simulation with increasing number of
degrees of freedom N using the third-order directional split integrators EXPRK3DS_REAL
and EXPRK3DS_CPLX. We set the final time to T = 2, while the number of time steps is
fixed to 6000. The results are summarized in Table 3.2. Again, the integrator employing
complex-valued directional splitting coefficients is more costly than that with real-valued ones.
Comparing CPU and GPU simulations, the scaling in terms of computational time is still
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TABLE 3.2
Wall-clock time (in seconds) for the simulation of the 2D Schnakenberg model (3.2) up to T = 2 with increasing

number of degrees of freedom N , 6000 time steps, and different software architectures (professional hardware). The
time integrators are EXPRK3DS_REAL (top) and EXPRK3DS_CPLX (bottom). In brackets we report the portion of
time needed for computing the ϕ-functions.

Number of d.o.f. N C++ double CUDA double CUDA single
2 · 3002 73.11 (1.85) 7.32 (0.31) 4.12 (0.26)
2 · 4502 196.52 (4.72) 16.39 (0.54) 7.44 (0.35)
2 · 6002 440.14 (8.73) 26.15 (0.83) 13.17 (0.51)

Number of d.o.f. N C++ double CUDA double CUDA single
2 · 3002 192.14 (4.64) 16.33 (0.52) 7.90 (0.31)
2 · 4502 607.79 (13.06) 46.28 (1.01) 23.91 (0.64)
2 · 6002 1663.05 (23.32) 89.93 (1.73) 42.37 (0.98)

very good (roughly a factor of 10 to 18 for double precision). This is expected since the main
computational cost in the time integration comes from the Tucker operators and hence scales
favourably for the GPU.

3.2. Three-dimensional FitzHugh–Nagumo model. We now consider the FitzHugh–
Nagumo model in three space dimensions

(3.3)

{
∂tu = δu∆u+ ρ(−u(u2 − 1)− v),

∂tv = δv∆v + ρav1(u− av2v),

defined in the spatial domain Ω = (0, π)3 with homogeneous Neumann boundary conditions.
The parameters are δu = 1, δv = 42.1887, ρ = 24.649, av1 = 11, and av2 = 0.1. With
this choice, the equilibrium (ue, ve) = (0, 0) is susceptible of a Turing instability, and we
expect to achieve in the long-time regime a stationary square pattern with modes (2, 2, 2) (see
also [8, 19]). The initial conditions are set to u0 = 10−3 · U(0, 1) and v0 = 10−3 · U(0, 1),
where as in the previous example U(0, 1) denotes the uniform random variable in the interval
(0, 1).

For the first experiment, we discretize the spatial domain with a grid of n = 64 points per
direction (total number of degrees of freedom N = 2 · 643), and we simulate up to final time
T = 5 with different integrators and a number of time steps ranging from 60000 to 75000 for
the second-order method, while from 14000 to 20000 for the third-order ones. The results
are graphically depicted in Figure 3.5. First of all notice that the results with the ETD2RK
and EXPRK3 integrators are not reported in the plots since their simulation wall-clock time
was too large. This is in line with what already observed in the two-dimensional example
of Section 3.1. In fact, to obtain comparable accuracies, a simulation with ETD2RK took
roughly 6300 seconds (60000 time steps), while EXPRK3 needed about 6100 seconds (14000
time steps). Again similarly to the 2D Schnakenberg experiment, the achieved accuracies
of EXPRK3DS_CPLX and EXPRK3DS_REAL are similar, with an advantage of the latter in
terms of execution time. Overall, for the range of accuracies under consideration, also in this
case the most performant method is EXPRK3DS_REAL. We repeat the simulations with the
directional split exponential integrators in C++ (double precision on a standard laptop). The
results, summarized in Figure 3.6, lead essentially to the same conclusions.

Then, we proceed by comparing the results of EXPRK3DS_REAL and EXPRK3DS_CPLX to
achieve the expected stationary pattern on different software architectures. To this aim, we set
the final time to T = 150, we let vary the number of time steps, while the semidiscretization in
space is performed with n = 64 points per direction. The obtained pattern in the u component
is illustrated in Figure 3.7, while the outcome of the experiment is summarized in Table 3.3.
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FIG. 3.5. Results in MATLAB (standard laptop) for the simulation of the 3D FitzHugh–Nagumo model (3.3)
with n = 64 spatial discretization points per direction up to final time T = 5. Left plot: error decay, with reference
slope lines of order two (dashed) and three (solid). Right plot: work-precision diagram.
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FIG. 3.6. Results in C++ (standard laptop) for the simulation of the 3D FitzHugh–Nagumo model (3.3) with
n = 64 spatial discretization points per direction up to final time T = 5. Left plot: error decay, with reference slope
lines of order two (dashed) and three (solid). Right plot: work-precision diagram.
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FIG. 3.7. Turing pattern (u component) for the 3D FitzHugh–Nagumo model (3.3) obtained at final time
T = 150 with n = 64 spatial discretization points per direction. The reported slice (left plot) corresponds to
x3 = 1.55 and the isosurface value (right plot) is 0.08.
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TABLE 3.3
Wall-clock time (in seconds) for the simulation of the 3D FitzHugh–Nagumo model (3.3) up to T = 150 with

n = 64 spatial discretization points per direction (i.e., N = 2 · 643 degrees of freedom). The time integrators are
EXPRK3DS_REAL (top) and EXPRK3DS_CPLX (bottom), with varying number of time steps, using different software
architectures (standard laptop). In brackets we report the portion of time needed for computing the ϕ-functions.

Number of steps MATLAB double C++ double CUDA single
10000 439.47 (0.09) 340.36 (0.06) 26.90 (0.05)
15000 607.62 (0.11) 509.48 (0.07) 40.92 (0.07)
20000 850.41 (0.12) 677.91 (0.07) 54.54 (0.07)

Number of steps MATLAB double C++ double CUDA single
10000 918.86 (0.13) 733.68 (0.07) 44.99 (0.06)
15000 1396.22 (0.14) 1087.42 (0.07) 65.87 (0.06)
20000 1855.47 (0.14) 1460.29 (0.07) 90.54 (0.06)

Again, as already observed for the 2D Schnakenberg model, the wall-clock time is
proportional to the number of time steps for both the integrators and all the architectures
under consideration. We recall that, in this three-dimensional setting, we need to compute two
complex and three real Tucker operators for each action of the ϕ-function approximation in
EXPRK3DS_CPLX and EXPRK3DS_REAL, respectively. Even if we need one Tucker operator
less for the former, obviously the computational cost of forming the approximation is larger
since we employ complex arithmetic. Overall, we then observe that for the example under
consideration it is more convenient to employ the EXPRK3DS_REAL method. Also, notice that
the employment of a GPU in this three-dimensional case is even more effective compared to
the two-dimensional scenario.

Finally, we present the performance results by doing simulations with professional-level
hardware. To this purpose, we first test the directional split integrators on problem (3.3)
with the spatial domain discretized by n = 100 point per direction, i.e., the total number
of degrees of freedom is N = 2 · 1003. The final time is set to T = 5. The number of
time steps ranges from 60000 to 75000 for the second-order integrators, while from 14000
to 20000 for the third-order ones. We use double precision arithmetic, and the results are
collected in Figure 3.8. As highlighted also in the previous experiments, we observe a
clear order of convergence for all the integrators and the architectures under consideration.
Moreover, from the work-precision diagram we conclude that also in this case it is more
convenient to employ the integrator with real arithmetic rather than the one with complex
coefficients, and overall the integrator that performs best in reaching stringent accuracies
is EXPRK3DS_REAL implemented in CUDA (with an average speedup of 22 times passing
from the CPU to the GPU). To conclude, we perform a simulation considering the third-order
integrators EXPRK3DS_REAL and EXPRK3DS_CPLX with varying total number of degrees
of freedom N . The final time is set to T = 150 and the number of time steps to 10000. The
results are presented in Table 3.4. Also in this final experiment, as expected, the scaling is
very good comparing the CPU and GPU simulations. In particular, the resulting speedup from
CPU to GPU in double precision is given by a factor around 14 and 23, hence larger than the
2D case. Performing the experiment in single precision arithmetic on the GPU allows one to
gain an additional factor of 2. The usage of the scheme EXPRK3DS_CPLX results in larger
computational cost also for this example.

4. Conclusions. In this manuscript, we introduced third-order directional split approxi-
mations for matrix ϕ-functions with underlying d-dimensional Kronecker sum structure. The
derived formulas allow for the efficient construction and employment of directional split expo-
nential Runge–Kutta integrators of order three for the time integration of ODEs systems with
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FIG. 3.8. Results in C++ and CUDA (professional hardware) for the simulation of the 3D FitzHugh–Nagumo
model (3.3) with n = 100 spatial discretization points per direction up to final time T = 5. Left plot: error decay,
with reference slope lines of order two (dashed) and three (solid). Right plot: work-precision diagram.

TABLE 3.4
Wall-clock time (in seconds) for the simulation of the 3D FitzHugh–Nagumo model (3.3) up to T = 150 with

increasing number of degrees of freedom N , 10000 time steps, and different software architectures (professional
hardware). The time marching integrators are EXPRK3DS_REAL (top) and EXPRK3DS_CPLX (bottom). In brackets
we report the portion of time needed for computing the ϕ-functions.

Number of d.o.f. N C++ double CUDA double CUDA single
2 · 1003 1261.13 (0.29) 57.31 (0.28) 32.59 (0.22)
2 · 1503 3686.32 (0.62) 251.62 (0.40) 119.60 (0.33)
2 · 2003 9746.87 (1.12) 685.89 (0.44) 321.81 (0.35)

Number of d.o.f. N C++ double CUDA double CUDA single
2 · 1003 2682.31 (0.37) 127.47 (0.24) 67.46 (0.22)
2 · 1503 10732.53 (0.90) 470.61 (0.33) 241.18 (0.28)
2 · 2003 24640.98 (2.41) 1469.11 (0.45) 753.38 (0.32)

Kronecker structure. The efficiency of the proposed tensor approach has been tested against
state-of-the-art techniques on two important physical models in the context of Turing patterns
for diffusion-reaction systems of partial differential equations, namely the 2D Schnakenberg
and the 3D FitzHugh–Nagumo models. In particular, it turns out that the investigated third-
order directional split integrator EXPRK3DS_REAL outperforms the ETD2RKDS scheme that
was already available in the literature. The numerical experiments also clearly show that the
procedures scale very well on modern computer hardware such as Graphic Processing Units.
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Appendix A. Pseudocodes. In the following, in Algorithm 1 and Algorithm 2 we
list the pseudocodes for the directional split exponential integrators EXPRK3DS_REAL and
EXPRK3DS_CPLX, which employ the approximations presented in the manuscript.
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Algorithm 1: Pseudocode for EXPRK3DS_REAL (if d = 2) and EXPRK3DS_CPLX.
The relevant coefficients for the directional splitting approximations are given
in Table 2.1 (real coefficients) for EXPRK3DS_REAL and in Table 2.2 for EX-
PRK3DS_CPLX. The notations α(`)

i,µ and η(`)i,d mean αi,µ and ηi,d for the approxima-
tion of ϕ`. The symbols K and T denote the action of the Kronecker sum in tensor
form (2.14) and the Tucker operator (2.3), respectively, where the first input is the
tensor and the second one is the sequence of matrices.

Input: Initial datum tensor (U0), ODEs nonlinear function (g), matrices which
constitute K (A1, . . . , Ad), final time (T ), and number of time steps (m).

Output: Approximated solution U at final time T .
1 Compute τ = T/m;
2 Needed ϕ-functions
3 for µ = 1, . . . , d do
4 Set A{µ} = Aµ;
5 for i = 1, 2 do
6 For stage Un2
7 Compute P (1)

i,2 {µ} = ϕ`i

(
τ
3α

(1)
i,µA{µ}

)
;

8 for ` = 1, 2 do
9 For stage Un3

10 Compute P (`)
i,3 {µ} = ϕ`i

(
2τ
3 α

(`)
i,µA{µ}

)
;

11 For final approximation Un+1

12 Compute P (`)
i,f {µ} = ϕ`i

(
τα

(`)
i,µA{µ}

)
;

13 end
14 end
15 end
16 Set t = 0 and U = U0;
17 Time integration
18 for n = 0, . . . ,m− 1 do
19 Compute G = g(t,U) and F = K(U , A) + G;
20 Stage Un2
21 Compute U2 = U + τ

3

(
η
(1)
1,dT (F , P

(1)
1,2 ) + η

(1)
2,dT (F , P

(1)
2,2 )

)
;

22 Stage Un3
23 Compute D2 = g(t+ τ

3 ,U2)−G;

24 Compute U3 = U + 2τ
3

(
η
(1)
1,dT (F , P

(1)
1,3 ) + η

(1)
2,dT (F , P

(1)
2,3 )

)
+

4τ
3

(
η
(2)
1,dT (D2, P

(2)
1,3 ) + η

(2)
2,dT (D2, P

(2)
2,3 )

)
;

25 Final approximation Un+1

26 Compute D3 = g(t+ 2τ
3 ,U3)−G;

27 Compute U = U + τ
(
η
(1)
1,dT (F , P

(1)
1,f ) + η

(1)
2,dT (F , P

(1)
2,f )

)
+

3τ
2

(
η
(2)
1,dT (D3, P

(2)
1,f ) + η

(2)
2,dT (D3, P

(2)
2,f )

)
;

28 Set t = t+ τ ;
29 end
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Algorithm 2: Pseudocode for EXPRK3DS_REAL (if d > 2). The relevant coef-
ficients for the directional splitting approximations are given in Table 2.3. The
notations α(`)

i,µ and η(`)i,d mean αi,µ and ηi,d for the approximation of ϕ`. The sym-
bols K and T denote the action of the Kronecker sum in tensor form (2.14) and the
Tucker operator (2.3), respectively, where the first input is the tensor and the second
one is the sequence of matrices.

Input: Initial datum tensor (U0), ODEs nonlinear function (g), matrices which
constitute K (A1, . . . , Ad), final time (T ), and number of time steps (m).

Output: Approximated solution U at final time T .
1 Compute τ = T/m;
2 Needed ϕ-functions
3 for µ = 1, . . . , d do
4 Set A{µ} = Aµ;
5 for i = 1, 2, 3 do
6 For stage Un2
7 Compute P (1)

i,2 {µ} = ϕ`i

(
τ
3α

(1)
i,µA{µ}

)
;

8 for ` = 1, 2 do
9 For stage Un3

10 Compute P (`)
i,3 {µ} = ϕ`i

(
2τ
3 α

(`)
i,µA{µ}

)
;

11 For final approximation Un+1

12 Compute P (`)
i,f {µ} = ϕ`i

(
τα

(`)
i,µA{µ}

)
;

13 end
14 end
15 end
16 Set t = 0 and U = U0;
17 Time integration
18 for n = 0, . . . ,m− 1 do
19 Compute G = g(t,U) and F = K(U , A) + G;
20 Stage Un2
21 Compute

U2 = U + τ
3

(
η
(1)
1,dT (F , P

(1)
1,2 ) + η

(1)
2,dT (F , P

(1)
2,2 ) + η

(1)
3,dT (F , P

(1)
3,2 )

)
;

22 Stage Un3
23 Compute D2 = g(t+ τ

3 ,U2)−G;
24 Compute

U3 = U + 2τ
3

(
η
(1)
1,dT (F , P

(1)
1,3 ) + η

(1)
2,dT (F , P

(1)
2,3 ) + η

(1)
3,dT (F , P

(1)
3,3 )

)
+

4τ
3

(
η
(2)
1,dT (D2, P

(2)
1,3 ) + η

(2)
2,dT (D2, P

(2)
2,3 ) + η

(2)
3,dT (D2, P

(2)
3,3 )

)
;

25 Final approximation Un+1

26 Compute D3 = g(t+ 2τ
3 ,U3)−G;

27 Compute U = U + τ
(
η
(1)
1,dT (F , P

(1)
1,f ) + η

(1)
2,dT (F , P

(1)
2,f ) + η

(1)
3,dT (F , P

(1)
3,f )

)
+

3τ
2

(
η
(2)
1,dT (D3, P

(2)
1,f ) + η

(2)
2,dT (D3, P

(2)
2,f ) + η

(2)
3,dT (D3, P

(2)
3,f )

)
;

28 Set t = t+ τ ;
29 end
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