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A SINGLE SHOOTING METHOD WITH APPROXIMATE FRÉCHET DERIVATIVE
FOR COMPUTING GEODESICS ON THE STIEFEL MANIFOLD∗
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Abstract. This paper shows how to use the shooting method, a classical numerical algorithm for solving
boundary value problems, to compute the Riemannian distance on the Stiefel manifold St(n, p), the set of n × p
matrices with orthonormal columns. The proposed method is a shooting method in the sense of the classical shooting
methods for solving boundary value problems; see, e.g., Stoer and Bulirsch, 1993. The main feature is that we provide
an approximate formula for the Fréchet derivative of the geodesic involved in our shooting method. Numerical
experiments demonstrate the algorithm’s accuracy and performance. Comparisons with existing state-of-the-art
algorithms for solving the same problem show that our method is competitive and even beats several algorithms in
many cases.
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1. Introduction. The object of study in this paper is the compact Stiefel manifold, i.e.,
the set of n× p matrices with orthonormal columns

St(n, p) =
{
X ∈ Rn×p : X>X = Ip

}
.

There are applications in several areas of mathematics and engineering that deal with data
that belong to St(n, p). Domains of applications include numerical optimization, imaging,
and signal processing. Some applications, like finding the Riemannian center of mass, require
evaluating the geodesic distance between two arbitrary points on St(n, p). Since no explicit
formula is known for computing the distance on St(n, p), one has to resort to numerical
methods.

In this paper we are concerned with computing the Riemannian distance between two
given points on the Stiefel manifold. As we shall see, the distance between two points on
a manifold is related to the concept of minimizing geodesics1. The problem can be briefly
formulated as follows. Given two points X , Y on St(n, p) that are sufficiently close to
each other, finding the distance between them is equivalent to finding the tangent vector
ξ∗ ∈ TXSt(n, p) with the shortest possible length such that [4, 11]

ExpX(ξ∗) = Y,

where ExpX denotes the Riemannian exponential mapping at X . The solution to this problem
is equivalent to the Riemannian logarithm of Y with base point X

ξ∗ = LogX(Y ).

The sought distance between X and Y is then given by the norm of ξ∗.
Figure 1.1 provides an artistic illustration of the problem. The latter will be stated in more

detail in Section 3.
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1Geodesics are generally defined as critical points of the length functional, and, as such, they may or may not be
minima. A minimizing geodesic is one that minimizes the length functional. We introduce the notion of geodesics in
Section 2.2.
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FIG. 1.1. Illustration of the problem statement.

It is interesting to note that, for some manifolds, explicit formulas exist for computing
the Riemannian distance. This is the case of the Grassmann manifold Grass(n, p), which is
the set of p-dimensional vector subspaces of Rn. For instance, let X and Y be two subspaces
belonging to Grass(n, p). Then the distance between X and Y is

d(X ,Y) =
√
θ2

1 + · · ·+ θ2
p,

where θi, i = 1, . . . , p, are the principal angles between X and Y; see, e.g., [27, Theorem 8]
and [1, Section 3.8]. The unit sphere Sn−1 embedded in Rn also has explicit formulas for
computing the Riemannian distance. In contrast, no such closed-form solution is known for the
Stiefel manifold. This motivates us to consider numerical methods. In general, the problem of
finding the distance given two points on a Riemannian manifold is related to the Riemannian
logarithm function (more details later in Section 2.2). Several authors have already tackled the
problem of computing the Riemannian logarithm on the Stiefel manifold. These contributions
are detailed in Section 1.3.

1.1. Contributions. In this work, we use the shooting method, which is a classical
numerical algorithm for solving boundary value problems, to compute the distance on the
Stiefel manifold St(n, p). These methods are not new (thorough coverage of the shooting
methods is given, e.g., in [20]), but their application to computing the Riemannian distance on
the Stiefel manifold is relatively new. The method of Bryner, although also named “shooting”
in [5], cannot be regarded as a classical shooting method since it makes use of Riemannian
geometry concepts (like the parallel transport) that do not fit into the classical framework
of [20].

In an earlier version of this work [22, 23], we used the vectorization operator and Kro-
necker products to work out explicit expressions for the Jacobian matrices involved in the
shooting method. The reason why this was done was to carry out some preliminary analysis
on the explicit expressions of the Jacobian matrices. The drawback was the excessive com-
putational cost given the dimensions of the operators involved, even for small values of n
and p.

Here, in contrast, we work directly with matrices, and we use an approximate form of
the Fréchet derivative of the geodesic given by a truncated Fréchet derivative of the matrix
exponential. Hence, there is no need for finite difference approximations. In particular, the
main contributions of this paper are as follows:

(i) We provide a single shooting method for computing geodesics on the Stiefel manifold
using the canonical metric as a classical numerical algorithm for solving boundary
value problems.

(ii) We introduce a truncated Fréchet derivative that leads to a linear matrix equation that
can be efficiently solved to find the algorithmic update.
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(iii) We perform extensive numerical experiments to demonstrate the algorithm in terms
of performance and accuracy. In particular, comparisons with existing state-of-the-art
algorithms for solving the same problem show that our method is competitive and
even beats several algorithms in many cases.

1.2. Applications and motivation. Many scientific and engineering works have used the
Stiefel manifold in their applications. To provide some motivation for the present work, this
section summarizes a few applications that explicitly compute the geodesic distance.

In affine invariant shape analysis, Younes et al. [29] studied a specific metric on plane
curves that has the property of being isometric to classical manifolds (like the sphere, complex
projective plane, Stiefel and Grassmann manifolds) modulo a change of parametrization.
Moreover, they provided experimental results that explicitly compute minimizing geodesics
between two closed curves.

In the context of shape analysis of closed curves, Srivastava and Klassen [19] studied
the space of functions representing unit-length, planar, closed curves, which can be shown
to be a Stiefel manifold. Ring and Wirth [18, Section 4.2] provided an application for image
segmentation on the Stiefel manifold using a Riemannian variant of the classical BFGS
algorithm. This is compared to the work of Sundaramoorthi et al. [21], where the authors
used geodesic retractions based on the matrix exponential. The more general reference by
Kendall et al. [10, Chapter 6] also contains a discussion on the Stiefel manifold and shape
spaces. Bryner [5] also proposed some numerical applications on the pre-shape space.

Çetingül and Vidal [6] investigated the intrinsic mean shift algorithm for clustering on
Stiefel and Grassmann manifolds. Turaga et al. [25, 26] investigated applications of the
Stiefel manifold in computer vision and pattern recognition to develop accurate inference
algorithms. Vision applications such as activity recognition, video-based face recognition,
shape classification, and unsupervised clustering were targeted. In particular, step 3 of
Algorithm 1 in [26] computes the inverse exponential map, but it was unclear how this was
achieved.

The low-rank representation (LRR) is a widely used technique in computer vision and
pattern recognition for data clustering models. Yin et al. [28] extended the LRR from Euclidean
space to manifold-valued data on the Stiefel manifold by incorporating the intrinsic geometry
of the manifold. They acknowledged that, in general, it is pretty hard to compute the log
mapping for the Stiefel manifold. Consequently, they used the retraction map (a first-order
approximation of the exponential mapping; see, e.g., [3]) instead of the exponential map
because of its reduced computational cost.

More recently, Li and Ma [12] proposed a generalization of the federated learning frame-
work to Riemannian manifolds. In particular, they considered the kPCA problem on the Stiefel
manifold. Even though they initially discussed the Riemannian logarithm mapping, they finally
adopted a retraction in the numerical implementations, similarly to what was done in [28].

1.3. Related works and other approaches. Shooting methods are not the only option to
solve the endpoint geodesic problem; many other numerical algorithms have been proposed.
As a plethora of methods now come out every year, this review is not meant to be exhaustive.

The leapfrog algorithm by Noakes [14] is based on partitioning the original problem into
smaller subproblems. This method has global convergence properties, but it slows down for an
increasing number of subproblems or when the solution is approached [9, Section 1]. Moreover,
Noakes realized that his leapfrog algorithm was in some way imitating the Gauss–Seidel
method [14, Section 1]. This connection has been explored by Sutti and Vandereycken [24].

Bryner [5] proposed two schemes, named “shooting method” and “path-straightening”,
to compute endpoint geodesics on the Stiefel manifold by considering it as an embedded
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submanifold of the Euclidean space. From the matrix algebra perspective, Rentmeesters [17]
and Zimmermann [30, 31] derived algorithms for evaluating the Riemannian logarithm map
on the Stiefel manifold with respect to the canonical metric, which are locally convergent
and depend upon the definition of the matrix logarithm function. Recently, Zimmermann
and Hüper [32] provided a unified method to deal with the endpoint geodesic problem on the
Stiefel manifold with respect to a family of metrics.

Noakes and Zhang [15] proposed an alternative algorithm to find geodesics joining two
given points. Like leapfrog, this method exploits the shooting method to compute geodesics
joining junction points.

The methods of Nguyen [13] are based on classical (Euclidean) optimization algorithms
for minimizing an objective function with a reduction of the computational cost thanks to the
formulation of the gradients using only the Fréchet derivatives.

1.4. Notation. In Table A.1 (see Appendix A) we list the notations and symbols adopted
in this paper in order of appearance. Symbols only used in one section are typically omitted
from this list.

1.5. Outline of the paper. The remaining part of this paper is organized as follows.
Section 2 introduces the geometry of the Stiefel manifold. Readers who are familiar with
Riemannian geometry, particularly the geometry of the Stiefel manifold, might want to skip
this section. Section 3 presents the problem statement, which is the focus of this work.
Section 4 describes our proposed algorithm: a single shooting method with an approximate
Fréchet derivative. Numerical experiments and comparisons with other methods are presented
in Section 5. Finally, we conclude the paper by summarizing the contributions and providing
future research outlooks in Section 6.

2. Geometry of the Stiefel manifold. This section introduces the geometry of the Stiefel
manifold. Here, we only give the necessary background to understand the remaining part of
this paper. For additional details, we refer the reader to the reference works of [2, 4, 7].

The set of all n× p orthonormal matrices, i.e.,

St(n, p) = {X ∈ Rn×p : X>X = Ip},

endowed with its submanifold structure is called an orthogonal or compact Stiefel manifold. It
is a subset of Rn×p, and it can be proven that it has the structure of an embedded submanifold
of Rn×p [2, Section 3.3.2]. The Stiefel manifold St(n, p) may also degenerate to some special
cases. For p = 1, it reduces to the unit sphere Sn−1 in Rn, while for p = n, it becomes the
orthogonal group O(n), whose dimension is 1

2n(n− 1).

2.1. Tangent spaces and projectors. The tangent space to a manifold at a given point
can be seen as a local vector space approximation of the manifold at that point. In practice, the
tangent space is used to perform the operations of vector addition and scalar multiplication,
which would otherwise be impossible to perform on the manifold without leaving it due to the
manifold’s curvature. Endowed with a Euclidean inner product, this vector space becomes a
Euclidean space where we also have a notion of length. Here, we will directly focus on the
tangent space to the Stiefel manifold. For a more precise definition of a tangent space in the
general case, we refer the reader to [2].

The tangent space to the Stiefel manifold at a point X can be characterized by [2,
Example 3.5.2]

(2.1) TXSt(n, p) = {XΩ +X⊥K : Ω = −Ω>, K ∈ R(n−p)×p},
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Ω being a p-by-p skew-symmetric matrix, Ω ∈ Sskew(p), X⊥ being an orthonormal ma-
trix whose columns span the orthogonal complement of span(X), and K ∈ R(n−p)×p,
with no restriction on K. With this characterization in mind, and with the fact that
dim

(
St(n, p)

)
= dim

(
TXSt(n, p)

)
, it is straightforward to calculate the dimension of the

Stiefel manifold as

dim(St(n, p)) = dim(Sskew(p))+dim(R(n−p)×p) = 1
2p(p−1)+(n−p)p = np− 1

2p(p+1).

The projection onto the tangent space TXSt(n, p) is

(2.2) PX ξ = Xskew(X>ξ) + (I −XX>) ξ.

2.2. Geodesics, exponential mapping, and logarithm mapping. Geodesics are defined
in general as curves with zero covariant acceleration. They allow us to introduce the Rieman-
nian exponential Expx : TxM →M that maps a tangent vector ξ =

.
γ(0) ∈ TxM to the

geodesic endpoint γ(1) = y: Expx(ξ) = y. Figure 2.1 illustrates these concepts for the unit
sphere S2, which is also a special case of a Stiefel manifold St(n, p), with n = 3 and p = 1.

γ(t)

y = Expx(ξ)

TxS2

S2

ξx

FIG. 2.1. The Riemannian exponential map on the sphere.

To define a distance on a given manifoldM, we need a notion of length that applies
to tangent vectors. To this aim, we endow the tangent space TxM with an inner product
〈·, ·〉x. The inner product 〈·, ·〉x induces a norm ‖ξx‖x =

√
〈ξx, ξx〉x on TxM. A manifold

M endowed with a smoothly varying inner product (called Riemannian metric g) is called
Riemannian manifold.

The length of a curve γ : [a, b]→M on a Riemannian manifold (M, g) is

L(γ) =

∫ b

a

√
g(

.
γ(t),

.
γ(t)) dt.

The Riemannian distance is defined as the shortest path between two points x and y

d : M×M→ R : d(x, y) = inf
γ∈Γ

L(γ),

where Γ denotes the set of all curves γ inM joining the points x and y.
Generally speaking, different choices of a Riemannian metric are possible. In this paper,

we consider the non-Euclidean canonical metric inherited by St(n, p) from its definition as a
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quotient space of the orthogonal group [7, (2.39)]. GivenX ∈ St(n, p) and ξ, ζ ∈ TXSt(n, p),
the canonical metric reads

gc(ξ, ζ) = Tr
(
ξ>(I − 1

2XX
>) ζ

)
.

The canonical metric induces the canonical norm, defined as

‖ξ‖c =
√
gc(ξ, ξ).

The reader can verify that

‖ξ‖2c = 1
2‖Ω‖2F + ‖K‖2F.

The embedded metric is the metric inherited by the Stiefel manifold as an embedded submani-
fold of Rn, i.e., ge(ξ, ξ) = Tr(ξ>ξ). With the embedded metric, the induced norm is simply
the Frobenius norm

‖ξ‖e =
√
ge(ξ, ξ) =

√
Tr(ξ>ξ) =: ‖ξ‖F and ‖ξ‖2F = ‖Ω‖2F + ‖K‖2F.

The only difference with respect to the squared canonical norm of ξ is that in the squared
embedded norm of ξ the term ‖Ω‖2F is not halved. This calculation highlights the fact that in
contrast to the embedded norm, the canonical norm only takes into account once the 1

2p(p− 1)
coefficients of Ω. Indeed, in the remaining part of this paper, we will only use the canonical
metric.

By endowing the Stiefel manifold with the canonical metric, one can derive the following
second-order ordinary differential equation for the geodesic [7, (2.41)]

(2.3)
..
Y +

.
Y

.
Y >Y + Y

(
(Y >

.
Y )2 +

.
Y >

.
Y
)

= 0,

where Y ≡ Y (t). An explicit formula for a geodesic that realizes a tangent vector ξ with base
point Y0 is [7, (2.42)]

(2.4) Y (t) = Q expm

([
Ω −K>
K On−p

]
t

)
· In,p,

with Q =
[
Y0 Y0⊥

]
and Y0⊥ being any matrix whose columns span Y⊥0 = (span(Y0))⊥. If

t = 1, then this is precisely the Riemannian exponential on the Stiefel manifold. In this paper,
we denote by A the matrix in the argument of the matrix exponential expm.

REMARK 2.1. The matrix Y0⊥ does not need to be orthonormal. Indeed, its only
requirement is that it has to span Y⊥0 = (span(Y0))⊥, i.e., the orthogonal subspace to
Y0 = span(Y0); see [22, Appendix A.1]. For the convenience of our analysis and implemen-
tation, we always assume that Y0⊥ is orthonormal so that Q =

[
Y0 Y0⊥

]
is an orthogonal

matrix.
REMARK 2.2. It can be shown that the endpoint geodesic problem on St(n, p) is equiv-

alent to an endpoint geodesic problem on St(2p, p); see [7, 17] and [22, Section 2.3.3 and
Appendix A.2]. In the formulation (2.4) above, the complexity of computing the matrix expo-
nential is O(n3), but if p� n, then the smaller formulation can be used and its computational
cost is only O(p3). In practice, it makes sense to consider the formulation on St(2p, p) only if
p < n

2 , which is what we do in our algorithm.
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3. Problem statement. In this section, we state the problem more formally. Given two
points Y0, Y1 on St(n, p) that are sufficiently close to each other, finding the distance between
them is equivalent to finding the tangent vector ξ∗ ∈ TY0St(n, p) with the shortest possible
length such that [4, 11]

ExpY0
(ξ∗) = Y1,

where ExpY0
denotes the Riemannian exponential mapping at Y0. The solution to this problem

is equivalent to the Riemannian logarithm of Y1 with base point Y0

ξ∗ = LogY0
(Y1).

We refer the reader to Figure 1.1 for an illustration of the problem statement.
In terms of the differential equation (2.3) governing the geodesic, the problem statement

may be written as follows:
Find ξ∗ ≡

.
Y (0) ∈ TY0

St(n, p) such that the second-order ODE

(3.1)
..
Y = −

.
Y

.
Y >Y − Y

(
(Y >

.
Y )2 +

.
Y >

.
Y
)

with boundary conditions

{
Y (0) = Y0,

Y (1) = Y1,

is satisfied. This problem is known as a boundary value problem (BVP).

4. A single shooting method with an approximate Fréchet derivative. The single
shooting method is a classical numerical scheme for solving boundary value problems. The
main idea is to reformulate the BVP as an initial value problem (IVP), guess the initial value
of the acceleration, and then solve a nonlinear equation. It basically turns a BVP into a root-
finding problem. The zeros of the nonlinear equation can be computed with any root-finding
algorithm, but the classical single shooting method typically uses Newton’s method.

In this section we present the details on how to apply the single shooting method to the
endpoint geodesic problem on the Stiefel manifold. We start by recasting the BVP (3.1) into
an IVP. Let Z1(t) = Y (t), Z2(t) =

.
Y (t) denote the geodesic and its derivative, respectively,

and let

Z(t) =

[
Z1(t)
Z2(t)

]
.

We get the initial value problem (we omit the dependence on t)

.
Z =

[ .
Z1.
Z2

]
=

[
Z2

−Z2Z
>
2 Z1 − Z1

(
(Z>1 Z2)2 + Z>2 Z2

)] ,
with initial conditions Z(0) =

[
Z1(0)
Z2(0)

]
=

[
Y0

ξ

]
.

(4.1)

Here, ξ is the unknown such that Z1(1) = Y1.
Solving (4.1) typically requires a numerical integration scheme, but here, since we already

have the explicit formula (2.4) for the geodesic Z1(t), we do not need to integrate the initial
value problem (4.1).

The explicit formula for Z2 is just the derivative of Z1 with respect to t, namely,

Z2(t) = Q expm

([
Ω −K>
K On−p

]
t

)[
Ω
K

]
,
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where Ω = Y >0 ξ and K = Y >0⊥ξ. Now, let us define the function

(4.2) F (ξ) = Z1(1, ξ)− Y1,

where we emphasize the dependence on ξ. Roughly speaking, this represents the mismatch
between Z1(1, ξ), i.e., the geodesic at t = 1, and the boundary condition Y1 we wish to
enforce. Our goal is to find ξ∗ such that

F (ξ∗) = 0.

As mentioned above, this is a root-finding problem of a nonlinear (matrix) equation, which
can be solved by Newton’s method. To apply Newton’s method, we need the Fréchet derivative
of Z1(1, ξ) in the direction of an increment δξ of ξ.

In an earlier version of this work [22, 23], we used a vectorization approach that allowed
us to calculate an explicit analytic expression for the Jacobian matrix involved in this single
shooting method. The drawback of this approach is that it is computationally very inefficient
due to the dimensions of the operators involved, which grow exponentially with n. Here,
instead, we work directly with matrix equations and Fréchet derivatives. In doing so, we drew
some inspiration from [13].

In the remaining part of this section, we first state the algorithm and then, in Section 4.1,
explain in more detail the linearization of (4.2) and the approximation of the Fréchet derivative
involved. In Section 4.2, we provide a way to construct an initial iterate for the algorithm.

The pseudocode for the single shooting method on the Stiefel manifold is given in
Algorithm 1. Note at line 8 the additional projection step onto the tangent space to ensure that
the updated tangent vector is indeed an element of TY0St(n, p). We did not take any particular
care in introducing a line-search technique, although it might be helpful for globalizing the
method. Numerical experiments in Section 5 demonstrate that Algorithm 1 works very well
in practice. For the sake of brevity, we name our algorithm SSAF (an acronym for “single
shooting approximate Fréchet”). As a stopping criterion, we typically consider a tolerance for
the norm of the residual δξ(k).

Algorithm 1: A single shooting method on the Stiefel manifold with an approxima-
tion of the Fréchet derivative (SSAF method).
1 Given Y0, Y1;

Result: ξ∗ such that ExpY0
(ξ∗) = Y1.

2 Compute the initial guess ξ(0) (using Algorithm 2);
3 Set k = 0;
4 while a stopping criterion is met do
5 Compute F (k) = Z1(1, ξ(k))− Y1;
6 Solve F (k) + DZ1 [δξ(k)] = 0 for δξ(k);
7 Update ξ(k+1) ← ξ(k) + δξ(k);
8 Project ξ(k+1) onto TY0St(n, p) using (2.2): ξ(k+1) ← PY0

(
ξ(k+1)

)
;

9 k = k + 1;
10 end while

4.1. Linearization of the nonlinear matrix equation (4.2). We recall from (2.1) the
structure of a tangent vector ξ ∈ TY0

St(n, p), i.e.,

ξ = Y0Ω + Y0⊥K.
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From now on, let us denote by

A(ξ) =

[
Ω −K>
K On−p

]
the matrix in the argument of the exponential appearing in the geodesic equation (2.4). Clearly,
A is a function of ξ because the matrices Ω and K are formed from the tangent vector ξ.
Then (2.4) at t = 1 can be rewritten as

Z1(1, ξ) = Q expm(A(ξ)) · In,p.

Recall our nonlinear matrix equation (4.2) that we want to solve for ξ. Newton’s method
consists in solving successive linearizations of (4.2), i.e.,

(4.3) F (ξ + δξ) = Z1(ξ + δξ)− Y1 = 0.

Here, the term Z1(ξ + δξ) is the expression for the geodesic when applying a small
perturbation δξ to the vector ξ. Applying matrix perturbation theory, we obtain

Z1(ξ + δξ) = Z1(ξ) + DZ1 [δξ(k)] + o(‖δξ‖),

namely,

(4.4) Z1(ξ + δξ) = Z1(ξ) +Q D expm(A(ξ))
[

DA(ξ)[δξ]
]
· In,p + o(‖δξ‖),

where D expm(A(ξ))
[

DA(ξ)[δξ]
]

denotes the Fréchet derivative of the matrix exponential at
A(ξ) in the direction of DA(ξ)[δξ]. DA(ξ)[δξ] itself denotes the Fréchet derivative of A(ξ)
in the direction of δξ.

In contrast to what was proposed in [22, 23], here we do not vectorize the equation, and
we work directly with matrices and Fréchet derivatives; moreover, we do not compute the
exact Fréchet derivative, but we approximate it by a truncated expansion.

Inserting (4.4) into (4.3) and neglecting the higher-order terms in δξ, we obtain the matrix
equation

(4.5) Z1(ξ) +Q D expm(A(ξ))
[

DA(ξ)[δξ]
]
· In,p − Y1 = 0.

We now need to tackle the term D expm(A(ξ))
[

DA(ξ)[δξ]
]
, which involves a chain rule with

two Fréchet derivatives.
First, the perturbation of A(ξ) with a δξ gives

A(ξ + δξ) = A(ξ) + DA(ξ)[δξ],

where

A(ξ) =

[
Ω −K>
K O(n−p)

]
and DA(ξ)[δξ] =

[
δΩ −δK>
δK O(n−p)

]
.

Since A is linear in ξ, the above expansion is exact.
Secondly, the perturbation of the matrix exponential by a matrix E ∈ Rn×n is

expm(A+ E) = expm(A) + D expm(A)[E] + o(‖E‖),

where D expm(A)[E] is the Fréchet derivative of the matrix exponential at A in the direction
of E. In general, there are many ways to compute expm and D expm(A)[E] and thus also
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many ways to approximate these quantities; see [8, Chapter 10]. Here, we consider the Taylor
series of eA+E − eA, from which we obtain the following representation for the Fréchet
derivative of the matrix exponential [8, Section 10.2]

D expm(A)[E] = E +
AE + EA

2
+
A2E +AEA+ EA2

3!
+ · · · .

We then consider an approximation of D expm(A)[E] by keeping only the first two terms in
the expansion, i.e.,

D expm(A)[E] ≈ E +
AE + EA

2
.

This formula can be used to approximate D expm(A(ξ))
[

DA(ξ)[δξ]
]

in (4.5), resulting in

Q ·
(
DA(ξ)[δξ] + 1

2 (A ·DA(ξ)[δξ] + DA(ξ)[δξ] ·A)
)
· In,p = Y1 − Z1.

This is now a linear matrix equation to be solved for δξ. In practice, we work with the factors
δΩ and δK of δξ. After a few algebraic manipulations, detailed in Appendix B, we obtain a
(small-sized) Sylvester equation which can be efficiently solved with MATLAB’s command
lyap to obtain the update δΩ. Then the update δK can be found from δΩ. Let the current
iteration be indexed by k. Then the tangent vector is updated as

ξ(k+1) = ξ(k) +Q ·
[
δΩ(k)

δK(k)

]
.

4.2. The initial guess. This section outlines our approach to initializing our single
shooting method, which involves choosing an initial guess ξ(0) that is close enough to ξ∗.
It is well known that Newton’s method exhibits only local convergence properties, which
means that the method requires a sufficiently good initial guess to converge. Shortcomings
of Newton’s method are very well described in [16, Section 11.1]. It is possible to modify
Newton’s method and enhance it in various ways to get around most of these problems.

As Newton’s method underlies the single shooting method, selecting a “good enough”
initial guess is crucial. Although in this work we actually consider an approximation of the
Fréchet derivative and not the exact one, we can still use the following construction of the
initial guess that was used in [22, 23]. This construction is closely related to the “first shot” in
Bryner’s method [5, Alg. 1].

Concretely, we use a first-order approximation of the matrix exponential expm(A) ≈ I+A
appearing in (4.3) and solve for ξ. This yields a first-order approximation ξ̄ of the solution ξ∗

as

ξ̄ = Y1 − Y0.

Since, in general, this is no longer an element of the tangent space, we need to project it
onto TY0St(n, p) to obtain a tangent vector. We expect the tangent vector so obtained to be a
satisfactory initial approximation of the sought tangent vector ξ∗.

Using (2.2), the projection of ξ̄ onto the tangent space at Y0 is

PY0 ξ̄ = Y0 skew
(
Y >0 (Y1 − Y0)

)
+ (In − Y0Y

>
0 )(Y1 − Y0) = Y1 − Y0 sym(Y >0 Y1).

To get ξ(0), we rescale this vector so that its norm is equal to the norm of ξ̄, i.e.,

ξ(0) =

∥∥ξ̄∥∥∥∥PY0 ξ̄
∥∥ PY0

ξ̄.

This procedure is summarized in Algorithm 2 and illustrated in Figure 4.1.
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PY0
ξ̄TY0

St(n, p) Y0

St(n, p)
Y1

ξ̄

ξ(0)

FIG. 4.1. Initial guess for the single shooting method on the Stiefel manifold.

Algorithm 2: Initial guess for the single shooting method on the Stiefel manifold.

1 Given Y0, Y1;
2 Compute ξ̄ = Y1 − Y0;
3 Compute PY0 ξ̄ = Y1 − Y0 sym(Y >0 Y1);

4 Compute ξ(0) =
‖ξ̄‖
‖PY0

ξ̄‖ PY0
ξ̄;

5 Return ξ(0).

5. Numerical experiments and comparisons with other methods. In this section, we
present some numerical experiments for the single shooting method, and we report on the
convergence behavior. The code was implemented in MATLAB and is freely available on
the repository https://github.com/MarcoSutti/SSAF_2024_repo. The method of Bryner [5,
Alg. 1] was implemented according to the pseudocode provided in [5], while the method of
Zimmermann [5, Alg. 1] was directly taken from Appendix C of [30]. We conducted our
experiments on a laptop Lenovo ThinkPad T460s with Ubuntu 23.10 LTS and MATLAB
R2022a installed, with Intel Core i7-6600 CPU, 20GB RAM, and Mesa Intel HD Graphics 520.
On this machine, the matrix exponential expm of a unit-norm skew-symmetric matrix in
R1000×1000 is computed in 0.45 seconds (time averaged over 100 runs)2. In all the tables, our
algorithm is named SSAF.

Table 5.1 compares our new SSAF method with the earlier version using the exact
Jacobian matrix [22, Alg. 1]. The efficiency of our new SSAF method compared to the old
version is striking. Typically, cases with a small p require more iterations for SSAF, while
for [22, Alg. 1] the number of iterations remains constant with respect to p. Still, the superior
efficiency of SSAF by far compensates for this (desirable) feature. From Table 5.1, it is also
evident that the single shooting method with the exact Jacobian matrix [22, Alg. 1] scales very
badly with p, and it becomes prohibitively expensive as p grows. The long dashes “—” in the
table indicate that the single shooting method with the exact Jacobian matrix stopped due to
memory overflow.

5.1. Comparisons with other state-of-the-art methods. In this section we demonstrate
that the proposed algorithm is competitive with other state-of-the-art methods. The body of
literature and available methods has been increasing recently, especially during the last five
years, and it would be hard to compare our proposed algorithm to all the existing methods.
Hence, the comparisons in this section are not meant to be exhaustive. We aim to show that
our proposed algorithm is competitive with respect to only a limited subset of state-of-the-art
algorithms that can be found in the literature. Specifically, in this section we compare our

2We give this reference for the computational cost of the matrix exponential expm following [13, Section 5.2].
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TABLE 5.1
Comparisons for the single shooting method with an approximate Fréchet derivative versus the single shooting

method with the exact Jacobian [22, Alg. 1] on St(1000, p) for doubling values of p and for a prescribed d(X,Y ) =
0.5π. Results are averaged over 10 random runs. The stopping tolerance is 10−5.

p
Avg. comput. time (s) Avg. no. of iterations

[22, Alg. 1] SSAF [22, Alg. 1] SSAF

10 0.08 0.00256 5 6.80
20 3.07 0.00390 5 5.00
40 182.69 0.00998 5 5.00
80 — 0.03388 — 4.00
160 — 0.12734 — 4.00
320 — 0.90012 — 4.00
640 — 2.98705 — 4.00

method to the “shooting” method of Bryner [5, Alg. 1], the matrix algebraic approach of
Zimmermann [30, Alg. 1], and the optimization methods of Nguyen [13].

Table 5.2 uses the same test cases as those considered in [13, Table 2], namely St(1500, p)
for large values of p and for a prescribed d(X,Y ) = 0.5π3. In all the test cases considered,
our SSAF algorithm is superior in terms of computation time compared to the other methods.

TABLE 5.2
Comparisons on St(1500, p) with large values of p and for a prescribed d(X,Y ) = 0.5π. Results are

averaged over 10 pairs of randomly generated endpoints on St(1500, p). The stopping tolerance is 10−5.

p
Avg. comput. time (s) Avg. no. of iterations

[5, Alg. 1] [30, Alg. 1] SSAF [5, Alg. 1] [30, Alg. 1] SSAF

500 12.09 3.30 1.89 3.00 2.00 4.00
700 31.27 8.21 4.56 3.00 2.00 4.00
1000 77.37 20.39 8.82 3.00 2.00 4.00

Here, we do not perform a direct comparison with the methods of [13], in particular
with the results in [13, Table 2]. However, we can point out that the results in [13, Table 2]
are obtained on a machine that computes the matrix exponential expm of a unit-norm skew-
symmetric matrix in R1000×1000 in 0.6 seconds. In contrast, on our machine, as mentioned at
the beginning of this section, this same reference quantity is 0.45 seconds. This suggests that
if it were to be run on the same machine, the methods of [13] would be slightly faster but still
slower than our SSAF method and also than [30, Alg. 1].

However, when p is doubled from 500 to 1000, the methods of [13, Table 2] seem to
scale better than all the other algorithms considered here. We emphasize that the test case
corresponding to the last row in Table 5.2 has dimensions n = 1500 and p = 1000, i.e.,
this is not a case in which p ≤ n/2. Therefore, the standard implementations of [5, Alg. 1]
and [30, Alg. 1] are not designed to be efficient in this case. From the numerical results
reported in [13, Table 2], it seems that when p is doubled from 500 to 1000, the computation
time is multiplied by a factor of approximately 3.4 for the gradient descent method and 3.6 for
the L-BFGS method. In contrast, the same factors computed from Table 5.2 for [5, Alg. 1],
[30, Alg. 1], and our SSAF method are 6.4, 6.2, and 4.7, respectively. This suggests that

3This is the prescribed distance used for the numerical experiments reported in [13, Table 2], although not
explicitly written in that paper. From a private communication with Nguyen, February 2024.
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Nguyen’s methods might be more effective for problems with larger values of p. Yet our SSAF
method remains the most competitive among the other algorithms considered here because it
shows to have a factor of 4.7 in contrast to 6.4 for [5, Alg. 1] and 6.2 for [30, Alg. 1].

Table 5.3 considers the same three test cases as in [32, Table 1] with a stopping tolerance
τ = 10−10. Although the average number of iterations for our SSAF method is much higher
than that of the other algorithms, our method remains competitive in terms of computation
time.

TABLE 5.3
Comparisons for the three test cases in [32, Table 1] with a stopping tolerance τ = 10−10. Results are

averaged over 10 experiments.

Avg. comput. time (s) Avg. no. of iterations

[5, Alg. 1] [30, Alg. 1] SSAF [5, Alg. 1] [30, Alg. 1] SSAF

Test Case 1: St(2000, 500), for a prescribed d(X,Y ) = 5π.

109.65 15.35 19.66 14.0 12.0 28.2

Test Case 2: St(120, 30), for a prescribed d(X,Y ) = π.

0.11242 0.04157 0.02556 10.90 9.30 19.60

Test Case 3: St(12, 3), for a prescribed d(X,Y ) = 0.95π.

0.08885 0.06563 0.03948 40.80 86.30 167.00

Tables 5.4 and 5.5 below try to reproduce the data from the left and middle panels,
respectively, of [5, Figure 4], while at the same time comparing with the method of [30]
and with our SSAF method. We adopt the same parameters as in [5], namely T = 20 and a
stopping tolerance τ = 10−3. We say that we “try to reproduce” since it seems that Bryner
did not prescribe a distance or at least this is not explicitly stated; hence, we fix it here to
d(X,Y ) = 0.5π.

TABLE 5.4
Comparisons on St(n, 2) for doubling values of n and for a prescribed d(X,Y ) = 0.5π. T = 20 and

tolerance τ = 10−3. Results are averaged over 100 experiments.

n
Avg. comput. time (s) Avg. no. of iterations

[5, Alg. 1] [30, Alg. 1] SSAF [5, Alg. 1] [30, Alg. 1] SSAF

10 0.00400 0.00091 0.00080 4.08 3.73 7.77
20 0.00367 0.00093 0.00091 3.85 3.87 7.35
40 0.00337 0.00095 0.00075 3.49 3.61 6.96
80 0.00312 0.00101 0.00081 3.30 3.61 6.90
160 0.00310 0.00105 0.00086 3.15 3.42 6.86
320 0.00328 0.00107 0.00096 3.02 3.08 6.86
640 0.00371 0.00105 0.00091 3.00 3.02 6.89
1 280 0.00543 0.00104 0.00100 3.00 2.72 6.87
2 560 0.00856 0.00135 0.00121 3.00 2.47 6.87
5 120 0.01056 0.00131 0.00132 3.00 2.34 6.93
10 240 0.01596 0.00144 0.00141 3.00 2.12 6.97
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From Table 5.5, it appears that the endpoint geodesic problem seems to get easier for
large n, since for all the three methods considered, the average number of iterations decreases
for increasing n. In other words, as the ratio p/n→ 0, solving the endpoint geodesic problem
requires fewer iterations. This is consistent with a similar observation in [13, Section 5.2] and
with [30, Table 5.1].

TABLE 5.5
Comparisons on St(500, p) for doubling values of p and for a prescribed d(X,Y ) = 0.5π. T = 20 and

tolerance τ = 10−3. Results are averaged over 100 experiments.

p
Avg. comput. time (s) Avg. no. of iterations

[5, Alg. 1] [30, Alg. 1] SSAF [5, Alg. 1] [30, Alg. 1] SSAF

2 0.00353 0.00103 0.00086 3.01 2.95 6.78
4 0.00533 0.00156 0.00128 3.00 2.81 5.28
8 0.00711 0.00182 0.00115 3.00 2.00 4.08
16 0.01173 0.00369 0.00173 3.00 2.00 4.00
32 0.02912 0.01354 0.00453 3.00 2.00 4.00
64 0.08762 0.03582 0.01150 3.00 2.00 3.00
128 0.40437 0.10052 0.05657 3.00 1.00 3.00
256 1.94025 0.47720 0.25847 3.00 1.00 3.00

Using the data from Tables 5.4 and 5.5, Figure 5.1 tries to reproduce the left and middle
panels of [5, Figure 4], while at the same time comparing with Zimmermann’s algorithm [30,
Alg. 1] and our SSAF method.

FIG. 5.1. Average computation times for Bryner’s shooting method [5, Alg. 1], Zimmermann’s matrix algebraic
algorithm [30, Alg. 1], and our SSAF method on St(n, p). Left panel: plot corresponding to Table 5.4. Right panel:
plot corresponding to Table 5.5.

We emphasize that Bryner did not use the smaller formulation on St(2p, p) when p < n/2
(see Remark 2.2 above), which makes its algorithm’s complexity O(Tnp2); see [13, Sec-
tion 5.2]. The other algorithms considered here ([13], [30, Alg. 1], and our new SSAF
algorithm) all make use of the smaller formulation on St(2p, p) when possible and hence they
are essentially O(p3), with our SSAF being comparable or even superior than [30, Alg. 1] in
terms of average computation time; see Tables 5.4, 5.5, and Figure 5.1.
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As a last numerical experiment, we consider a larger value of n, namely n = 1000 and
larger doubling values of p. The results are reported in Table 5.6, demonstrating again the
competitiveness of our SSAF method in terms of both average computation time and number
of iterations with respect to the existing algorithms considered here.

TABLE 5.6
Comparisons on St(1000, p) for doubling values of p and for a prescribed d(X,Y ) = 0.5π. T = 20 and

tolerance τ = 10−5. Results are averaged over 100 experiments.

p
Avg. comput. time (s) Avg. no. of iterations

[5, Alg. 1] [30, Alg. 1] SSAF [5, Alg. 1] [30, Alg. 1] SSAF

20 0.03897 0.00641 0.00391 4.00 3.00 5.02
40 0.09512 0.02957 0.01284 3.00 3.00 5.00
80 0.25528 0.08044 0.03969 3.00 2.00 4.00
160 0.76246 0.24119 0.13763 3.00 2.00 4.00
320 3.99810 1.07286 0.64483 3.00 2.00 4.00
640 23.36386 5.62897 2.80133 3.00 2.00 4.00

6. Conclusions and outlook. In this work we studied the shooting method, a classical
numerical algorithm for solving boundary value problems, to compute the distance between
two given points on the Stiefel manifold under the canonical method. We provided a shooting
method for calculating geodesics on the Stiefel manifold in the sense of classical shooting
methods for solving boundary value problems. The main feature of our algorithm is that we
provide an approximate formula for the Fréchet derivative of the geodesic involved in our
shooting method. Numerical experiments demonstrated our algorithm’s performance and
accuracy. We compared our algorithm to some state-of-the-art methods and showed that it is
competitive with existing algorithms.

As a future outlook, an analysis of the proposed algorithm would be desirable. Moreover,
we may use the knowledge gained in this work to develop a computationally cheaper algorithm.
Another promising research direction is exploring the connection between shooting algorithms
for computing geodesics and domain decomposition methods. Future studies will focus on
these topics.

Acknowledgments. The author is grateful to Bart Vandereycken for his guidance during
the author’s Ph.D. thesis. Part of this work was started during the author’s Ph.D. thesis at the
University of Geneva, SNSF fund number 1632124. It was completed during the author’s
postdoctoral fellowship at the National Center for Theoretical Sciences in Taiwan (R.O.C.)
under the NSTC grant 112-2124-M-002-009.

The author would also like to thank the anonymous referee for the many valuable com-
ments regarding an earlier version of this paper, which considerably helped to improve the
manuscript.

4SNSF webpage: https://data.snf.ch/grants/grant/163212

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://data.snf.ch/grants/grant/163212


ETNA
Kent State University and

Johann Radon Institute (RICAM)

516 M. SUTTI

Appendix A. List of symbols.

TABLE A.1
List of symbols.

St(n, p) Stiefel manifold of orthonormal n-by-p matrices
X , Y , Y0, Y1 Elements of St(n, p)
Ip The identity matrix of size p-by-p
TXSt(n, p) Tangent space at X to the Stiefel manifold St(n, p)
ξ∗ A tangent vector that we want to recover
ExpX Riemannian exponential map at X
LogX Riemannian logarithm map at X
Sn−1 The unit sphere embedded in Rn
O(n) The orthogonal group of n-by-n orthogonal matrices
X⊥ An orthonormal matrix whose columns span

the orthogonal complement of span(X)
Sskew(p) Space of p-by-p skew-symmetric matrices
Ω An element of Sskew(p)
K A matrix in R(n−p)×p

PX The projector onto the tangent space TXSt(n, p)
M Generic manifold
TxM Tangent space at x to the manifoldM
〈·, ·〉x Inner product on the tangent space TxM
g Riemannian metric
γ(t) Parametrized curve on the manifoldM
d Riemannian distance function
d(x, y) Riemannian distance between two points x and y
injX(M) Injectivity radius ofM at X
inj(M) Global injectivity radius ofM
‖ · ‖F Frobenius norm
‖ · ‖c Canonical norm
expm The matrix exponential
Op The null matrix of size p-by-p

In,p The matrix
[

Ip
O(n−p)×p

]
A The matrix

[
Ω −K>
K On−p

]
Z1(t) or Y (t) A geodesic on St(n, p)

Z2(t) or
.
Y (t) The derivative of a geodesic

F The nonlinear function Z1(1, ξ)− Y1

F (k) The nonlinear function F evaluated at iteration k
δξ(k) The residual at iteration k in the single shooting method
Df(A)[E] Fréchet derivative of a matrix function f at A in the direction E

Appendix B. Approximation of the Fréchet derivative of the matrix exponential.
We recall that the Fréchet derivative of a matrix function f : Cn×n → Cn×n atX ∈ Cn×n

is the unique linear function Df(X)[·] of the matrix E ∈ Cn×n that satisfies

f(X + E)− f(X)−Df(X)[E] = o(‖E‖).
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The mapping itself is denoted by either Df(X)[·] or Df(X), while the value of the mapping
for a direction E (i.e., the directional derivative) is denoted by Df(X)[E].

From (4.4), we have the matrix equation

(B.1) Z1(ξ) +Q D expm(A(ξ))
[

DA(ξ)[δξ]
]
In,p − Y1 = 0.

The Fréchet derivative of the matrix exponential is defined through the integral [8, (10.15)]

D expm(A)[E] :=

∫ 1

0

eA(1−s)E eAs ds.

We also have the following formula from the Taylor series of eA+E − eA [8, Section 10.2]

D expm(A)[E] = E +
AE + EA

2
+
A2E +AEA+ EA2

3!
+ · · · .

As mentioned in Section 4.1, here we consider an approximation of D expm(A)[E] by keeping
only the first two terms in the expansion, i.e.,

D expm(A)[E] ≈ E +
AE + EA

2
.

This truncated expansion can be used to approximate D expm(A(ξ))
[

DA(ξ)[δξ]
]

in (B.1),
which yields

Q ·
(
DA(ξ)[δξ] + 1

2 (A ·DA(ξ)[δξ] + DA(ξ)[δξ] ·A)
)
· In,p = Y1 − Z1.

Left-multiplying the last equation by Q>, we get(
DA(ξ)[δξ] + 1

2 (A ·DA(ξ)[δξ] + DA(ξ)[δξ] ·A)
)
· In,p = Q>(Y1 − Z1) .

We emphasize that Q>Z1 = expm(A) In,p and the other term Q>Y1 does not depend on ξ;
hence, in the practical implementation of the algorithm, we compute this quantity only once.
Continuing with the manipulations, we obtain[

δΩ
δK

]
+

1

2

([
Ω −K>
K O

] [
δΩ
δK

]
+

[
δΩ −δK>
δK O

] [
Ω
K

])
= Q>(Y1 − Z1) ,[

δΩ
δK

]
+

1

2

([
ΩδΩ −K>δK

KδΩ

]
+

[
δΩΩ − δK>K

δKΩ

])
= Q>(Y1 − Z1) ,[

δΩ + 1
2ΩδΩ − 1

2K
>δK + 1

2δΩΩ − 1
2δK

>K

δK + 1
2KδΩ + 1

2δKΩ

]
= Q>(Y1 − Z1) ,

(B.2)

[
δΩ + 1

2 [Ω, δΩ]− 1
2

(
K>δK + δK>K

)
δK + 1

2KδΩ + 1
2δKΩ

]
=

[
Q>(Y1 − Z1)

∣∣
[1:p, : ]

Q>(Y1 − Z1)
∣∣
[p+1:n, : ]

]
=:

[
W
N

]
.

From the second matrix equation, we have

(B.3) δK
(
Ip + 1

2Ω
)

= N − 1
2KδΩ,

and we approximate
(
Ip + 1

2Ω
)

with Ip, i.e.,

δK = N − 1
2KδΩ.
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Now we insert this last equation into the first matrix equation in (B.2) to solve for δΩ, giving

δΩ + 1
2 [Ω, δΩ]− 1

2

(
K>(N − 1

2KδΩ) + (N − 1
2KδΩ)>K

)
= W,

δΩ + 1
2ΩδΩ + 1

2δΩΩ − 1
2

(
K>N − 1

2K
>KδΩ +N>K − 1

2δΩ
>K>K

)
= W,

δΩ + 1
2ΩδΩ + 1

2δΩΩ − 1
2K
>N + 1

4K
>KδΩ − 1

2N
>K + 1

4δΩ
>K>K = W.

We use the skew-symmetry δΩ> = −δΩ to get rid of the transpose,

δΩ + 1
2ΩδΩ + 1

2δΩΩ + 1
4K
>KδΩ − 1

4δΩK
>K = W + 1

2K
>N + 1

2N
>K,

and, collecting δΩ, we obtain

δΩ + 1
2δΩΩ − 1

4δΩK
>K + 1

2ΩδΩ + 1
4K
>KδΩ = W + 1

2K
>N + 1

2N
>K,(

Ip + 1
2Ω + 1

4K
>K
)
δΩ + δΩ

(
1
2Ω − 1

4K
>K
)

= W + 1
2K
>N + 1

2N
>K.

This is a Sylvester equation that can be solved with MATLAB’s command lyap to find δΩ.
Then δK can be found using (B.3). Let the current iteration be indexed by k. Then the tangent
vector is updated as

ξ(k+1) = ξ(k) +Q ·
[
δΩ(k)

δK(k)

]
.
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