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EVALUATING LEBESGUE CONSTANTS BY CHEBYSHEV POLYNOMIAL
MESHES ON CUBE, SIMPLEX, AND BALL∗
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Abstract. We show that product Chebyshev polynomial meshes can be used, in a fully discrete way, to evaluate
with rigorous error bounds the Lebesgue constant, i.e., the maximum of the Lebesgue function, for a class of
polynomial projectors on cube, simplex, and ball, including interpolation, hyperinterpolation, and weighted least-
squares approximation. Several examples are presented and possible generalizations outlined. A numerical software
package implementing the method is freely available online.

Key words. multivariate polynomial meshes, cube, simplex, ball, polynomial projectors, interpolation, least-
squares, hyperinterpolation, polynomial optimization, Lebesgue constant

AMS subject classifications. 65D05, 65D10, 65K05

1. Introduction. Starting from the seminal paper by Calvi and Levenberg [16], the
notion of polynomial (admissible) mesh has been emerging in the last years as a fundamental
theoretical and computational tool in multivariate polynomial approximation. Let K ⊂ Rd
(or K ⊂ Cd) be a polynomial determining compact set, i.e., polynomials vanishing there
vanish everywhere in Rd. For example, any compact set with nonempty interior is polynomial
determining since the zero set of any nonzero polynomial has null Lebesgue measure (the
presence of interior points being however not necessary, e.g., the classical ternary Cantor set
in [0, 1] is polynomial determining). Denote by Pn = Pdn the space of d-variate polynomials
of total degree not exceeding n and by

N = Nn = dim(Pn) =

(
n+ d

n

)
its dimension. We recall that an admissible polynomial mesh of K is a sequence of finite
subsets An ⊂ K such that

‖p‖K ≤ c‖p‖An
, ∀p ∈ Pn ,

with card(An) = O(nα), α ≥ d, and c a constant independent of n. Here and below, ‖ · ‖Y
denotes the sup-norm on a continuous or discrete compact set Y . Observe that card(An) ≥ N
necessarily holds. Indeed, each An is Pn-determining, since polynomials vanishing on An
vanish everywhere on K. Such a mesh is termed optimal when α = d.

To give only a flavour of the topic, we recall that polynomial meshes are invariant by
affine transformations, are stable under small perturbations, and can be assembled by finite
union, finite product, and algebraic transformations, starting from known instances. These
include cubes (boxes), simplices, and balls, but also more general linear and curved polytopes
as well as convex bodies and more general compact domains satisfying Markov polynomial
inequalities. On the other hand, when available, optimal polynomial meshes are preferable
in applications due to their low cardinality, for example in the extraction of extremal points
such as Fekete-like and Leja-like points. We do not even attempt here to give a comprehensive
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survey of the already considerable literature on polynomial meshes, referring the reader, e.g.,
to [2, 3, 8, 12, 18, 33, 42, 49] and the references therein.

In the present paper, by exploiting the connection with the polynomial optimization
methods studied for example in [43, 53, 54], we develop theoretical estimates together with
a numerical algorithm to approximate the value of the uniform norms of fitting operators
(Lebesgue constants). Indeed, the computation of Lebesgue constants is a matter of op-
timization of Lebesgue functions, which ultimately corresponds to the computation of the
maximum modulus of fitting polynomials. The method works in a fully discrete way on special
polynomial meshes of product Chebyshev type on cubes, simplices, and balls, producing
approximations of the Lebesgue constant from above and below, with rigorous error bounds.
We also point out that, by the finite union property of polynomial meshes, the method can be
readily applied, with the same error bounds, to complicated geometrical objects relevant in
applications, namely single polytopes (via triangulation), union of polytopes, and union of
balls.

The computation of Lebesgue constants is important in applications in order to investigate
the quality of the sampling nodes, e.g., for interpolation. In the literature this step is typically
made, for example within spectral and high-order methods for numerical PDEs, by empirical
approaches, namely by the evaluation of Lebesgue functions on increasingly finer discretiza-
tions. In the present paper we provide, apparently for the first time, a fully discrete method
with rigorous error bounds as well as the corresponding numerical codes.

The paper is organized as follows. In Section 2 we state and prove the main theoretical
results, and we also outline an extended (but less accurate) approach via general polynomial
meshes on multidimensional compact sets. In Section 3 we discuss some computational and
implementation issues, and we present several examples concerning the evaluation of the size
of Lebesgue constants for polynomial interpolation and least-squares approximation (including
hyperinterpolation) on cube, simplex, and ball.

2. Lebesgue constants by Chebyshev meshes. In the sequel, the following constant
will play a key role

cm =
1

cos( π
2m )

, m > 1 .

Moreover, we shall denote by Ck the set of k Chebyshev zeros in (−1, 1), cos((2j − 1) π2k ),
1 ≤ j ≤ k (Chebyshev points), or the set of k + 1 Chebyshev extrema in [−1, 1], cos(j πk ),
0 ≤ j ≤ k (Chebyshev–Lobatto points).

2.1. The cube. We first discuss the case of the d-cube. By invertible affine transformation,
the result can be immediately extended to any d-box with invariance of the mesh constant c.
The following result has been proved in [43], essentially following [6], using the notion of
Dubiner distance on a compact set (which is tailored to polynomial spaces; cf., e.g., [10, 55]
and the references therein).

LEMMA 2.1. Let Ck be Chebyshev or Chebyshev–Lobatto points in [−1, 1]. Then the
sequence of product Chebyshev grids Amn = (Cmn)d, n = 1, 2, . . . , for a fixed m > 1, is an
admissible polynomial mesh for the d-cube [−1, 1]d with constant c = cm.

We can now state and prove a basic result on the approximation of Lebesgue constants by
polynomial meshes on the d-cube.
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PROPOSITION 2.2. Let Amn = (Cmn)d be a product Chebyshev admissible mesh of
K = [−1, 1]d as in Lemma 2.1, and let Ln : C(K) → Pn be a linear projection operator
such that

(2.1) Lnf(x) =

M∑
i=1

f(ξi)ϕi(x) ,

where Ξ = {ξi} ⊂ K and {ϕi} is a set of possibly not independent generators of Pn, i.e.,
Pn = span{ϕ1, . . . , ϕM}, with M ≥ N = dim(Pn). Moreover, let

λn(x) =

M∑
i=1

|ϕi(x)|

be the “Lebesgue function”of Ln and

‖Ln‖ = sup
f 6=0

‖Lnf‖K
‖f‖K

= ‖λn‖K

its “Lebesgue constant”. Then the following estimate holds for every m > 1:

(2.2) ‖λn‖Am
n
≤ ‖Ln‖ ≤ cm‖λn‖Am

n
.

Proof. First we prove that ‖Ln‖ = ‖λn‖K for any projection operator of the form (2.1)
on a general compact set K. Indeed, the inequality ‖Lnf‖K ≤ ‖f‖K‖λn‖K is immediate,
whereas the existence of a function g∗ ∈ C(K) such that g∗(ξi) = sign(ϕi(x

∗)), where
‖λn‖K = λn(x∗), with x∗ ∈ K and ‖g∗‖K = 1, is guaranteed by a quite general topological
result, namely the celebrated Tietze extension theorem of continuous functions from a closed
subset of a normal topological space, preserving the range; cf., e.g., [27, Ch.7, Thm.5.1].
Indeed, defining a function g on the sampling set Ξ such that g(ξi) = sign(ϕi(x

∗)), with
1 ≤ i ≤ M , then since g is trivially continuous on the closed discrete subset Ξ ⊂ K, there
exists an extension g∗ ∈ C(K) taking values in [−1, 1] with Lng∗(x∗) = λn(x∗).

Now, applying Lemma 2.1 to the polynomial Lnf we get

‖Lnf‖K ≤ cm‖Lnf‖Am
n
.

On the other hand, from the estimate |Lnf(x)| ≤ ‖f‖Ξλn(x) ≤ ‖f‖Kλn(x) it follows that
‖Lnf‖K ≤ cm‖f‖K‖λn‖Am

n
, from which we immediately get

‖Ln‖ = ‖λn‖K ≤ cm‖λn‖Am
n
,

and thus (2.2) since ‖λn‖K ≥ ‖λn‖Am
n

by inclusion.
REMARK 2.3. Notice that cm → 1 and thus, if the sampling set Ξ is independent of m,

‖λn‖Am
n
→ ‖Ln‖ as m → ∞. Moreover, from (2.2) we also get a relative error estimate,

namely

(2.3) 0 ≤
‖Ln‖ − ‖λn‖Am

n

‖Ln‖
≤ cm − 1 ∼ π2

8m2
≈ 1.23

m2
,

i.e., ‖λn‖Am
n

approximates the Lebesgue constant from below with an O( 1
m2 ) relative error.

On the other hand, (2.2) gives also the rigorous and computable absolute error estimate
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0 ≤ ‖Ln‖ − ‖λn‖Am
n
≤ (cm − 1)‖λn‖Am

n
. We finally notice that (2.2) is an interval

approximation of the Lebesgue constant. Hence, we can use the midpoint approximation

(2.4)
| ‖Ln‖ − Λmn |
‖Ln‖

≤ cm − 1

2
, Λmn = ‖λn‖Am

n

1 + cm
2

,

which improves the error estimates by a factor 1
2 .

REMARK 2.4. The structure of projection operators like (2.1) includes interpolation
operators at unisolvent nodes Ξ = {ξ1, . . . , ξN} ⊂ K, where, denoting by Vn = [pj(ξi)]ij ,
1 ≤ i, j ≤ N , the Vandermonde-like matrix in any fixed polynomial basis
span{p1, . . . , pN} = Pn, we have that

ϕj(x) = `j(x) =
det(Vn(ξ1, . . . , ξj−1, x, ξj+1, . . . , ξN ))

det(Vn(ξ1, . . . , ξj−1, ξj , ξj+1, . . . , ξN ))

are the corresponding Lagrange cardinal polynomials. Also included are discrete weighted
least-squares operators at Pn-determining nodes Ξ = {ξ1, . . . , ξM} ⊂ K with positive weights
W = {w1, . . . , wM}, M > N . Indeed, denoting by {πk}, 1 ≤ k ≤ N , the orthonormal
polynomials with respect to the corresponding discrete scalar product

(f, g)`2W (Ξ) =

M∑
j=1

wjf(ξj)g(ξj),

we have that

(2.5) Lnf(x) =

N∑
k=1

(f, πk)`2W (Ξ) πk(x) =

M∑
j=1

f(ξj)wjKn(x, ξj) ,

i.e.,

(2.6) ϕj(x) = wjKn(x, ξj) ,

where Kn(x, y) =
∑N
k=1 πk(x)πk(y) is the reproducing kernel of the discrete scalar product.

Notice that in this case (unless M = N where the least-squares approximation coincides with
interpolation) the ϕj are linearly dependent, thus forming a set of generators of Pn.

We stress that the structure (2.5) also includes hyperinterpolation operators, a topic that
has seen an increasing interest as a valid alternative to multivariate polynomial interpolation
after the seminal paper [47] by Sloan in the mid ’90s; cf., e.g., [1, 22, 30, 31, 50, 56, 58]
and the references therein. Indeed, hyperinterpolation operators are substantially truncated
Fourier-like expansions in series of orthogonal polynomials with respect to a continuous
measure with density. The scalar products in L2 are substituted by discrete scalar products,
corresponding to a suitable positive quadrature formula being exact in P2n.

2.2. The simplex. We consider now the d-simplex

Td = {x = (x1, . . . , xd) ∈ Rd : 0 ≤ xd ≤ · · · ≤ x1 ≤ 1} ,

along with the d-dimensional Duffy-like transformation D : [−1, 1]d → Td, which can be
defined as

(2.7) xi = Di(t) =

i∏
j=1

(
tj
2 + 1

2

)
, 1 ≤ i ≤ d , t = (t1, . . . , td) ∈ [−1, 1]d ;
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cf., e.g., [48]. We again notice that the results can be immediately extended to any simplex
with invariance of the mesh constant c by an invertible affine transformation.

LEMMA 2.5. Let Ck be the Chebyshev or Chebyshev–Lobatto points in [−1, 1] and D
the Duffy-like transformation [−1, 1]d → Td in (2.7), where Td is the d-simplex. Then the
sequence Amn = D((Cmn)d), n = 1, 2, . . . , for a fixed m > 1, is an admissible polynomial
mesh for Td with constant c = (cm)d.

Proof. Let us denote by P1
n the space of univariate real algebraic polynomials of degree

not exceeding n. For every p ∈ Pn we have that ‖p‖Td
= ‖p ◦ D‖[−1,1]d . Now, since D is a

d-linear (surjective) mapping, it hold that p◦D ∈
⊗d

k=1 P1
n, the space of tensorial polynomials

of degree not exceeding n. Reasoning component by component and using iteratively the
univariate version of Lemma 2.1, it is immediate to write the inequality

‖p ◦ D‖[−1,1]d ≤ (cm)d‖p ◦ D‖(Cmn)d = (cm)d‖p‖Am
n
.

PROPOSITION 2.6. Let Amn = D((Cmn)d) be a polynomial admissible mesh of the
d-simplex K = Td as in Lemma 2.5 and Ln : C(K)→ Pn a linear projection operator with
the structure defined in Proposition 2.2. Then the following estimate holds for every m > 1:

‖λn‖Am
n
≤ ‖Ln‖ ≤ (cm)d‖λn‖Am

n
.

Proof. We can proceed exactly as in the proof of Proposition 2.2 by simply substituting
cm with (cm)d.

REMARK 2.7. We observe that, since (cm)d → 1 as m → ∞, the same assertions of
Remark 2.3 are valid with (cm)d replacing cm. The only difference is that the estimate (2.3) is
asymptotically increased by a factor d, namely

0 ≤
‖Ln‖ − ‖λn‖Am

n

‖Ln‖
≤ (cm)d − 1 = (cd−1

m + · · ·+ cm + 1)(cm − 1)

≤

((
m

m− 1

)d−1

+ · · ·+ m

m− 1
+ 1

)
(cm − 1) ∼ dπ2

8m2
≈ 1.23

d

m2

for d fixed and m→∞, where we have used the elementary inequality

cos(θ) = sin(π2 − θ) ≥ 1− 2θ

π
, 0 ≤ θ ≤ π

2
.

REMARK 2.8. It is worth observing that, by the finite union extension property of
admissible polynomial meshes (cf., e.g., [16]), the results above are valid via “triangulation”
(subdivision into non overlapping simplices) on any polytope, e.g., on any polygon in d = 2
or polyhedron in d = 3. We recall that for d ≥ 3 in nonconvex instances, the triangulation
could require extra vertices in view of the well-known Schönardt counterexample [45]. On the
other hand, for the same reason it is also valid on any union of (even overlapping) polytopes,
where again the mesh is the union of the single polytope meshes obtained via triangulation
(in practice this avoids tracking and triangulating the union polytope, which can be very
complicated).

2.3. The ball. As a third relevant case, we discuss the unit Euclidean ball, i.e.,
Bd = {x ∈ Rd : ‖x‖2 ≤ 1}, by no loss of generality since it is affinely equivalent to
any other ball by translation and scaling with invariance of the mesh constant c. Again, the
results can be extended to a finite union of possibly overlapping balls, a geometrical object
that is relevant in applications, e.g., in the field of molecular modelling [40].
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Below we denote by P1
n the space of univariate real algebraic polynomials of degree not

exceeding n and by T1
n([a, b]) the space of univariate real trigonometric polynomials of degree

not exceeding n, i.e., span{1, sin(jθ), cos(jθ) , j = 1, . . . , n}, restricted to a subinterval
[a, b] of period b− a ≤ 2π.

Moreover, we make use of generalized spherical coordinates in Bd, d ≥ 2 (the case
B1 = [−1, 1] is treated in Section 2.1), corresponding to the surjective transformation

G : J = [0, 1]× [0, π]d−2 × [0, 2π]→ Bd

defined by

xj = r cos(θj)

j−1∏
k=1

sin(θk) , 1 ≤ j ≤ d− 1, xd = r sin(θd−1)

d−2∏
k=1

sin(θk),

where r ∈ [0, 1], θk ∈ [0, π], 1 ≤ k ≤ d− 2, θd−1 ∈ [0, 2π]; cf., e.g., [5]. These coordinates
coincide with the usual polar coordinates for the disk B2 and the spherical coordinates for the
3-ball B3.

First, we state a basic lemma on a norming inequality for univariate trigonometric polyno-
mials in the subperiodic case, whose proof can be found in [54].

LEMMA 2.9. Let Ck be the Chebyshev or Chebyshev–Lobatto points in [−1, 1], and let
σa,b : [−1, 1]→ [a, b], b− a ≤ 2π, be the invertible map

σa,b(u) = 2 arcsin(αu) + β , u ∈ [−1, 1] , α = sin

(
b− a

4

)
, β =

b+ a

2
.

Then the following inequality holds:

‖φ‖a,b ≤ cm‖φ‖σa,b(C2mn) , ∀φ ∈ Tn([a, b]) .

REMARK 2.10. We observe that the Chebyshev-like angles σa,b(C2mn) cluster at the
interval endpoints for b− a < 2π (subperiodic instances), whereas they are equally spaced for
b− a = 2π (periodic case).

LEMMA 2.11. Let Ck be the Chebyshev or Chebyshev–Lobatto points in [−1, 1], and
consider the composed transformation

S = G ◦ U : [−1, 1]d → Bd ,(2.8)

U(u1, u2, . . . , ud−1, ud) =

(
u1

2
+

1

2
, σ0,π(u2), . . . , σ0,π(ud−1), σ0,2π(ud)

)
,

where Bd is the d-ball. Then the sequence Amn = S(Cmn × (C2mn)d−1), n = 1, 2, . . . , for a
fixed m > 1, is an admissible polynomial mesh for Bd with constant c = (cm)d.

Proof. For every p ∈ Pn, it is easily seen by basic trigonometric identities that the
composed function p ◦ G belongs to an algebraic-trigonometric tensorial space on the box
J = [0, 1]× [0, π]d−1 × [0, 2π] = U([−1, 1]d), namely

p ◦ G ∈ P1
n

⊗
Tn([0, π])

⊗
· · ·
⊗

Tn([0, π])
⊗

Tn([0, 2π]) .

Moreover, ‖p‖Bd
= ‖p ◦ G‖J by the surjectivity of G. Then, reasoning component by

component by using the univariate version of Lemma 2.1 and iteratively Lemma 2.9, it is
immediate to write

‖p‖Bd
= ‖p ◦ G‖J ≤ (cm)d‖p ◦ G‖U(Cmn×(C2mn)d−1)

= (cm)d‖p ◦ S‖Cmn×(C2mn)d−1 = (cm)d‖p‖Am
n
.
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PROPOSITION 2.12. Let Amn = S(Cmn × (C2mn)d−1) be a polynomial admissible mesh
of the d-ball K = Bd as in Lemma 2.11, and let Ln : C(K) → Pn be a linear projection
operator with the structure defined in Proposition 2.2. Then the following estimate holds for
every m > 1:

(2.9) ‖λn‖Am
n
≤ ‖Ln‖ ≤ (cm)d‖λn‖Am

n
.

Proof. Again (see Proposition 2.6), we can proceed exactly as in the proof of Proposi-
tion 2.2 simply by substituting cm with (cm)d.

We can finally observe that in view of (2.9), the considerations in Remark 2.7 apply also
to the case of the ball.

2.4. General polynomial meshes. In the case of more general compact sets, we can still
get a fully discrete, but less accurate, approximation of the Lebesgue constants by polynomial
meshes based on the approach developed in [53] for polynomial optimization.

PROPOSITION 2.13. Let K ⊂ Rd be a compact set, {An} a polynomial admissible
mesh of K, and Ln : C(K)→ Pn a linear projection operator with the structure defined in
Proposition 2.2. Then the following estimates hold for every m ≥ 1:

(2.10) ‖λn‖Anm
≤ ‖Ln‖ ≤ c

1
m ‖λn‖Anm

.

Proof. First, observe that by definition of a polynomial mesh, for every p ∈ Pn and for
every m ≥ 1 we can write

‖p‖K ≤ c
1
m ‖p‖Anm

,

since pm ∈ Pmn and ‖pm‖K = ‖p‖mK ≤ C‖pm‖Anm
= C‖p‖mAnm

. Then we can reason as
in the proof of Proposition 2.2 to reach the conclusion with c

1
m substituting cm.

REMARK 2.14. Notice that c
1
m → 1, and thus again, if the sampling set Ξ is independent

of m, ‖λn‖Anm
→ ‖Ln‖ as m → ∞. Moreover, from (2.10) we also get a relative error

estimate, namely

‖Ln‖ − ‖λn‖Anm

‖Ln‖
≤ e

log(c)
m − 1 ≤ e

log(c)
m

log(c)

m

by the mean value theorem and the monotonicity of the exponential function. This is an O( 1
m )

relative approximation of the Lebesgue constant by ‖λn‖Anm . Again, (2.10) gives also the
rigorous and computable absolute error estimate

0 ≤ ‖Ln‖ − ‖λn‖Anm
≤ (c

1
m − 1)‖λn‖Anm

.

Notice that also in this general case we may resort to the midpoint approximation

ΛAnm
= ‖λn‖Anm

1+c
1
m

2 , whose relative error estimate is improved by a factor 1
2 , namely

| ‖Ln‖ − ΛAnm
|

‖Ln‖
≤ c

1
m − 1

2
.
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3. Numerical examples.

3.1. Computational issues. We make some observations on the main computational
issues. Dealing with polynomial projectors, most computations can be seen as a matter of
numerical linear algebra by standard algorithms applied to the relevant Vandermonde-like
matrices in a polynomial basis [p1(x), . . . , pN (x)] of Pn. In order to control the conditioning
of such matrices, which can become unacceptable already at moderate degrees with the
standard monomial basis, we have chosen to use a total-degree product Chebyshev basis
corresponding to the minimal enclosing Cartesian box, say [a1, b1] × · · · × [ad, bd] ⊃ K,
namely pk(x) =

∏d
s=1 Tms

(αsxs + βs), where αs = bs−as
2 , βs = bs+as

2 , and the function
Tms

(·) = cos(ms arccos(·)) is the standard Chebyshev polynomial of the second kind for
degree ms. Here, k = 1, . . . , N corresponds to some ordering (for example, a lexicographical
ordering) of the d-tuples (m1, . . . ,md), 0 ≤ m1 + ... + md ≤ n. Alternatively, one could
adopt an orthonormal polynomial basis with respect to some measure, when explicitly known,
such as the Logan-Shepp or the Zernike basis for the disk [57] or the Dubiner basis for the
2-simplex [26].

In view of (2.5)–(2.6), the Lebesgue constant on the mesh of either an interpolation or
weighted least-squares projection operator can be computed via the discrete reproducing kernel,
i.e., via the discrete orthogonal polynomial basis {πk}. Indeed, consider the Vandermonde-
like matrix Vn(Ξ) = [pk(ξj)]jk, where Ξ = {ξj} are either the interpolation or the weighted
least-squares sampling points. By a QR factorization of the corresponding weighted matrix,
with Q (rectangular) orthogonal and R square upper-triangular, namely

diag(
√
W )Vn(Ξ) = QR ,

a discrete orthonormal basis in `2W (Ξ) is simply

[π1(x), . . . , πN (x)] = [p1(x), . . . , pN (x)]R−1 .

Then, using a matrix formulation and denoting by Amn = {ai} the nodes of the polynomial
mesh and by Vn(Amn ) = [pk(ai)]ik the corresponding Vandermonde-like matrix, in view
of (2.5)–(2.6) and observing that we have to perform a matrix column scaling by the least-
squares weights, we can write

[ϕj(ai)]ij = [wjKn(ai, ξj)]ij =

[
wj
∑
k

πk(ai)πk(ξj)

]
ij

= [πk(ai)]ik [πk(ξj)]
t
jk diag(W ) = Vn(Amn )R−1(Vn(Ξ)R−1)t diag(W )

= Vn(Amn )R−1(diag(
√
W )Vn(Ξ)R−1)t diag(

√
W )

= Vn(Amn )R−1Qt diag(
√
W ) ,

from which we get

(3.1) ‖λn‖Am
n

= max
i

∑
j

|ϕj(ai)| = ‖Vn(Amn )R−1Qt diag(
√
W )‖∞ .

We recall again that the present formulation includes interpolation, where we simply have
card({ξj}) = N = dim(Pdn) and unit weights.

Some computational observations are in order. Despite the use of some orthogonal
polynomial basis instead of the standard monomial basis, by increasing n, the matrix Vn(Ξ)
can become more and more ill-conditioned and such ill-conditioning is inherited by the
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436 L. BIAŁAS-CIEŻ, D.J. KENNE, A. SOMMARIVA, AND M. VIANELLO

triangular factor R. To give an idea of the conditioning with different polynomial bases,
we report in Figure 3.1 the condition number of Vandermonde-like matrices on a given
interpolation set of a 2-simplex (Waldron points) and a disk (approximate Lebesgue points);
cf., [11, 37]. In this respect, in our implementation, a direct inversion of R by the Matlab
command inv in (3.1) is not adopted already at moderate degrees, whereas the command /R
is better suited to manage ill-conditioning, at least up to condition numbers with order around
the reciprocal of machine precision.

0 2 4 6 8 10 12 14 16 18 20
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

Monomial Simplex

Chebyshev Simplex

Dubiner Simplex

Monomial Disk

Chebyshev Disk

Logan-Shepp Disk

FIG. 3.1. Conditioning of Vandermonde-like matrices with different polynomial bases on interpolation sets of a
2-simplex and a disk, for degree n = 1, 2, . . . , 20 (the value stalling for the monomial basis at the highest degrees is
due to the Matlab cond function).

To have an idea of the approximation quality of the Lebesgue constant, we report here
a table of the relative error estimates using the midpoint approximation; cf., (2.4), with cdm
replacing cm for the simplex and ball. Observe that, in order to get an error below 10%,
that is, in order to recover the Lebesgue constant with one correct figure and thus computing
accurately its order of magnitude (which is the relevant parameter in applications), one can
take m = 3 for the d-cube, m = 4 in d = 2 for the simplex and disk, and m = 5 in d = 3 for
the simplex and ball. In all cases the error is around 8%.

TABLE 3.1
Relative error estimates in the approximation of the Lebesgue constants on Chebyshev polynomial meshes Am

n :
d-cube (first row), 2-simplex and disk (second row), 3-simplex and ball (third row).

m 2 3 4 5 6 7 8 9 10
cm − 1 11% 7.7% 4.1% 2.6% 1.8% 1.3% 0.98% 0.77 % 0.62%
c2m − 1 50% 17% 8.6% 5.3% 3.6% 2.6% 2.0% 1.6% 1.3%
c3m − 1 90% 27% 13% 8.1% 5.5% 4.0% 3.0% 2.4% 1.9%

We observe that the present fully discrete approach for Lebesgue constants evaluation,
being based on product Chebyshev meshes of cardinality O((mn)d), suffers from the curse
of dimensionality and hence is essentially a low-dimensional tool. Considering, for example,
the polynomial meshes corresponding to (transformed) grids of Chebyshev points, which
are in the interior of the domains, the cardinalities are exactly (mn)d for the d-cube and the
d-simplex and 2d−1(mn)d for the d-ball. To have an idea of the sizes, we display in Figure 3.2
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the values of the cardinality corresponding to the choices of m suggested above for a range of
polynomial degrees in dimension d = 2 and d = 3.
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FIG. 3.2. Cardinalities (log scale) of some Chebyshev polynomial meshes in dimension d = 2, 3 for degree
n = 1, 2, . . . , 30 (the Lebesgue constant is approximated at less than 10%, cf. Table 3.1): (mn)d with m = 3
(d-cube, �), m = 4 (2-simplex, 4), and m = 5 (3-simplex, ♦); 2d−1(mn)d with m = 4 (disk, o) and m = 5
(ball, ∗).

Below we show a number of numerical tests in dimension 1, 2, and 3. The corresponding
numerical codes and demos, implemented in Matlab, are freely available at [32].

3.2. Univariate interpolation points. In the univariate case, the Lebesgue constants
for the interpolation on intervals have been extensively studied, with a number of theoretical
results and estimates; cf., e.g., [14, 36] and the references therein. In order to test our
method, we compare here the computed Lebesgue constants of Chebyshev points, Gauss–
Legendre–Lobatto points (which are known to be Fekete points, i.e., points that maximize the
absolute value of the Vandermonde determinant), and Gauss–Legendre points. The Lebesgue
constant of the first two is known to be O(log(n)), whereas the third is O(

√
n). Moreover,

we also compute the Lebesgue constant of equally spaced points, which is known to grow
exponentially; cf. [38]. The results are collected in Figure 3.3.
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FIG. 3.3. Left: Lebesgue constants of some point sets on the interval [−1, 1] for degrees n = 1, . . . , 100:
Chebyshev (red dots), Legendre (blue line), Legendre–Lobatto (cyan dashes), and equispaced points (magenta dashes).
Right: the three lowest curves in detail. In these experiments, m = 3 with a relative error ≈ 7.7%.
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3.3. Comparing interpolation points on the square. We compare here the computed
Lebesgue constants of some well-known families of interpolation points on the square. The
results are collected in Figure 3.4.

The Padua points on the square, discovered in 2005 [15], are the union of two suitable
Chebyshev subgrids. They are the first and, until now, the only explicitly known optimal point
set for total-degree multivariate polynomial interpolation. For such points it has indeed been
proved that the Lebesgue constant is O(log2(n)); cf. [7].

The Morrow–Patterson points support one of the few known minimal positive cubature
formulas, namely a formula with N nodes that has degree of exactness 2n for the product
Chebyshev measure of the second kind; cf. [39]. Hence, the hyperinterpolation polynomial of
degree not greater than n at these points, in view of minimality, turns out to be exactly the
interpolation polynomial by [47, Lemma 3]. For such points it is proved that the Lebesgue
constant is O(n3), and it is conjectured that the actual growth is O(n2); cf. [21].

For the purpose of comparison we also compute the Lebesgue constant of N Halton
points. In view of a recent result in [19], N uniformly distributed (random) points are almost
surely unisolvent, meaning that the probability of det(Vn(Ξ)) = 0 is null. However, we expect
that the Lebesgue constant has exponential growth, as observed numerically. A theoretical
explanation is that a subexponential growth would imply weak-* convergence of the uniform
discrete probability measure supported at the interpolation points to the potential theoretic
equilibrium measure of the compact set (that in this case is the product Chebyshev measure);
cf. [4]. On the contrary, with uniform random and Halton points, there is weak-* convergence
to the Lebesgue measure (a fact that is at the base of Monte Carlo and Quasi-Monte Carlo
integration). The exponential growth is clearly visible in Figure 3.4 (left) and in all the figures
with uniform or Halton points as a trend up to some oscillations (in Figure 3.3 (left) where
high degrees are considered, the behavior becomes numerically erratic when the Lebesgue
constant goes beyond a size around 1017).
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FIG. 3.4. Left: Lebesgue constants of some total-degree interpolation point sets on the square [−1, 1]2 for
degrees n = 1, . . . , 25: Padua points (red dots), Morrow–Patterson (blue dots), Halton points (cyan dashes). Right:
the two lowest curves in detail. In these experiments, m = 3 with a relative error ≈ 7.7%.

3.4. Waldron points on the simplex. Good total-degree interpolation points on the
simplex are relevant in the numerical solution of PDEs by spectral and high-order methods and
have been extensively investigated for this reason—in most cases numerically; cf., e.g., [59]
and the references therein.

Quite recently, a promising theoretical approach has been proposed constructing the so-
called Waldron points that are obtained by looking for an appropriate spacing with respect to a
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distance related to the equilibrium measure of the domain (such as the Baran distance; cf. [11]).
In Figure 3.5 we compare the Lebesgue constant of the Waldron points for the 2-simplex
with that of the so-called Simplex Points (SIMP), a triangular grid corresponding to equally
spaced points in the Euclidean distance on the equilateral triangle, and two families of points
corresponding to a greedy minimization of the Lebesgue constant, namely the Approximate
Lebesgue Points (ALP) and the Symmetric Approximate Lebesgue Points (SALP). The SALP
are useful in the framework of spectral element methods for PDEs; cf. [13, 44].

We see that, as expected, with the Simplex Points there is an exponential growth. On the
other hand, the Lebesgue constant of ALP and SALP are slowly increasing, whereas that of
the Waldron points increase slowly up to about degree n = 10 and then turns to a manifestly
exponential growth (though slower than with the Simplex Points).
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FIG. 3.5. Left: Lebesgue constants of some point sets on the unit simplex with vertices (0, 0), (1, 0), (0, 1), for
degrees n = 1, . . . , 25: ALP (cyan dashes), SALP (blue line), Waldron points (red dots), simplex points (magenta
dashes). Right: the three lowest curves in detail. In these experiments, m = 4 with a relative error ≈ 8.6%.

3.5. Approximate Fekete and Leja points. The cases where good interpolation sets are
known analytically are very few. Already in dimension d = 2, to our knowledge there is no
known explicit family for the disk, and in d = 3 the same can be said for cube and ball.

On the other hand, interpolation points with slowly increasing Lebesgue constant can
be determined numerically. Examples include the Approximate Fekete Points (AFP) and the
Discrete Leja Points (DLP), both corresponding to a greedy maximization of the Vandermonde
determinant modulus, typically extracting such points from polynomial meshes by numerical
linear algebra algorithms; cf., e.g., [8, 9]. Moreover, for example in [13, 37], Approximate
Lebesgue Points (ALP) have been computed once and for all on the square, simplex, and disk
for restricted-degree ranges, working heuristically just with polynomial meshes and suitable
greedy algorithms. Other point sets with low Lebesgue constant can be computed by the
optimization algorithm proposed in [52].

For the purpose of illustration, in Figures 3.6–3.8, we plot the computed Lebesgue
constants for interpolation at AFP, DLP, and Halton points on the disk, cube, and ball. The
AFP and DLP have been computed on the same polynomial meshes Amn used for the Lebesgue
constant evaluation. On the disk we also consider the Carnicer–Godes interpolation points [17]
and the Approximate Lebesgue Points (ALP) computed in [37].

3.6. Standard and weighted least-squares operators. As observed in Remark 2.4,
discrete least-squares operators, one of the very basic tools of computational mathematics in
both the standard (equally weighted) and the weighted case, fall into the class of projectors
where we can evaluate the Lebesgue constant, i.e., their uniform norm, by polynomial meshes.
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FIG. 3.6. Left: Lebesgue constants of some point sets on the unit disk B2, for degrees n = 1, . . . , 25: AFP
(red dots), DLP (blue dots), ALP (cyan dashes), Carnicer–Godes (black dashes), Halton points (magenta dashes).
Right: the four lowest curves in detail. In these experiments, m = 4 with a relative error ≈ 8.6%.
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FIG. 3.7. Left: Lebesgue constants of some point sets on the cube [−1, 1]3, for degrees n = 1, . . . , 15:
AFP (red dots), DLP (blue dashes), Halton points (cyan dashes). Right: the two lowest curves in detail. In these
experiments, m = 3 with a relative error ≈ 7.7%.
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FIG. 3.8. Left: Lebesgue constants of some point sets on the unit ball B3, for degrees n = 1, . . . , 10: AFP (red
dots), DLP (blue dashes), Halton points (cyan dashes). Right: the two lowest curves in detail. In these experiments,
m = 5 with a relative error ≈ 8.1%.

It is worth recalling that a connection of the (standard) least-squares approach with
polynomial meshes was already pointed out in [16], where it was shown that if the sampling
set is a polynomial mesh on K, say Ξ = An with constant c, then ‖Ln‖ ≤ c

√
card(An).
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This is however only a rough bound (as observed there), whereas estimating the actual size is
important in applications.

Concerning weighted least-squares operators, we may also recall that they include, for
example, hyperinterpolation operators (see Remark 2.4) as well as instances coming from
the recent topic of “compression” of discrete measures. Roughly summarizing, given a dis-
crete measure with large support, such a compression corresponds to extracting a subset of
re-weighted points from the support such that the corresponding discrete measure keeps the
same polynomial moments up to a given degree. This topic has been receiving an increasing
attention in the literature over the last decade in both the probabilistic and the deterministic
setting; cf., e.g., [12, 28, 29, 35, 41, 49, 51] and the references therein. In particular, for dis-
crete least-squares approximations of degree n on a sampling set Ξ = {ξj}, moment matching
has to be imposed up to degree 2n, thus preserving orthogonal polynomials and reproducing
kernels. This can be obtained by seeking a sparse nonnegative solution to the underdetermined
moment-matching system V t2n(Ξ)w = V t2n(Ξ)u, where V2n(Ξ) = [pk(ξj)]jk is the corre-
sponding Vandermonde-like matrix in a polynomial basis of P2n and u = (1, . . . , 1)t. Such a
solution with no more than N2n = dim(P2n) nonzero components exists by the well-known
Carathéodory theorem on conical combinations applied to the columns of the matrix and can
be computed by solving the NonNegative Least-Squares (NNLS) problem

min
u≥0
‖V t2n(Ξ)w − V t2n(Ξ)u‖2

via the Lawson–Hanson NNLS-solver [34] and its accelerated variants, such as that based on
the recently developed “deviation maximization” criterion instead of column pivoting in the
underlying QR factorizations; cf. [20, 23, 24, 25, 46]. The nonzero components of w then
determine a compressed support Ξn ⊂ Ξ with Nn ≤ card(Ξn) ≤ N2n, where the weighted
least-squares polynomial can be computed; cf. [41].

For the purpose of illustration, in Figures 3.9–3.10 we compare on the square and disk the
Lebesgue constants of hyperinterpolation and of polynomial least-squares approximation on
Halton points and on Chebyshev polynomial meshes for the degrees n = 1, . . . , 20 together
with their compressed versions. To give an idea of the compression ratios, those on the disk
are reported in Table 3.2. We recall that in the case of hyperinterpolation it is theoretically
known that the Lebesgue constant is O(n2) for the square and O(n) for the disc with the
Lebesgue measure and O(log2(n)) for the square with the product Chebyshev measure; cf.,
e.g., [21, 56, 58].

It is numerically manifest that Lebesgue constants of full and compressed least-squares
operators have substantially the same size with a remarkable reduction of the sampling
cardinality for the latter. Moreover, the Lebesgue constant of the least-squares approximation
on Chebyshev meshes and of hyperinterpolation with the product Chebyshev measure turn
out to be very close; see Figure 3.9. This is not really surprising since the uniform discrete
measure supported at univariate Chebyshev points is an algebraic quadrature formula for the
(normalized) Chebyshev measure, and such a behavior extends to a product-like framework.
Hence, standard discrete least-squares approximation on a Chebyshev mesh of the square
is equivalent to hyperinterpolation with respect to the product Chebyshev measure, whose
Lebesgue constant is expected to be O(log2(n)) in view of [58]. The same can be said
for the compressed least-squares approximation since this also corresponds to an algebraic
quadrature with the same moments up to degree 2n. Notice that the Lebesgue functions of
standard and compressed least-squares approximation are not coincident, but both correspond
to hyperinterpolation with respect to the product Chebyshev measure.

A similar argument applies in interpreting Figure 3.10 since standard discrete least-squares
approximation on a polar Chebyshev mesh of the disk is equivalent to hyperinterpolation with
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respect to its equilibrium measure
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,

whose Lebesgue constant is expected to be O(
√
n) in view of [56].
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FIG. 3.9. Left: Lebesgue constants of the least-squares operator on the square [−1, 1]2, for degrees
n = 1, . . . , 20, on: 104 Halton points (HAL, red dots) and compressed version (HALC, red dashes); Cheby-
shev mesh A5

20 = C100 × C100 with 104 points (blue line, AM20) and compressed version (AM20C, blue dashes);
hyperinterpolation with product Gauss–Chebyshev quadrature (HYP, cyan line). Right: the three lowest curves in
detail. In these experiments, m = 3 with a relative error ≈ 7.7%.
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FIG. 3.10. Left: Lebesgue constants of the least-squares operators on the unit disk B2, for degrees
n = 1, . . . , 20, on: 12800 Halton points (HAL, red dots) and compressed version (HALC, red dashes); Cheby-
shev mesh A4

20 = S(C80 × C160) with 12800 points (cf. (2.8)) (AM20, blue line) and compressed version (AM20C,
blue dashes); hyperinterpolation via low cardinality rules for the Lebesgue measure (HYP, cyan line). Right: the
three lowest curves in detail. In these experiments, m = 4 with a relative error ≈ 8.6%.
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TABLE 3.2
Cardinalities and sampling compression ratios for compressed polynomial LS operators of degree n on 12800

points of the disk.

n 2 4 6 8 10 12 14 16 18 20
card = N2n 15 45 91 153 231 325 435 561 703 861

cmp ratio 853 284 141 84 55 40 29 23 18 15
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