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A SHORT-TERM RATIONAL KRYLOV METHOD
FOR LINEAR INVERSE PROBLEMS∗

STEFAN KINDERMANN† AND WERNER ZELLINGER‡

Abstract. Motivated by the aggregation method, we present an iterative method for finding approximate solutions
of least-squares problems for linear ill-posed problems over (mixed) rational Krylov spaces. The mixed rational
Krylov spaces where the solution is sought consist of Tikhonov-regularized solutions mixed with usual Krylov space
elements from the normal equations. We present an algorithm based on the Arnoldi–Lanczos iteration, and, as main
result, derive the rational CG method, a short-term iteration that, similar as the usual conjugate gradient method,
does not requires orthogonalization or saving of the Krylov basis vectors. Some numerical experiments illustrate the
performance of the method.
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1. Introduction. The setting of this article are linear ill-posed problems stated in Hilbert
spaces. That is, given a compact forward operator A : X → Y between Hilbert spaces X,Y
and data y ∈ Y , a standard approach to find (generalized) solutions x of Ax = y is the
least-squares method:

min
x∈X
‖Ax− y‖.

In this work, we are particular interested in the case that A represents an ill-posed or ill-
conditioned forward operator such that a direct method usually leads to useless solutions, but
regularization has to be employed. One of the most popular regularization methods in this case
is Tikhonov regularization that calculates an approximate solution of the forward problem by

(1.1) xα := (A∗A+ αI)−1A∗y,

with α > 0 representing a regularization parameter that has to be chosen appropriately. Since
this involves solving a linear system, especially in high-dimensional cases, iterative methods
are the state-of-the-art, for instance, highly popular are Krylov-space methods (see, e.g., [20])
such as the conjugate gradient (CG) method [17, 28, 32] for the normal equations. We refer
to this method (i.e., using the Krylov space K(A∗A;A∗y) for solving A∗Ax = A∗y) as the
CGNE method (following [17, 28]), while other authors, e.g., [52], call this the CGNR method
and CGNE is then referred to solving the dual normal equations AA∗z = y using the Krylov
space K(AA∗;Ay); a similar name for the CGNE method stated in this article is the CGLS
method in [31].

Another quite interesting method, which is also the starting point for our analysis, is
the recently proposed aggregation method [10], which improves Tikhonov regularization by
constructing linear combinations of several xαi in (1.1) and minimizing the least-squares
functional over such combinations. This has, e.g., been successfully used in combination with
heuristic parameter choice rules [36], inverse problems in geophysics [53], and in particular
in domain adaption in learning [22, 42]. The method has also been suggested independently

∗Received April 17, 2024. Accepted May 24, 2024. Published online on June 7, 2024. Recommended by
L. Reichel.

†Industrial Mathematics Institute, Johannes Kepler University Linz, Austria
(kindermann@indmath.uni-linz.ac.at) ORCID: 0000-0002-3688-5125.

‡Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Science,
Linz, Austria (Werner.Zellinger@oeaw.ac.at) ORCID: 0000-0003-1166-6062.

327

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol60s327


ETNA
Kent State University and

Johann Radon Institute (RICAM)

328 S. KINDERMANN AND W. ZELLINGER

in [33], where also combinations of other regularization methods such as truncated singular
value decomposition were considered.

As we will see below (see Section 2), both the CGNE and the aggregation method can
be treated in a similar manner, namely as generalized Krylov space methods, where the latter
one operates in rational Krylov spaces. Its drawback is, however, that it is non-iterative, and
the system matrix is nonsparse in the Krylov basis. To repair this imperfection is one of the
main objectives of the current article: In order to alter the aggregation method into a recursive
method, we use mixed rational Krylov spaces, which allow for a sparse (in fact, pentadiagonal)
representation in this space; see, e.g., [43, 44] and Section 2. Current algorithms in this field
use Arnoldi–Lanczos-type method that are based on orthogonalizing vectors with respect to
the Krylov basis.

The main novelty of this article is the development of a short-term recursive method, called
rational CG (RatCG) method, in mixed Krylov spaces without the need of orthogonalization
or saving of the Krylov basis vectors. With respect to the number of iterations to achieve a
discrepancy principle, the method requires fewer iterations than almost any existing method
on the market (cf. Theorem 2.3), and it is comparable to the aggregation method but with
lower complexity involved. Of course, this advantage is gained by an extra effort of solving a
Tikhonov-regularized problem in each iteration.

The rational CG method has numerous advantages compared to many traditional regu-
larization schemes: i) since ordinary Tikhonov regularization has to be accompanied with
an α-parameter choice [17], several solutions of (1.1) have to be computed anyway, where
candidate solutions xαi

not satisfying, e.g., the discrepancy rule are usually discarded; a
similar situation arises when using heuristic minimization-based rules [34]. On the contrary,
the RatCG method reuses all computed Tikhonov solutions to build up the search space in
an (residual-)optimal way and with a rather simple recursion. ii) a similar observation holds
for iterated Tikhonov regularization [17, 29]: although its solutions are in a rational Krylov
space, compared to the RatCG method, the residuals are usually larger. (iii) Moreover, and in
particular, we show that the RatCG method terminates in a discrete setting in finite time in
contrast to the methods mentioned in (i) and (ii). (iv) It has a simple short-term recursion in
contrast to the aggregation method, requires less memory than the Arnoldi–Lanczos methods,
while giving similar results. (v) Compared to CGNE and any usual Krylov space method like
the ν-method [7, 27] or Nesterov’s iteration [35, 40], the rational CG has always a smaller
residual and thus requires fewer iterations to satisfy the discrepancy principle.

A downside of the proposed method is the need of solving linear problems with the
system matrix (A∗A+ αiI) multiple times, which implies a higher complexity than simple
Krylov methods; however, we will see from the numerical results that the additional overhead
is not high, and for some instances even these Krylov space methods can be beaten. As
soon as (iterated) Tikhonov regularization or the aggregation method are regarded as valid
regularization methods, the RatCG method also has to since it performs better than the former
ones.

Furthermore, we regard the rational CG method just as a first foundation with the prospect
of further use and research on rational Krylov spaces for ill-posed problems. At the end of the
article, we will discuss some aspects of generalizations and improvements, which we think
are worth of consideration. Let us also point out that we do not analyze the regularization
properties of the RatCG method but leave this also to future work. Note that even for the usual
CGNE method, this is a highly nontrivial task, and it is even more involved in the rational
case.

Finally, let us mention some related work in the context of ill-posed problems. Rational
Krylov method are well-established in the numerical analysis for well-posed problems; only
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few results exist considering them from a regularization point of view. Grimm [23] has studied
regularization properties of such rational CG method, but he uses only constant regularization
parameters, whereas we allow varying ones. Compared to Grimm, this makes our algorithm
more complicated (we get a three-term recursion in the odd steps), but our method is more
flexible and is comparable to the aggregation method. However, the derivation and analysis is
also more involved. In several works (see, e.g., [26, 43, 44, 45] and the references in Section 2)
a Lanczos-type method for Hermitean and non-Hermitean linear equation is proposed that is
essentially identical to the Lanczos method of Algorithm 2 (the precursor of the RatCG method)
in this article. Moreover, let us also mention that a short-term recursion for calculating a basis
in rational Krylov spaces has been developed [12, 25, 41]. However, the matrix representation
there is usually non-sparse, which does not lead to a short-term iterative method. The follow-up
of the Lanczos method in Section 3, the RatCG method, is new and the main contribution of
this article; we consider this a nontrivial extension of the cited work.

The structure of the article is as follows: In Section 2 we introduce rational Krylov
spaces, recall some of their properties, and derive the rational Lanczos method from the sparse
representation of the operator in the mixed spaces. Section 3 presents the main algorithm,
the RatCG method, which is a low-memory extension of the rational Lanczos method. Some
numerical investigations are presented in Section 4.

2. Rational Krylov spaces. In this section we define and discuss the structure of rational
Krylov spaces. Rational Krylov spaces have been introduced by Ruhe [47] for eigenvalues
computations, and since then a fruitful theory has been developed, mainly in the context of
well-posed problems [3, 4, 5, 8, 9, 12, 14, 16, 18, 19, 24, 25, 26, 41, 48, 49, 50, 51, 54]. A
similar concept is that of extended Krylov spaces [13].

For notational reasons we introduce the system matrix (or operator) for the normal
equations and the corresponding right-hand side:

(2.1) A := A∗A y := A∗y, A := AA∗ .

In the sequel we denote the Hilbert-space inner products in X or Y by 〈., .〉. We consider a
sequence of pairwise disjoint nonnegative regularization parameters

α1, . . . αn, . . . αi > 0, αi 6= αj for i 6= j.(2.2)

For any such αi, we define the solution xαi
of the associated Tikhonov regularization by (1.1).

Let us start with the motivating method of aggregation proposed in [10] (independently
also in [33]) and further developed in [37]. For the aggregation method of [37], one selects
a finite number of regularization parameters αi as in (2.2) and computes the associated
Tikhonov regularizations xαi

. The approximate solution of this method is defined as the linear
combination

∑
cixαi

with coefficients ci that minimize the residual. A similar idea is used in
Anderson acceleration [1] but with convex combinations of xαi

instead of linear ones. For the
aggregation method, one has to compute and invert the Gramian matrix Gi,j = 〈Axαi

, Axαj
〉

of the xαi . This is a full matrix, and the method is non-recursive, i.e., adding an additional
xαn+1 to the search space requires (more or less) a full new computation. Also, some
precaution in the algorithms has to be taken since the matrix might be ill-conditioned [37]. A
version of this method that does not invert the Gramian matrix but computes solutions using
the Arnoldi algorithm has been given by Brezinski et al. [8].

Based on this method, let us define the Krylov spaces of interest: With the notation (2.1),
the Tikhonov solution xαi can be written as fαi(A)y with

fα(λ) =
1

λ+ α
.
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By definition, the aggregation method minimizes the residual over the rational Krylov space
of dimension n

Rn := span{fα1
(A)y, fα2

(A)y, . . . , fαn
(A)y}.

Thus, it has a similar structure as the classical conjugate gradient method for the normal
equations (CGNE), which minimizes the residual over the usual Krylov space of dimension n

Kn := span{y,Ay,A2y, . . . ,An−1y}.

For the proposed rational CG method in this article, we use mixed rational spaces, defined
for even n = 2k and odd n = 2k + 1 dimensions as follows:

KR2k := span
{

y, fα1
(A)y,Ay, fα2

(A),A2y, . . . , fαk
(A)y

}
KR2k+1 := span

{
y, fα1(A)y,Ay, fα2(A),A2y, . . . , fαk

(A)y,Aky
}
.

Hence,

KRn =

{
Rk ∪ Kk n = 2k,

Rk ∪ Kk+1 n = 2k + 1.

Thus, we mix the ordinary and the rational Krylov spaces. The reason for this is the sparsity of
the system matrix; cf. Theorem 2.8. For an odd iteration index n = 2k+ 1, we add an element
from the ordinary Krylov space K. We refer to this as “Krylov step”. For an even n = 2k,
we add an element from the rational Krylov space, and we refer to such an iteration index as
“rational step”.

We can now state the various approximate solutions of the different methods in a common
framework: The n-th iteration of the CGNE method is uniquely defined [17, 28] as

(2.3) xK,n := argmin
x∈Kn

‖Ax− y‖.

The acceleration method of [10] computes

(2.4) xR,n := argmin
x∈Rn

‖Ax− y‖.

In analogy to the above, we define the approximate solution that is computed in this paper by

(2.5) xKR,n := argmin
x∈KRn

‖Ax− y‖.

Algorithm 3 below provides a recursive method, called RatCG, that computes these minimizers
recursively. The superiority of the mixed spaces (2.5) over (2.4) lies in the obtained sparse
matrix structure. The advantage over the pure Krylov method xK,n is in the additional
inclusion of the xαi

into the basis.

2.1. Some rational representation. Before we develop the method, we study some
well-known representations of the Krylov spaces by rational functions: Note that the above-
defined spacesRn,Kn,KRn could all be treated in one common framework as being rational
Krylov spaces, where the usual Krylov spaces are obtained by setting α→∞. For the sake of
comparison, however, we develop the representation for the three spaces separately.

Denote by Pn the space of all polynomials of degree less than n. (We denote by b.c the
floor function, i.e., the rounding to the next smaller integer). The following representation

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SHORT-TERM RATIONAL KRYLOV METHOD 331

of the spaces by rational functions is well known and was obtained by Ruhe [47]; see also,
e.g., [2, 14, 25, 26]:

PROPOSITION 2.1. The Krylov spaces defined above have the following representation:

Kn = pn−1(A)y, pn−1 ∈ Pn−1,

Rn = rn−1(A)y, rn(x) =
pn−1(x)

Πn
i=1(x+ αi)

, pn−1 ∈ Pn−1,

KRn = sn−1(A)y, sn−1(x) =
pn−1(x)

Πk
i=1(x+ αi)

, pn−1 ∈ Pn−1, k = bn
2
c .

For each of the above Krylov spaces, we define the residual spaces of the normal equations
(recall our notation Ax− y = A∗Ax−A∗y):

(2.6) QX := span{Ax− y|x ∈ X}, X ∈ {Kn,Rn,KRn}.

Let Pn1 be the space of polynomials pn(x) of degree at most n that satisfy

pn(0) = 1.

In a similar way as before, the representations for the residuals is valid:
PROPOSITION 2.2. Let QKn . QRn , QKRn be the residual spaces in (2.6). Then

QKn = pn(A)y, pn ∈ Pn1 ,

QRn = rn(A)y, rn(x) =
pn(x)

Πn
i=1( xαi

+ 1)
, pn ∈ Pn1 ,

QKRn = sn(A)y, sn(x) =
pn

Πk
i=1( xαi

+ 1)
, pn ∈ Pn1 , k = bn

2
c .

A consequence is the following useful result: Let n = 2k, i.e., a rational step. Then

(2.7) (A+ αkI)−1QKRn−1 ⊂ KRn, (A+ αkI)−1KRn−1 ⊂ KRn.

For a Krylov step n = 2k + 1 we have

AQKRn−1 ⊂ KRn, AKRn−1 ⊂ KRn.

Note that the same representation holds for the least-squares residual Ax − y but with A
replaced by A (cf. Definition 2.1) and y replaced by y. This follows since

Af(A)y − y = (Af(A)− 1)y.

As a further consequence, we can bound the residual for the various rational Krylov methods
by that of the standard Krylov methods:

THEOREM 2.3. Let xK,n, xR,n, and xKR,n be defined as in (2.3), (2.4), and (2.5),
respectively. Then,

‖AxR,n − y‖ ≤ ‖AxKR,n − y‖ ≤ ‖AxK,n − y‖,

and

‖AxK,n − y‖ ≤ Πk
i=1

(
‖A‖
αi

+ 1
)
‖AxKR,n − y‖ ≤ Πn

i=1

(
‖A‖
αi

+ 1
)
‖AxR,n − y‖.
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Proof. We have with the notation in Proposition 2.2 and by the definition of xK,n,

‖AxR,n − y‖ = inf
pn∈Pn

1

‖Πn
i=1( Aαi

+ I)−1pn(A)y‖

≤ Πn
i=1‖( Aαi

+ I)−1‖ inf
pn∈Pn

1

‖pn(A)y‖

≤ inf
pn∈Pn

1

‖pn(A)y‖ = ‖AxK,n − y‖.

The result for xKR,n is obtained in a similar way and so are the opposite directions of the
estimates.

Hence, the rational methods are always better with respect to the residual than any ordinary
Krylov space method. As a further immediate consequence, it follows that n-dimensional
least-squares problems (or more general, any n-dimensional symmetric positive definite
linear problem) can be solved by rational Krylov method in at most n steps, assuming exact
arithmetic. In fact, since ‖AxK,n − y‖ vanishes after at most n steps, we obtain:

COROLLARY 2.4. Let A ∈ Rn×n be symmetric positive definite, and let x ∈ Rn be
the solution of Ax = y for some y ∈ Rn. Then in at most n steps we have xR,n = x and
xKR,n = x.

Note that this result does of course not hold for ordinary Tikhonov regularization with
parameter search, where a stopping criterion is tested with various xαi for different parameters
αi: even in the discrete case with an unpleasant choice of the αi, there is no upper bound for
the number of Tikhonov regularizations to be solved. Neither does this result hold for iterative
Tikhonov regularization, whose solutions are also inR but usually terminate not finitely for
exact data.

As for the Krylov methods, we have to take care of the (rare) occasion of a breakdown:
DEFINITION 2.5. Let X be any of the Krylov spaces X ∈ {Kn,Rn,KRn}. We say that

the respective space X does not break down at step n if

dimX = n.

The criterion for breakdown is well-known in the Krylov space case and can be extend to the
rational cases. The next proposition follows from [47, Section 4]; see, also [3, Eq. (2.1)].

PROPOSITION 2.6. Let nbd be the smallest iteration number where one of the Krylov
spaces X ∈ {Kn,Rn,KRn} breaks down, i.e., nbd − 1 = dimX < nbd. Then n = nbd if
and only if y can be written as a linear combination of n− 1 eigenvectors of A.

2.2. Arnoldi method and Arnoldi relation. We now construct an orthonormal basis for
KRn by orthonormalizing the basis elements in the definition by a (modified) Gram–Schmidt
method, which yields a pentadiagonal representation of the operator A. The method is stated
in Algorithm 1. For the usual case Kn this is exactly the standard Arnoldi method. For the
rational case, Algorithm 1 has been introduced by Ruhe [47]. Let us stress that in this method
and as proposed by Ruhe [47], the next element in the Krylov space KR is given by either
(A+ αkI)−1qi−1 or Aqi−1 and not—as one would at first guess by the definition of KR—by
(A+ αkI)−1y or Aky.

We have written the algorithm with a usual Gram–Schmidt orthgonalization, but the modi-
fied Gram–Schmidt method is suited as well (and recommended) since they are mathematically
equivalent, but the latter is numerically more stable.

The algorithm is well-defined as long as ‖q̃i‖ 6= 0 such that the normalization step can be
performed [47, 48, 49, 50]:
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Algorithm 1 Arnoldi method for KR.
1: q1 := y

‖y‖
2: for i = 1 . . . N do

3: vi =

{
(A+ αkI)−1qi−1 n = 2k

Aqi−1 n = 2k + 1

4: q̃i := vi −
∑j−1
j=1〈vi, qj〉qj # Gram–Schmidt step

5: qi = q̃i
‖q̃i‖ # normalization step

6: end for

PROPOSITION 2.7. The iterations in Algorithm 1 are well defined as long as the Krylov
space KR does not break down up to dimension n ≤ N . Moreover, in this case, the vectors
(qi)

n
i=1 build an orthonormal basis for KRn.
The main motivation for mixed rational Krylov spaces, in contrast to rational ones, is the

sparse representation of the system matrix in the KR-basis: The following structure result
has been stated explicitly by Pranić and Reichel and coworkers [43, 44, 45]. It is based on
orthogonality relations of rational functions; see, e.g., [11, Chpt. 11], [9, 12].

THEOREM 2.8. Assume that the Arnoldi method in Algorithm 1 does not break down up
to an index N yielding the orthogonal basis qi. Then the matrix

Ti,j := 〈qi,Aqj〉i,j=1,N

is pentadiagonal and satisfies

Tm,2k = 0 for m = 2k + 2, . . . , N,

Tm,2k+1 = 0 for m = 2k + 3, . . . , N.

As an illustration, the matrix T has the following form. Denote by Qn : Rn → X the
following operator that produces linear combinations of the vectors qi:

(2.8) Qn = [q1 · · · qn].

Then the resulting matrix T has the following structure (compare [44, Eq. (2.18)]):

(2.9) T = QTnAQn =



κ1 β2 γ3
β2 κ2 β3
γ3 β3 κ3 β4 γ5

β4 κ4 β5
γ5 β5 κ5 β6 γ7

β6 κ6 β7
γ7 β7 κ7 . . .

. . . . . . . . .


.

That is, a pentadiagonal matrix with zeros in the second diagonal at even indices. One may as
well view this as a block-tridiagonal matrix consisting of 2×2 blocks with rank-1 off-diagonal
blocks.

We note that a corresponding representation can also be established for the non-symmetric
case [45], where the matrix T has generalized Hessenberg form with several subdiagonals;
see, e.g., equation (18) ibid. This sparse structure is the main motivation for the mixed rational
Krylov spaces; adding elements of the ordinary Krylov space K creates zeros below the
subdiagonals. On the contrary, the representation in the pure rational spaceR is usually full.
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2.3. The rational Lanczos method. Based on the Arnoldi relations, we can now solve
the least-squares problem by exploiting the structure of T . The algorithmic steps are deter-
mined by the previous results: At first compute an orthogonal basis by the Arnoldi method,
Algorithm 1. Secondly, in this basis, the normal equations are given by a pentadiagonal
matrix by Theorem 2.8, which can be solved recursively. As a result we obtain the rational
Lanczos method, which is the analogue of the usual Lanczos method for “ordinary” Krylov
space methods for solving linear equations [52, Chpt. 6.7]. The latter method is based on a
tridiagonal structure and leads to a three-term recursion, which can be considered a precursor
of the CG method; see [52]. The rational method in this section is essentially identical to that
of Pranić and Reichel [43, 44, 45] (see also [25, 26]), although there the recursion for the
pentadiagonal matrix has not been elaborated. The result in this section serve as a preliminary
study for the rational CG method in Section 3.

For simplicity of notation we now assume a finite-dimensional case with A given by a
symmetric N ×N matrix and y a given vector in RN . Let en be the standard basis vectors
with 1 at position n and zero elsewhere

en := (0, . . . , 0, 1, 0, . . . 0)T .

Assume that the Arnoldi method does not break down up to the index N . We define the matrix
(respectively operators)

Tn = QTnAQn = (Ti,j)i,j=1,n,

with Qn from (2.8), and we set Q = QN . It follows that

QTy = βe1,

where e1 is the first unit vector and β ∈ R.
Recall the pentadiagonal structure of Tn; we denote the scalar entries by the Greek letters

βn, γn, κn

as follows: In case of a rational step n = 2k:

(2.10) Tn =

 Tn−1 0
βn

0 βn κn

 .
In case of a Krylov step n = 2k + 1 we have

(2.11) Tn =

 Tn−1

0
γn
βn

0 γn βn κn

 =

 Tn−2
0

βn−1
0 βn−1 κn−1

0
γn
βn

0 γn βn κn

 .
Algorithm 2 requires two iterates xn, pn in the original Hilbert space X (more precisely in
KR) and their coefficients cn, dn ∈ Rn .

By orthogonality, the normal equation Ax = y translates to Tc = βe1, where x = Qc.
Finding the least-squares minimizer xn in the Krylov spaceKRn translates toQTnAxn = QTny
or

(2.12) Tncn = βe1 with xn = Qncn.
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To obtain a recursion, as in [52, Chpt. 6.7] for the usual Lanczos method, we define an
additional coefficient vector dn for pn:

(2.13) Tndn := en pn = Qndn.

By recursively solving the pentadiagonal structure, we obtain the following recursion:
PROPOSITION 2.9. Let xn be the least-squares solution in the mixed Krylov space KRn.

Let βn, γn, κn be the entries of Tn as above. Let Qn, pn, qn be defined above. Then the
following recursion holds:

xn = xn−1 + ξnpn,(2.14)

pn =

{
σnpn−1 + τnqn n = 2k,

σnpn−1 + ηnpn−2 + τnqn n = 2k + 1,
(2.15)

where the scalars τn, σn, ηn ∈ R satisfy
Case n = 2k:

ξn = −βnxTn−1qn−1,[
τn
σn

]
=

[
1 βn

βnτn−1 γn

]−1 [
0
1

]
.(2.16)

Case n = 2k + 1

ξn = −γnxTn−1qn−2 − βnxTn−1qn−1,σnτn
ηn

 =

 0 γn 1
1 βn τn−2βn−1

βnτn−1 + γnσn−1τn−2 κn τn−2γn

−1 0
0
1

 .(2.17)

Proof. We use the following notation: For a coefficient vector gn ∈ Rn we denote by gn;k
its k-th entry. To start the proof, we verify that the following recursion with some ξn ∈ R is
valid:

(2.18) cn =

[
cn−1

0

]
+ ξndn.

Applying Qn to this identity then leads to the xn-recursion (2.14).
Indeed, in case of a rational step n = 2k, we plug in (2.18) into (2.12). Noting that

Tn−1cn−1 = βe1 and Tndn = en, yields[
0

βncn−1;n−1

]
+ ξnen = 0,

which leads to ξn = −βncn−1;n−1 = −βncTn−1en−1, and by the orthogonality of Qn trans-
lates to the formula for ξn.

In case of a Krylov step, n = 2k + 1 (with n > 1), we similarly use the equation
Tncn = βen, and, noting Tndn = en, we obtain the condition

ξn = −γncn−1;n−2 − βncn−1;n−1 = −γncTn−1en−2 − βncTn−1en−1.

This gives the second formula for ξn.
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In the next step, we derive a recursion for dn, which leads to that for pn. Assume again
a rational step n = 2k. Note that dn is a vector in Rn. We verify that numbers σn, τn ∈ R
exists such that

dn = σn

[
dn−1

0

]
+ τnen, i.e., dn =

 ∗
σnτn−1
τn

 .
The defining equation for dn, (2.13), yields the condition for τn, σn (noting (2.10) and that
Tn−1dn−1 = en−1)  0

σn
σnβndn−1;n−1

+ τn

 0
βn
κn

 = en,

which can be resolved to the formula (2.16) (recall that dn−1;n−1 = τn−1).
In a Krylov step n = 2k + 1, the recursion for dn is now more involved as we need a

two-step recursion. Indeed, we make the ansatz

dn = σn

[
dn−1

0

]
+ τnen + ηn

dn−20
0

 , i.e., dn =

ηnτn−2σnτn−1
τn

 ,
with parameter σn, ηn, τn, and plug this into (2.13). The last three rows yield a linear equation
for the coefficients σn, τn, ηn:

σn

 0
1

βndn−1;n−1 + γndn−1;n−2

+ τn

γnβn
κn

+ ηn

 1
dn−2;n−2βn−1
dn−2;n−2γn

 =

0
0
1

 ,
which leads to (2.17) .

The recursion starts at n = 1 by a direct calculation of

x1 =
〈y, y〉
〈Ay, y〉

y, q1 =
y

‖y‖
, τ1 =

〈y, y〉
〈Ay, y〉

, p1 = τ1q1.

We note that the rational step above for pn is valid for n = 2. Also, the 2× 2 matrix in the
calculation of τn, σn can easily be inverted leading to the formulae

τn =
1

κn − β2
nτn−1

, σn = −τnβn.

The full method for calculating least-squares solutions in KR is now presented in Al-
gorithm 2 as a pseudo-Matlab code. The routine GramSchmid(v,Q) there means an orthgo-
nalization and normalization step as in the calculation of qi via q̃i in the Arnoldi method in
Algorithm 1.

This algorithm is the implementation of the formulas defined above, and it is well-defined
as long as the Krylov space KR does not break down. The involved divisions or matrix
inversions (e.g., M−1) are well-defined in case of non-breakdown in exact arithmetic because
Tn is then always invertible, and the formulas are derived from solving (2.13).

As in the standard case for K, the iterations of Algorithm 2 satisfy certain orthogonality
relations:

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SHORT-TERM RATIONAL KRYLOV METHOD 337

Algorithm 2 Lanczos Algorithm for KR.
1: A = A∗A, y = A∗y

2: τ = 〈y,y〉
〈Ay,y〉 , Q(:, 1) = y

‖y‖ , p = τQ(:, 1), x = 〈y,y〉
〈Ay,y〉y

3: for n = 2 . . .MAXIT do
4: if n is even then # Rational step
5: k := n

2
6: v = (A+ αkI)−1Q(:, n− 1)
7: q = GramSchmid(v,Q) (by Algorithm 1)
8: Q(:, n) = q
9: κ = qTAq, β = Q(:, n− 1)TAq # Entries of T

10: τold = τ
11: τ = 1/(κ− τβ2) σ = −τβ # Coef. for p rec.
12: pold = p
13: p = σp+ τq # Update p
14: ξ = −βxTQ(:, n− 1) # Coef. for x rec.
15: x = x+ ξp # Update x
16: else # Krylov step
17: v = AQ(:, n− 1)
18: q = GramSchmid(v,Q)
19: Q(:, n) = q
20: βold = β

21:

κ = qTAq,
β = Q(:, n− 1)TAq,
γ = Q(:, n− 2)TAq

# T -Entries

22: M =

 0 γ 1
1 β τoldβold

βτ + γστold κ τoldγ


23: τold = τ

24:

στ
η

 = M−1

0
0
1

 # Coef. for p rec.

25: pnew = σp+ ηpold + τQ(:, n) # Update p
26: pold = p
27: p = pnew
28: ξ = −γxTQ(:, n− 2)− βxTQ(:, n− 1) # Coef. for x rec.
29: x = x+ ξp # Update x
30: end if
31: end for

PROPOSITION 2.10. Define pn := p in Algorithm 2 at iteration n. Then

〈Apn, pk〉 = 0 for n 6= k.

Proof. Note that by construction pn = QnT
−1
n en. Since Tn = QTnAQn, we have

that QTnAQndn = en and hence QTnApn = en. As a consequence we have the relation
Apn = qn + span{qj , j > n}. Thus, for k < n,

〈Apn, pk〉 = 〈qn + span{qj , j > n}, pk〉 = 0

since pk ∈ span{q1, . . . , qk} and the orthogonality of the qi holds. By symmetry, the results
holds also for k > n.
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This means that the matrix 〈Api, pj〉, i, j = 1 . . . , N , is diagonal.
PROPOSITION 2.11. Consider the residual for the normal equations

rn = Axn − y

for the iterations xn = x in Algorithm 2 at iteration n. The Gramian matrix for the residual
vectors has the following nonzero entries:

Ri,j := 〈ri, rj〉 =


∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

 ,

i.e., it is tridiagonal with additional zeros in the lower off-diagonals for even and in the upper
off-diagonal for odd indices. Moreover, we have

(2.19) 〈rn, pi〉 = 0, for all i = 1, . . . , n.

Proof. Let c̃n ∈ RN be a vector with values cn at position 1, . . . , n and 0 at the rest. By
the structure (2.9), (2.10), (2.11), it follows for a rational step that

(2.20) r̃n := T c̃n − βe1 = βn+1en+1, for n = 2k,

while in a Krylov step

(2.21) r̃n := T c̃n − βe1 = βn+1en+1 + γn+2en+1, for n = 2k + 1.

Thus, in case of n = 2k, r̃Tn r̃n+1 = 0, which results in the 0 in the first off-diagonals. In any
case we have r̃Tn r̃n+k = 0 for k ≥ 2. The claimed matrix structure is now verified by the
observation that rn = Qr̃n and the orthogonality of Q.

Identity (2.19) follows since di is a vector of length i, hence pi ∈ KRi, while r̃n has zero
entries in the first n components. Thus rn is orthogonal to KRn and hence to all pi.

3. The rational CG method. The disadvantage of the previous Lanczos method in
Algorithm 2 is that the orthogonal vectors qi have to be saved, and thus the memory requirement
might get large. A second drawback is that the orthogonalization might become contaminated
by rounding errors and thus inexact.

In this section we state an equivalent algorithm that avoids saving the qi and the Gram–
Schmidt orthogonalization, and it is directly based on one- and two-step recurrence relations
for the vectors pn and xn (the xn have the same meaning as in the previous section while
the pn can differ by a scalar). The derivation is analogous to (but more involved than) the
derivation of the CG method from the D-Lanczos method from the orthogonality relations;
cf. [52, Section 6.7].

We consider the iteration (2.14), (2.15): First consider (2.14): Assume that pn has been
computed, and denote by rn the residual Axn − y. Then

xn = xn−1 + ξnpn ⇒ rn = rn−1 + ξnApn.

According to (2.19), we require that rn is orthogonal to pn, hence

(3.1) ξn = −〈rn−1, pn〉
〈Apn, pn〉

.
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Next we focus on the iterations for pn. Rewriting it without usage of the qi is not so difficult for
a Krylov step: Let n = 2k + 1, and consider (2.15). It follows from (2.20) (after multiplying
with Q) that rn−1 ∼ qn. Thus, the recursion (2.15) for n = 2k + 1 can be replaced by

pn = σnpn−1 + ηnpn−2 + τ ′nrn−1,

where rn−1 is the residual of the previous step and τ ′n is some constant (possibly different from
τn). To fix the constants, we observe from (3.1) that pn may be rescaled by a multiplicative
constant without changing the method. Thus we set τ ′n = 1. The other constants are obtained
by forcing the orthogonality relations 〈Api, pj〉 ∼ δij to hold. This yields the iteration for a
Krylov step, i.e., n = 2k + 1:

(3.2) pn = −〈rn−1,Apn−1〉
〈Apn−1, pn−1〉

pn−1 −
〈rn−1,Apn−2〉
〈Apn−2, pn−2〉

pn−2 + rn−1.

The recursion for a rational step n = 2k is more involved. Considering (2.15), n = 2k,
the problem is that qn does not have a simple expression in terms of residuals. However,
by (2.21), (2.20), it may be written as a linear combination of rn and rn−1. From (2.14) it
follows that rn = rn−1−ξnApn. Thus pn can be written as linear combination of pn−1, rn−1,
and an implicit term Apn. Keeping in mind (2.7) and that pn should represent an element in
KRn leads to idea that the factor in front of Apn should be an −α−1k . Thus, the form of the
rational step should be (again using one rescaling degree of freedom for the factor in front of
rn−1)

pn = (A+ αkI)−1 [ρnpn−1 + rn−1] .

It remains to fix the factor ρn, which is obtained through the orthogonality relations as before.
Putting the operator (A+ αkI) on the right-hand side yields

(3.3) 〈(A+ αkI)pn, pn−1〉 = ρn〈pn−1, pn−1〉+ 〈rn−1, pn−1〉.

Thus, requiring 〈Apn, pn−1〉 = 0 and 〈rn−1, pn−1〉 = 0 leads to

ρn =
αk〈pn, pn−1〉
〈pn−1, pn−1〉

=
αk〈(A+ αkI)−1[ρnpn−1 + rn−1], pn−1〉

〈pn−1, pn−1〉
,

which gives

ρn =
αk〈(A+ αkI)−1pn−1, rn−1〉

〈pn−1, pn−1〉 − αk〈(A+ αkI)−1pn−1, pn−1〉

=
αk〈(A+ αkI)−1pn−1, rn−1〉
〈Apn−1, (A+ αkI)−1pn−1〉

.(3.4)

Another equivalent formula for ρn is as follows:

ρn =
〈[A+ αk −A]pn−1, (A+ αkI)−1rn−1〉

〈Apn−1, (A+ αkI)−1pn−1〉

=
〈pn−1, rn−1〉 − 〈Apn−1, (A+ αkI)−1rn−1〉

〈Apn−1, (A+ αkI)−1pn−1〉

= −〈Apn−1, (A+ αkI)−1rn−1〉
〈Apn−1, (A+ αkI)−1pn−1〉

,(3.5)
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exploiting the orthogonality 〈pn−1, rn−1〉 = 0.
Thus, the formula for pn can be computed from (3.4) by the steps

sn := (A+ αkI)−1pn−1,

tn := (A+ αkI)−1rn−1,

pn :=
αk〈sn, rn−1〉
〈Apn−1, sn〉

sn + tn.

REMARK 3.1. The computation of pn in a rational step thus requires solving for sn and
tn, i.e., two linear solves with the Tikhonov matrix (A+αkI), which is an overhead compared
to the Lanczos method above that needs only one. Note, however, that the system matrix
(Tikhonov matrix) is in both cases that same, only the right-hand sides differ. In Matlab, this
can be computed by the statement

(3.6) [sn tn] = (A+ αkI)\[pn−1 rn−1],

and we found that it does not require much more additional computation time. Observe that
for a direct solver, the main work is in the matrix decomposition of the system matrix, which
has to be performed only once per step. Using this for two right-hand sides is then negligible
overhead work.

Interestingly, if one insists on using only one linear system solve with one right-hand side
per step, then this can be achieved by a formula that uses complex variables. Indeed, ρn and
the formula for pn can be rewritten by (3.5)

pn =
1

〈Apn−1, sn〉

[
− 〈Apn−1, tn〉sn + 〈Apn−1, sn〉tn

]
=

1

〈Apn−1, sn〉
I
[
〈Apn−1, sn + itn〉(sn + itn)

]
.

Here sn + itn denotes the complex conjugate, I is the imaginary part, and i the imaginary
unit. In this formula, the common factor 1

〈Apn−1,sn〉 can be ignored since a multiplicative
factor of pn does not change the iteration, hence the computational effort reduces to one linear
solve with only one complex right-hand side. Yet, in the numerical calculations, we did not
find much of a benefit of using this formula.

Finally, we are in the position to present the full rational CG algorithm. The only thing
remaining open is the initial value for the p-variables, i.e., p1. Setting x−1 = 0 and using (2.14)
gives p1 = x, noting the scaling freedom for the p-variables. Together, we obtain Algorithm 3
for solving the normal equations Ax = y.

Let us comment about the well-definedness of the algorithm. As long as the failure
criterion Apn = 0 is not satisfied, the fractions in the calculations are all well-defined: This is
obvious for the terms 〈Apn, pn〉, 〈Apold, pold〉. The denominator 〈Apn, sn〉 is well-defined
under the non-failure condition since

〈Ap, sn〉 = 〈A(A+ αkI)sn, sn〉 = ‖Asn‖2 + αk〈Asn, sn〉,

which is 0 if and only if 0 = Asn = (A + αkI)−1Ap. Since A + αkI has no nontrivial
nullspace, this can only happen if Apn = 0, which is excluded by the non-failure condition.
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Algorithm 3 RatCG method for KR.
1: A = A∗A, y = A∗y

2: x = 〈y,y〉
〈Ay,y〉y.

3: r = Ax− y.
4: p = x. # x1, p1, r1 are defined
5: for n = 2 . . .MAXIT do
6: if n is even then
7: k := n

2
8: s := (A+ αkI)−1p
9: t := (A+ αkI)−1r # Implementation as in (3.6)

10: ζ := − 〈Ar,s〉〈Ap,s〉
11: pold = p # pold = pn−1
12: p := ζs+ t # p = pn Even case
13: else
14: p = − 〈r,Ap〉〈Ap,p〉p−

〈r,Apold〉
〈Apold,pold〉pold + r # p = pn Odd case

15: end if
16: if Ap = 0 then
17: Terminate algorithm # Failure by Breakdown
18: else
19: η := 〈r,p〉

〈Ap,p〉
20: x = x− ηp # Solution xn at step n
21: r = r − ηAp # Step n completed
22: end if
23: end for

Finally, we show that the rational CG method does what it is supposed to do.
THEOREM 3.2. Denote by xn, pn, rn the respective variables x, p, r at iteration n in

Algorithm 3. Then, they satisfy the orthogonality conditions

(3.7) 〈Apn, pj〉 = 0, j = 1, . . . , n− 1, and 〈rn, pj〉 = 0, j = 1, . . . , n.

As a result, Algorithm 3 computes at iteration n the solution to the least-squares problem in
the mixed Krylov space KRn (2.5).

Proof. With the notation in the theorem, at the initialization, we obviously have that
x1, p1 ∈ KR1 and r1 ∈ QKR1 ⊂ KR2. Suppose that xn−1, pn−1 ∈ KRn−1 and
rn−1 ∈ QKRn−1 ⊂ KRn. In a Krylov step, it follows immediately that pn ∈ KRn. In
a rational step we have by (2.7) that pn ∈ KRn. Thus, in any case xn ∈ KRn and
rn ∈ QKRn ⊂ KRn+1. By induction we have proven that

xn, pn ∈ KRn rn ∈ QKRn .

Next, we verify the orthogonality conditions (3.7) by induction. Assume that (3.7) holds with
n replaced by n− 1.

In a Krylov step, n = 2k + 1, it follows by construction of the coefficients (cf. (3.2)) that

〈Apn, pj〉 = 0, j = n− 1, n− 2.

For j < n−2 we find by the induction hypothesis that, with some coefficients b1, b2 from (3.2),

〈Apn, pj〉 = 〈b1pn−1 + b2pn−1 + rn−1,Apj〉 = 〈rn−1,Apj〉.
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However, Apj ∈ KRn−1, thus the right-hand side vanishes by the induction hypothesis.
Thus 〈Apn, pj〉 ∼ δn,j is shown. The orthogonality of the residuals and pj in (3.7) follows
by rn = rn−1 − ηApn and by construction: Taking the inner product with pn leads to
〈rn, pn〉 = 0 by the definition of η, while 〈rn, pj〉 = 0, for j = 1, . . . , n− 1, by the induction
hypothesis and the just proven orthogonality. This settles the Krylov step case.

For a rational step n = 2k, it follows by construction, cf. (3.3), and the induction
hypothesis for n− 1 that

〈Apn, pn−1〉 = 0.

Consider the equation for pn

Apn + αkpn = ρnpn−1 + rn−1.

Taking the inner product with Apj , for any 1 ≤ j ≤ n− 2, leads to

(3.8) 〈Apn,Apj〉+ αk〈pn,Apj〉 = 0.

Indeed, this follows since 〈pn−1,Apj〉 = 0 by the induction hypothesis, and, since we have
Apj ⊂ KRn−1 by Theorem 2.8 and (2.9), we conclude that

〈rn−1,Apj〉 = 〈rn−1, span{p1, . . . , pn−1}〉 = 0

again by the induction hypothesis. Thus, (3.8) holds.
Define the matrix/operator that maps coefficients from Rn−1 to the associated linear

combination of pi, i = 1, . . . n− 1, which is an element in KRn−2. It can be represented by
the matrix

Pn−1 = [p1 · · · pn−1],

It follows from (3.8) that for any coefficient vector ~c ∈ Rn−2

(3.9) 〈Apn−1,APn−2~c〉+ αk〈Apn, Pn−2~c〉 = 0.

By Theorem 2.8 and (2.9) again it follows that APn−2~c ∈ KRn−1, thus there exists a vector
~g ∈ Rn−2 and gn−1 ∈ R with

(3.10) APn−2~c = Pn−2~g + gn−1pn−1

since the pi, i = 1, . . . , n − 1, span KRn−1. Hence, inserting this into (3.9) and noting
〈Apn, pn−1〉 = 0 gives

(3.11) 〈Apn, Pn−2~g + αkPn−2~c〉 = 0.

Taking the inner product with APn−2, we get from (3.10)

PTn−2AAPn−2~c = PTn−2APn−2~g,

where we again used the induction hypothesis 〈Apj , pn−1〉 = 0 and where PTn−2 denotes the
transposed operator. The matrix on the right-hand side is invertible (in fact it is diagonal by the
induction hypothesis) and nonsingular since A has no nontrivial nullspace on KRn−2. Thus,
we can invert to find

~g = (PTn−2APn−2)−1PTn−2AAPn−2~c,
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and inserting this into (3.11) gives

(3.12) 〈Apn, [Pn−2(PTn−2APn−2)−1PTn−2AAPn−2~c+ αkPn−2~c]〉 = 0.

Now for any j ∈ {1, . . . , n− 2} we find a vector ~c ∈ Rn−2 such that

[(PTn−2APn−2)−1PTn−2AAPn−2 + αkI]~c = ej .

Indeed, this identity can be rewritten as

PTn−2AAPn−2 + αk(PTn−2APn−2)]~c = (PTn−2APn−2)ej .

The matrix on the left-hand side is a sum of positive semidefinite and positive define matrices,
hence invertible, and such a vector ~c exits. Inserting that into (3.12) yields

〈Apn, Pn−2ej〉 = 0,

and thus 〈Apn, pj〉 = 0 by the definition of Pn−2. Hence the orthogonality for pn is proven.
The orthogonality for rn in (3.7) follows by the induction hypothesis, the update formula for
rn, the definition of η, and the just proven orthogonality relation for pn. Together, (3.7) is
proven.

The statement that xn is a least-squares solution in KRn is a now a simple consequence
of the facts that xn ∈ KRn, that pi span KRn, and the orthogonality relations for the residual,
which together implies 〈rn,KRn〉 = 0. The latter is just the least-squares optimality condition
in KRn. We also note that in case of a breakdown the same conclusion is valid as well, except
that the sequence of optimal xn saturates at the breakdown-index. If we extend the definition
of the solution sequence xn in Algorithm 3 as the last computed xn before breakdown, then
this still yields the least-squares solution even in this case.

REMARK 3.3. Since the Lanczos iteration Algorithm 2 also computes a least-squares
solution in KRn and since by our assumptions the xn are uniquely defined, it follows that
the sequences xn from Algorithm 2 and Algorithm 3 are identical in exact arithmetic. (The
corresponding pn might differ, though.)

Regularization and stopping rule. The derived Algorithms 2 and 3 and also the aggre-
gation method above shares some conceptional similarities with the CGNE method as they
are (generalized) Krylov-space methods. In particular, all are nonlinear methods in the data y.
Note that the CGNE method without stopping rule is even discontinuous in y [17], and we ex-
pect the same to be true for the stated method (including the aggregation method). However, it
has been shown by Nemirovskii [38, 39] that the CGNE method with the discrepancy principle
is a regularization method in the classical sense [17, 28]. Thus, showing that the algorithms
are regularization methods is most probably impossible without including a stopping criterion.

Therefore, by analogy, we include in the algorithms a discrepancy stopping rule and
terminate the method for the first iteration index n for which

‖Axn − y‖ ≤ τδ,

where δ is the known noise level and τ > 1 is a tuning parameter, e.g., τ = 1.1. This
residual can be easily calculated after xn is known, and the for-loop in the algorithms has
to be terminated if the stopping criterion is satisfied. As mentioned above, a proof that this
provides a regularization method is outside the scope of this work.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

344 S. KINDERMANN AND W. ZELLINGER

0 5 10 15 20 25 30
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Error

RatCG

Lanczos

Aggreg

CGNE

0 5 10 15 20 25 30
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Residual

RatCG

Lanczos

Aggreg

CGNE

FIG. 4.1. Logarithm of the error ‖xn − xexact‖ and the residual ‖Axn − y‖ versus the iteration number
for the “tomo” problem employing the rational CG method (Alg. 3), the Lanczos method (Alg. 2), the aggregation
method (2.4), and the conjugate gradient method for the normal equation (CGNE). The circles represent values for
the aggregation method, plotted at the index n = 2k, where k is the dimension of the aggregation space (number of
Tikhonov solutions). The noise level is 0.

4. Numerical results. We test the rational CG algorithm, Algorithm 3, the rational
Lanczos method, Algorithm 2, the aggregation method (2.4) (referred to as “rational methods”)
and compare them with the classical conjugate gradient method for the normal equation,
CGNE, as given, e.g., in [17]. As simple test cases we use ten problems from the well-known
Hansen’s Regularization Toolbox [30]: baart(2000), blur(60), deriv2(1000), gravity(1000),
heat(1000), phillips(1000), shaw(1000), spikes(1000), wing(1000), tomo(35), and their default
exact solutions. In case of no noise we use the default data; in case of a nonzero noise level,
we add standard normal distributed random noise to the data (by Matlab’s randn command).
In the latter case, all algorithms are stopped using a discrepancy principle with τ = 1.01. All
problems have matrices with sizes of the order of 103 × 103. The “blur” and “tomo” examples
have sparse matrices.

Error performance. At first we test the performance for the noise-free case using the
exact toolbox data. The sequence of regularization parameters αi was for all problems set as
exponentially decreasing:

(4.1) αi = 10−i−1.

Note that in all the examples, the operators are scaled such that ‖A‖ = O(1). If this were
not the case, one should multiply the parameter choice (4.1) by ‖A∗A‖ to achieve a scaling-
invariant method.

In Figure 4.1, we display the least-squares residual ‖Axn−y‖ and the error ‖xn−xexact‖
for the “tomo” problem and for the three proposed methods and the CGNE method. In the
figure, the circles correspond to the values of the aggregation method with the same αi, i.e.,
the results for the aggregation method with a number of k Tikhonov regularizations xαi are
plotted at n = 2k, which is the index where the RatCG and the rational Lanczos method
require the same number of Tikhonov solves as the aggregation method.

The observation that seems to be true throughout is that the results for the rational CG
method and the rational Lanczos method are in general identical (as predicted by the theory)
as long as the αi are not too small, but the methods differ when we are in the realm of
ill-conditioning (for α too small). Note that the theory assumes exact arithmetic, which is no
longer true when rounding errors play a significant role. However, the difference of the two
methods usually occurs beyond a reasonable stopping rule. We also note that for all tested
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TABLE 4.1
Error ‖xn − xexact‖, computation time (Time (s)), and number of iterations for various problems from the

Regularization Toolbox for the aggregation method (2.4), the Lanczos method (Alg. 2), the rational CG method
(Alg. 3), and the CGNE method. 5000 is nmax for CGNE. αk is chosen by (4.1).

Problem Aggreg. Lanczos RatCG CGNE
baart Error 5.85E-02 6.58E-02 6.06E-02 2.47E-02

Time 2.57 0.33 0.86 0.47
Iter. 1 6 15 125

blur Error 3.13E-07 2.81E-12 2.88E-12 1.15E-13
Time 4.84 2.49 2.32 0.11
Iter. 1 13 13 575

deriv2 Error 7.41E-04 6.97E-04 9.17E-05 8.43E-03
Time 0.71 0.50 0.27 1.24
Iter. 1 77 34 5000

gravity Error 7.50E-03 4.48E-03 5.33E-03 3.70E-05
Time 0.29 0.11 0.15 1.13
Iter. 1 18 18 5000

heat Error 1.41E-02 1.18E-02 1.20E-02 1.40E-02
Time 0.46 0.14 0.18 1.11
Iter. 1 25 25 5000

phillips Error 1.89E-04 4.61E-05 5.71E-05 2.40E-05
Time 0.28 0.11 0.13 1.12
Iter. 1 17 16 5000

shaw Error 2.33E-01 2.31E-01 2.22E-01 2.86E-03
Time 0.36 0.07 0.16 1.11
Iter. 1 13 21 5000

spikes Error 2.60E+01 2.60E+01 2.60E+01 2.59E+01
Time 0.24 0.10 0.14 1.01
Iter. 1 17 17 5000

wing Error 1.90E-01 2.57E-01 1.90E-01 1.80E-01
Time 0.32 0.04 0.06 0.03
Iter. 1 5 7 83

tomo Error 8.39E-01 8.39E-01 8.39E-01 1.18E+00
Time 0.63 0.22 0.29 0.74
Iter. 1 13 12 5000

examples, the residual is smaller than that of the CGNE method as long as we are not in the
ill-conditioning region. In many cases the errors for the rational CG/Lanczos method agree
with the corresponding ones of the aggregation method in the “reasonable” region. Note that
the decay of the residual for the CGNE method is much slower, but of course one has to take
into account that each iteration of the method is of different complexity.

Computational performance. In Table 4.1, we present the value of the error ‖xn−xexact‖,
the computation time in seconds, and the number of iteration for the various methods and for
the noise-free case. In order to find an appropriate n in this case we first run the problem each
up to a given maximal number of iteration and then choose that index n where the error is the
smallest (a kind of “oracle” stopping rule). The results are given in Table 4.1 together with
the total running time (using Matlab’s tic/toc command). The value of 5000 for the CGNE
method is the maximal number of used iteration.

We observe that the RatCG and the Lanczos method perform roughly the same and
outperform the aggregation method both in terms of error and time. The CGNE method has a
smaller error in 7 cases but requires less time in only 3 cases.

The next experiments concerns the case of nonzero noise level. The results for two noise
levels δ = 1%, 0.1% (using the discrepancy stopping rule) are given in Table 4.2. It can be
seen that the Lanczos and rational CG method are about similar in behaviour. The running
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FIG. 4.2. Convergence rates for the the aggregation method (2.4), the Lanczos method (Alg. 2), the rational CG
method (Alg. 3), and the CGNE method for the “deriv2“ (left) and the “tomo” (right) problems (overlayed plots).
Displayed is the error ‖xn − xexact‖ vs. the noise level in a log-log plot for two smoothness cases for each problem.
(The steeper slopes correspond to the case of a smoother solution.) The error for CGNE is plotted by a thicker line as
reference.

time of the CGNE method cannot be beaten by any of the rational methods. The rational
method need about 10 times more running time than CGNE. However, compared to the CGNE
method, we observe that in a majority of cases (17 out of 20) the error of the proposed RatCG
methods is smaller or equal to that of the CGNE method. One reason for this is that the latter
does not allow for fine-tuning of the regularization parameter (which is the iteration index
in this case). An optimal stopping index for the CGNE method would be “in between” two
iterations.

Convergence rates. The next figures concern the convergence rates of the discussed
rational methods, i.e., aggregation, rational Lanczos, and the rational CG method, which are
compared with the rates of the classical CGNE method. In Figure 4.2 we display the error
‖xn − x†‖ against various noise levels δ on a log-log plot for all methods for four cases: First
for the problem “deriv2” with the default true solution xexact and then again with a smoother
solution, which is simply calculated by xsmooth = A∗Axexact. This automatically implies a
higher convergence rates for the latter case because a higher source condition is satisfied. We
do the same for the problem “tomo”, i.e., default solution and smooth solution. The noise is
generated again by samples from a standard normal random distribution.

The results for the two test cases for “deriv2” are displayed together in the left plot and that
for “tomo” on the right. (The steeper slope corresponds to the smoother solution). The reason
for using smoother solutions is to investigate whether the methods show a saturation [17] in
the convergence rates, which is known to happen for Tikhonov regularization. For the “deriv2”
problem, all methods perform equally well; for the tomo problem this is true except for the
CGNE method for the smooth solution, which has a slightly smaller slope (and thus a worse
convergence rate). These figures should illustrate that all proposed methods show a similar (or
even slightly better) rate than the CGNE method, which is known to achieve the theoretically
optimal-order rates. We observe that no saturation seems to happen, and we conjecture from
the results that the rational methods are optimal-order method for all classical smoothness
classes [17].

Parameter robustness. Finally, we test the performance of the methods with respect to
the choice of the sequence of regularization parameters. That is, we choose a geometrically
decaying sequence of the form αk = 0.1qs−k, for various q ∈ 2, 4, 6, 8, 10, and various
starting values s = −12,−10, . . . , 8, 10. Thus, in the extreme cases, we start with a very large
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TABLE 4.2
Error ‖xn − xexact‖, computation time (Time (s)), and number of iterations for various problems from the

Regularization Toolbox for the aggregation method (2.4), the Lanczos method (Alg. 2), the rational CG method
(Alg. 3), and the CGNE method and for two noise levels δ = 1% and 0.1%. Stopping rule by the discrepancy
principle with τ = 1.01.

Problem Aggreg. Lanczos RatCG CG
baart δ = 1% Error 3.23E-01 3.20E-01 3.20E-01 2.09E-01

Time 0.176 0.160 0.174 0.020
Iter. 1 2 2 3

δ = 0.1% Error 2.06E-01 2.08E-01 2.08E-01 2.08E-01
Time 0.353 0.165 0.181 0.020
Iter. 1 3 3 3

blur δ = 1% Error 2.39E+00 4.63E+00 4.63E+00 5.23E+00
Time 0.733 0.327 0.342 0.004
Iter. 1 2 2 9

δ = 0.1% Error 1.16E+00 1.09E+00 1.09E+00 1.36E+00
Time 0.745 0.713 0.785 0.010
Iter. 1 4 4 36

deriv2 δ = 1% Error 1.66E-01 1.88E-01 1.88E-01 1.88E-01
Time 0.115 0.036 0.037 0.005
Iter. 1 4 4 4

δ = 0.1% Error 1.22E-01 1.20E-01 1.20E-01 1.22E-01
Time 0.187 0.070 0.076 0.007
Iter. 1 8 8 9

gravity δ = 1% Error 7.19E-01 7.18E-01 7.18E-01 1.75E+00
Time 0.037 0.030 0.031 0.003
Iter. 1 2 2 4

δ = 0.1% Error 5.23E-01 5.22E-01 5.22E-01 8.06E-01
Time 0.040 0.027 0.026 0.003
Iter. 1 2 2 6

heat δ = 1% Error 1.11E+00 9.92E-01 9.92E-01 1.30E+00
Time 0.075 0.059 0.056 0.005
Iter. 1 6 6 9

δ = 0.1% Error 4.16E-01 4.02E-01 4.02E-01 5.02E-01
Time 0.150 0.068 0.074 0.008
Iter. 1 8 8 18

phillips δ = 1% Error 3.96E-02 3.94E-02 3.94E-02 7.98E-02
Time 0.028 0.024 0.024 0.002
Iter. 1 2 2 4

δ = 0.1% Error 3.77E-02 3.76E-02 3.76E-02 7.30E-02
Time 0.027 0.025 0.024 0.002
Iter. 1 2 2 4

shaw δ = 1% Error 4.16E+00 4.15E+00 4.15E+00 5.25E+00
Time 0.038 0.024 0.024 0.002
Iter. 1 2 2 4

δ = 0.1% Error 1.63E+00 1.89E+00 1.89E+00 1.67E+00
Time 0.110 0.038 0.041 0.003
Iter. 1 5 5 6

spikes δ = 1% Error 2.68E+01 2.68E+01 2.68E+01 2.67E+01
Time 0.039 0.025 0.024 0.003
Iter. 1 2 2 7

δ = 0.1% Error 2.62E+01 2.62E+01 2.62E+01 2.63E+01
Time 0.047 0.025 0.025 0.004
Iter. 1 2 2 13

wing δ = 1% Error 3.48E-01 3.48E-01 3.48E-01 3.48E-01
Time 0.062 0.028 0.027 0.002
Iter. 1 2 2 2

δ = 0.1% Error 3.48E-01 3.48E-01 3.48E-01 3.48E-01
Time 0.056 0.024 0.024 0.001
Iter. 1 2 2 2

tomo δ = 1% Error 6.31E+00 6.31E+00 6.31E+00 8.78E+00
Time 0.105 0.078 0.083 0.006
Iter. 1 2 2 16

δ = 0.1% Error 3.10E+00 3.10E+00 3.10E+00 5.03E+00
Time 0.105 0.075 0.091 0.018
Iter. 1 2 2 76
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α or a very small one, and the q controls the speed of the decay. We tested this for the “tomo”
problem with 0.01% noise. Without details, we made the following observations:

• For most cases, the results were good, the speed of decay (choice of q) did not have
much of an influence.

• The number of iterations is high (and the methods are slow) if we start with a very
large α, i.e., far away from a reasonable good regularization parameter.

• Starting with a too-small α (much below an “optimal” value) yields comparably bad
results (large error). In this case, the aggregation, the rational CG, and the Lanczos
method become unstable. However, such a failure only happened for the extreme
case αk = 10−12−k.

• Starting with a too-large regularization parameter α leads to stability problems for the
Lanczos method, for instance, when αk = 1010−k. This can be explained by the fact
that in such a case the Tikhonov inverse (A∗A + αI)−1A∗y ∼ 1

αA
∗y + O( 1

α2 ) is
almost a scaled multiple of the first element in the Krylov space, and thus the mixed
Krylov space is close to breakdown. The rational CG method behaved more robust in
that respect.

• As to be expected, if we start with an α that is already a good choice for classical
Tikhonov regularization, then the methods terminate after 2 iteration (i.e., after the
first rational step) with good results.

4.1. Summary and comments. In terms of error we have verified an excellent perfor-
mance of the rational methods, sometimes even better than the CGNE method. The downside
is, however, the additional computation time required. However, though we did not focus on it,
there is plenty of room for generalizing the methods and further improvements:

• An obvious improvement can be made by the inclusion of preconditioning.
• The Tikhonov inversion can be simplified by a-priori matrix factorizations, for

instance, using a bidiagonalization of the operator A ([17, Chpt. 9], [6, 15, 31]).
• A stimulating piece of research would be to investigate the effect of an incomplete

computation of the Tikhonov solutions.
• The concept of rational and mixed rational Krylov spaces can be extended to the

non-Hermitean case, which is of high interest in recent regularization theory; e.g., [20,
21, 46]. Whether an analogue of a RatCG can be derived in this situation is not clear.

• As stated above, a proof that the RatCG method with the discrepancy principle is a
regularization method is challenging.

• Furthermore, an extension of the method to the nonlinear case is highly interesting,
but the modality is not obvious.

5. Conclusion. We derived the rational CG (RatCG) method as well as the rational
Lanczos method for iteratively minimizing linear least-squares problems over mixed rational
Krylov spaces. The main novelty is the RatCG method, which is based on short recursions,
with Tikhonov regularization in each second step, and which requires nearly no additional
memory requirements. We illustrate that these methods and the associated aggregation method
perform equally well or better than the conjugate gradient method for the normal equations
in terms of the error, though not necessarily in terms of runtime. Numerical experiments
suggest that the new methods can act as regularization when combined with a stopping rule
with optimal-order convergence.
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