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A NEW LEGENDRE POLYNOMIAL-BASED APPROACH FOR
NON-AUTONOMOUS LINEAR ODES∗

STEFANO POZZA† AND NIEL VAN BUGGENHOUT‡

Abstract. We introduce a new method with spectral accuracy to solve linear non-autonomous ordinary differential
equations (ODEs) of the kind d

dt
ũ(t) = f̃(t)ũ(t), ũ(−1) = 1, with f̃(t) an analytic function. The method is based

on a new analytical expression for the solution ũ(t) given in terms of a convolution-like operation, the ?-product. We
prove that, by representing this expression in a finite Legendre polynomial basis, the solution ũ(t) can be found by
solving a matrix problem involving the Fourier coefficients of f̃(t). An efficient procedure is proposed to approximate
the Legendre coefficients of ũ(t), and the truncation error and convergence are analyzed. We show the effectiveness
of the proposed procedure through numerical experiments. Our approach allows for a generalization of the method to
solve systems of linear ODEs.
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1. Introduction. A new numerical approach to solve the ordinary differential equation
(ODE)

(1.1)
d

dt
ũ(t) = f̃(t)ũ(t), ũ(−1) = 1, t ∈ [−1, 1] ,

where f̃(t) is a known smooth function, is proposed. Note that any finite interval can be
rescaled to [−1, 1]. The proposed method computes the Fourier coefficients, in a basis of
Legendre polynomials, of the solution ũ(t) on [−1, 1] by manipulating matrices containing
Fourier coefficients related to f̃(t). The goal of this paper is to introduce, analyze, and
numerically verify the new numerical approach. The study we present discusses only the
case in which f̃ is a scalar function. Nevertheless, the results obtained in this paper form
the necessary basis for extending the approach to the more challenging problem of (large)
systems of ODEs. Indeed, our interest in this new approach arises from its significance in
developing and analyzing a numerical method for the matrix case. Let Ã(t) be an N × N
analytic matrix-valued function over the interval [−1, 1]. Then, the unique solution of the
matrix ODE

(1.2)
d

dt
Ũ(t) = Ã(t)Ũ(t), Ũ(−1) = IN , t ∈ [−1, 1] ,

is also an analytic N ×N matrix-valued function Ũ(t), where IN is the identity matrix of size
N×N . In [6], we demonstrated that a numerical method for solving matrix ODEs, which uses
similar concepts as the scalar numerical method proposed here, outperforms the state-of-the-art
methods for an important benchmarking problem. The mathematical explanation of these
numerical results can be built from the foundation we lay in this paper.

Systems of non-autonomous linear ODEs are ubiquitous in mathematics and related
applications. An application of particular interest is nuclear magnetic resonance spectroscopy
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(NMR). In NMR, the given matrix-valued function is of the form Ã(t) = −2πıH̃(t), where
H̃(t) is the Hamiltonian of the system [21, 27]. The Hamiltonian describes the dynamics
of the nuclear spins in some sample that is placed in a varying magnetic field. For ` spins,
the Hamiltonian is of size 2` × 2`. So, even for a moderate amount of spins, the Hamilto-
nian becomes extremely large. Thankfully, this matrix is usually sparse since the dominant
interactions are those between neighboring spins.

Our novel numerical approach is based on a recently developed analytical theory [15,
16, 18]. This theory builds on a product of bivariate (matrix-valued) functions, called the
?-product, and provides a simple expression for the solution of (1.2). Let F̃ (t, s) be a matrix-
valued function analytic1 in both variables over [−1, 1], and let Θ(t− s) be the Heaviside step
function

Θ(t− s) =

{
0 if t < s,

1 otherwise.

We denote by ANΘ the set of all the distributions of the kind F (t, s) := F̃ (t, s)Θ(t− s) with
size N ×N . Given F,G ∈ ANΘ , the ?-product [17], denoted by ?, is defined as

F (t, s) ? G(t, s) :=

∫ 1

−1

F (t, τ)G(τ, s)dτ.

From the definition above, by replacing the matrix-matrix product in the integrand with
an appropriate one, the ?-product can be easily extended to matrix-vector, matrix-scalar,
vector-scalar, and scalar-scalar products. The identity under the ?-product is the distribution
I?(t− s) = δ(t− s)IN , where δ(t− s) is the Dirac delta distribution [40]. Overall, we have
defined an algebraic structure [36] composed of the set of distributions DN0 := ANΘ ∪ {I?},
the ?-product (interpreted both as a matrix-matrix and a scalar product), and the usual addition.
Table 1.1 summarizes the ?-product properties and other related definitions.

TABLE 1.1
Operations and related objects in the ?-framework.

Operations and related objects Description

F (t, s) ? G(t, s) matrix-matrix product DN0 ×DN0 → DN0
f(t, s) ? G(t, s) (left) scalar product D1

0 ×DN0 → DN0
G(t, s) ? f(t, s) (right) scalar product DN0 ×D1

0 → DN0
F +G usual addition
I? = δ(t− s)IN identity (Dirac delta)
R?(F )(t, s) = I? +

∑
k≥1 F

?k(t, s) ?-resolvent

The ODE (1.2) can be formulated in the ?-framework in terms ofA(t, s) := Ã(t)Θ(t−s):

(1.3)
d

dt
U(t, s) = A(t, s)U(t, s), U(s, s) = IN , t, s ∈ [−1, 1] .

By Theorem 3.1 in [16], the solution to this ODE can be expressed in the form

(1.4) U(t, s) = Θ(t− s) ? R?(A)(t, s),

1In the previously appeared works on the ?-product, the functions are usually assumed to be smooth. Here,
we restrict the assumption to analytic for the sake of simplicity since the application we are considering deals with
analytic functions.
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where R?(·) is the ?-resolvent, i.e., R?(A)(t, s) = I? +
∑
k≥1A

?k(t, s), with A?k(t, s) the
kth ?-power of A. Once U(t, s) is known, the solution to the original ODE can be obtained
by evaluation in s = −1, i.e., Ũ(t) = U(t,−1). The scalar case is retrieved by choosing
A(t, s) = f(t, s) := f̃(t)Θ(t − s) ∈ A1

Θ; in this case we have U(t, s) = u(t, s), where
u(t,−1) = ũ(t) is the solution of (1.1). In the remainder of this paper we denote A1

Θ by AΘ.
Expression (1.4) for the scalar case u(t, s) is the starting point for our numerical approx-

imation method for ũ(t). This method relies on representing the bivariate distributions by
coefficient matrices containing their expansion coefficients in a basis of Legendre polyno-
mials. The operations in Table 1.1 can be equivalently written in terms of these coefficient
matrices, most notably, the ?-product between bivariate distributions is replaced by the usual
matrix-matrix multiplication between coefficient matrices. This reformulation leads to an
infinite linear system of equations whose solution provides the Legendre coefficients of ũ(t).
A suitable truncation of this system of equations leads to a finite problem that can be solved
with techniques from numerical linear algebra, and its solution provides the first Legendre
coefficients of ũ(t). Since the expression (1.4) is also valid for the matrix case, the numerical
procedure described above can be generalized to solve matrix ODEs. Such a generalization
to a matrix method brings additional computational challenges such as the need for efficient
manipulation of large block coefficient matrices and solving systems involving such block
matrices, as well as theoretical challenges such as a truncation error analysis in matrix-equation
form. This is part of ongoing research.

In this paper, we address these questions for the scalar case, i.e., N = 1. The results on
the scalar case form the building blocks for the matrix case, both the theoretical results and the
numerical algorithm. Very preliminary but promising results of the efficiency of the proposed
approach for the matrix case can also be found in the master thesis [26]. The next section
provides an overview of numerical methods for the matrix case, i.e., systems of ODEs, and
motivates our interest in developing a numerical method based on (1.4).

1.1. Methods for systems of ODEs. In the scalar case, the solution to (1.1) is given by
the exponential ũ(t) = exp

(∫ t
−1
f̃(τ)dτ

)
. For the matrix case, the solution Ũ(t) to (1.2),

for A(t) satisfying Ã(τ1)Ã(τ2) = Ã(τ2)Ã(τ1) for every τ1, τ2 ∈ [−1, 1], can be expressed
simply as a matrix exponential:

Ũ(t) = exp

(∫ t

s

Ã(τ) dτ
)
.

However, for general A(t), Ũ(t) cannot be written straightforwardly as a matrix exponential
involving Ã(t). There are many approaches, and we will discuss some of them. We distinguish
them by the length of the time interval they can handle.

Local methods. Local methods require that the interval is split up into small subintervals,
and the ODE is solved, sequentially, on these subintervals. Hence, they are time-stepping
methods, such as the Runge–Kutta methods. They can be computationally expensive due to
the accumulation of errors during time stepping and the resulting need for very small time
steps. Some of these general solvers preserve certain qualitative properties of the solution, e.g.,
the unitarity of Ũ(t) if Ã(t) is skew-Hermitian. However, the error accumulates for certain
qualitative properties that are not preserved by the method.

Lie-group methods [23] are specifically designed to preserve qualitative (geometric) prop-
erties. Those based on the Magnus expansion represent the solution as Ũ(t) = exp(

∑∞
k=0Hk),

where Hk is a k-fold integral over a polygon involving k commutators of Ã(t) evaluated
at different times. These integrals can be solved efficiently, e.g., by analytic integration for
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some cases, by quadrature, or by using the Lanczos iteration [22, 23]. An approximation is
obtained by truncation Ũ(t) ≈ exp(

∑n
k=0Hk). Most common methods of this type have an

order of convergence below 10 because higher-order methods become more and more costly.
Other Lie-group methods are based on the Fer expansion, which represents the solution as an
infinite product of exponentials, Ũ(t) =

∏∞
k=0 exp(

∫ t
0
Bk(τ)dτ), where Bn(t) is essentially

also an n-fold integral; for details see [28]. A truncation, Ũ(t) ≈ ∏n
k=0 exp(

∫ t
0
Bk(τ)dτ),

provides an approximation. Since the Magnus and Fer expansion have a limited radius of
convergence, the time interval must be split up into small subintervals [10]. Due to the low
order of convergence of local methods and the accumulation of errors during time-stepping,
they are relatively costly for the accuracy they provide when Ã(t) is smooth. Another local
method is the Cayley method [11], where linear systems of equations have to be solved at each
step.

Semi-global methods. Some recent methods exploit the smoothness of Ã(t) by taking
larger time steps. For a time-independent Hamiltonian, a global method (computing an
approximation in a single time step) exists, which is based on computing a polynomial
approximation of the matrix exponential. However, since the solution for a time-dependent
Hamiltonian cannot be simply written in terms of a matrix exponential, this method cannot be
easily generalized. Recent generalizations of such polynomial approximation methods rely on
a reformulation of (1.2) as an integral equation [29, 38]. By a truncated Chebyshev expansion
of the integrand, the integral is discretized, and thus, the solution can be approximated
by a fixed-point iteration. In order for the fixed-point iteration to converge, the time step
must be restricted, although the time subinterval can be chosen much larger than for local
methods. Moreover, on each subinterval there is spectral accuracy thanks to the use of a
polynomial approximation. A similar method [39], using other discretizations than Chebyshev
polynomials, also requires a restriction of the time interval. Since these methods take large
steps but cannot, in general, solve the ODE on the full time interval in a single step, they are
often referred to as semi-global methods.

Global methods. Two important global methods exist that solve the ODE in a single
step. The first is the (t, t′)-method [30]. However, it is too expensive in terms of computation
and memory [24, 29, 38]. The second is the class of Hamiltonian boundary value methods
(HBVM) [1, 7, 8, 9]. These methods are designed as local methods, where on each local
subinterval they use an implicit Runge–Kutta-type approximation with a basis of orthogonal
polynomials, in particular, the shifted Legendre polynomials. Thanks to the use of the
Legendre basis they can increase the degree of the Legendre polynomials and achieve spectral
convergence on the whole interval of interest in a single step [1, 8, 9]. This subclass of
HBVMs is referred to as spectral HBVMs (SHBVMs). HBVMs expand the right-hand side of
the ODE, f(t)u(t), in terms of Legendre polynomials. Since the solution u(t) is unknown,
an approximation of the right-hand side must be made, which is achieved by an implicit
Runge–Kutta-type approach. Our method is also global and based on a Legendre expansion.
However, it takes a completely different approach than HBVM since it expands the bivariate
function f(t)Θ(t − s) in a bivariate Legendre basis. This bivariate function is thus known
a-priori, allowing us to compute the results using the Legendre coefficients directly. We will
show that equation (1.4) allows us to develop a numerical method that computes the Legendre
coefficients of the solution u(t) from the coefficients of the bivariate function.

Due to our use of Legendre polynomials, the interval is required to be finite. In order to
obtain a computationally efficient approach, it is paramount to exploit present matrix structures,
that is, the structure of Ã(t) and the structure of the matrix representing the linear system of
equations obtained after expansion in a Legendre polynomial basis [33].
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Preliminary numerical testing of our proposed method (see the conference proceedings [34,
35]) illustrate that for some simple examples, our method has spectral accuracy (on the
whole time interval) and can be implemented efficiently by exploiting matrix structures. The
preservation of geometric properties for this novel method is not known; some preliminary
numerical results suggest that, if A(t) is skew-Hermitian, then the unitarity of Ũ(t) is not
preserved. However, due to the high accuracy of our method, the approximation to Ũ(t) will
be unitary up to machine precision or some user-specified precision. Note that since a single
polynomial series represents the solution Ũ(t) on the whole time interval, the value of the
approximation at any time point can be easily obtained by evaluation of the polynomial series
in that point, whereas other methods must rely on interpolation in the time points used during
time stepping.

1.2. Outline. Section 2 handles the discretization of the ?-operations in the Legendre
basis and shows that the problem of solving the scalar version of the ODE (1.3) can be
reformulated as an infinite matrix problem with the coefficient matrix of f(t, s) ∈ AΘ. The
properties of the coefficient matrix are analyzed in detail in Section 3, and an analytical
formula is provided for its entries. This analysis leads to an efficient numerical method to
construct the coefficient matrix of f(t, s). Most notably, we prove that coefficient matrices
can be approximated by banded matrices. In Section 4, these matrix properties are used
to show that the infinite problem can be approximated by a finite problem, and techniques
to efficiently solve this finite problem are proposed. Section 5 formulates the finite matrix
problem corresponding to approximating ũ(t) and proposes a numerical procedure to solve it.
The effectiveness of this procedure is illustrated by numerical examples.

2. From the ?-product to the matrix algebra. The proposed numerical method for
the approximation of ũ(t) is based on the expansion of the distribution f(t, s) ∈ AΘ in a
basis of orthonormal Legendre polynomials. The distribution f(t, s) can be represented by its
coefficient matrix, which contains the expansion (Fourier) coefficients of f(t, s). The solution
to (1.1), ũ(t) = u(t,−1), given by (1.4) is obtained by exploiting the connection between the
?-product and the usual matrix algebra. Section 2.1 discusses the expansion of functions and
distributions in the basis of orthonormal Legendre polynomials and defines the coefficient
matrix. In Section 2.2, the connection between the ?-product and the matrix algebra is used to
reformulate the problem in (1.1) as an infinite matrix problem; see also [31].

2.1. Legendre polynomials. The sequence {pk}k≥0 of orthonormal Legendre polyno-
mials consists of polynomials pk of exact degree k that satisfy the orthonormality conditions∫ 1

−1

pk(t)p`(t)dt =

{
0 if k 6= `,

1 if k = `.

For a univariate function f̃(t), its expansion into the Legendre basis is given by

f̃(t) :=

∞∑
d=0

αdpd(t), with αd =

∫ 1

−1

f̃(t)pd(t)dt.

The Fourier coefficients {αd}d≥0 decay at a rate depending on the smoothness of f̃(t).
Any analytic function over [−1, 1] allows an analytic continuation to a Bernstein ellipse
Eρ := {z|z = ρ

2e
iθ + 1

2ρe
−iθ,−π ≤ θ ≤ π} for a ρ > 1 small enough. Therefore, for some

constant C > 0, the Fourier coefficients satisfy

(2.1) |ad| ≤ Cρ−d−1;
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for details we refer to [42, 44]. Moreover, the orthonormal Legendre polynomials can be
bounded by

|pd(t)| ≤
√

2d+ 1

2
, for t ∈ [−1, 1] ,

and therefore the truncated expansion f̂N (t) :=
∑N
d=0 αdpd(t) has the error, measured in the

maximum norm for t ∈ [−1, 1],

‖f̃(t)− f̂N (t)‖∞ =

∞∑
d=N+1

αdpk(t) ≤
∞∑

d=N+1

|αd|
√

2d+ 1

2
.

Hence, if the (decaying) coefficients αN , αN+1, . . . are smaller than a given threshold, then
the truncation f̂N (t) can provide a good approximation of f̃(t).

Consider a distribution f ∈ AΘ. Its Legendre expansion is

f(t, s) =

∞∑
k=0

∞∑
`=0

fk,`pk(t)p`(s), for every t 6= s, t, s ∈ [−1, 1] ,

with Fourier coefficients given by

(2.2) fk,` =

∫ 1

−1

∫ 1

−1

f(τ, ρ)pk(τ)p`(ρ)dρdτ.

We define the coefficient matrix F of the distribution f(t, s), which is the infinite matrix
composed of the Fourier coefficients (2.2),

F :=
[
fk,`
]∞
k,`=0

=


f0,0 f0,1 f0,2 . . .
f1,0 f1,1 f1,2 . . .
f2,0 f2,1 f2,2 . . .

...
...

...
. . .

 .
The distribution f(t, s) is only piecewise smooth because the Heaviside function Θ(t − s)
introduces discontinuities. Thus, its Fourier coefficients fk,` do not decay at a geometric rate.
Due to these discontinuities, there is essentially no decay in the coefficients, and the Gibbs
phenomenon arises [19]. This means that the reconstruction of f(t, s) over the entire domain
[−1, 1]× [−1, 1] by using only the coefficients fk,` is not possible. For such a reconstruction,
there is no convergence at the discontinuities t = s, and away from the discontinuities,
it converges only linearly to the actual values. There are techniques to resolve the Gibbs
phenomenon; see, for example, [13, 19]. In our setting such techniques are not needed since
we only need accurate coefficients fk,` representing f(t, s) in the Legendre basis, and we will
not use these to reconstruct the function values on the entire domain (t, s) ∈ [−1, 1]× [−1, 1]
but only on t ∈ [−1, 1] for s = −1, i.e., where the function is analytic in t.

2.2. A matrix formulation. The operations of addition and ?-multiplication for distri-
butions in AΘ have equivalent operations in the matrix algebra of the associated coefficient
matrices, namely the usual matrix addition and matrix-matrix multiplication.
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LEMMA 2.1. Consider f, g ∈ AΘ and their respective coefficient matrices F,G in the
Legendre basis. Then:

• f + g = h ∈ AΘ, and its coefficient matrix is H = F +G.
• f ? g = h ∈ AΘ, and, assuming the matrix product is well defined, its coefficient

matrix is H = FG.
Proof. Addition: from the Legendre expansion of f and g it follows that

h = f + g =
[
p0(t) p1(t) · · ·

]
F

p0(s)
p1(s)

...

+
[
p0(t) p1(t) · · ·

]
G

p0(s)
p1(s)

...


=
[
p0(t) p1(t) · · ·

]
(F +G)︸ ︷︷ ︸

=H

p0(s)
p1(s)

...

 .
Multiplication: plugging in the double series and using the definition of the ?-product

provides

h = f ? g =

∫ 1

−1

[
p0(t) p1(t) · · ·

]
F

p0(τ)
p1(τ)

...

 [p0(τ) p1(τ) · · ·
]
G

p0(s)
p1(s)

...

 dτ
=
[
p0(t) p1(t) · · ·

]
F

∫ 1

−1

p0(τ)p0(τ) p0(τ)p1(τ) . . .
p1(τ)p0(τ) p1(τ)p1(τ) . . .

...
...

. . .

 dτ
G

p0(s)
p1(s)

...

 .
Thanks to the orthonormality of {pk(t)}k≥0, the matrix in the middle equals the identity
matrix 

∫ 1

−1
p0(τ)p0(τ)dτ

∫ 1

−1
p0(τ)p1(τ)dτ . . .∫ 1

−1
p1(τ)p0(τ)dτ

∫ 1

−1
p1(τ)p1(τ)dτ . . .

...
...

. . .

 =


1 0 . . .

0 1
. . .

...
. . . . . .

 .
Thus, we get

h = f ? g =
[
p0(t) p1(t) · · ·

]
FG︸︷︷︸
=H

p0(s)
p1(s)

...

 ,
that is, the coefficient matrix for h is H = FG under the assumption that this matrix product
is well defined.

In Section 3.3, the infinite matrix product is discussed, and we show that the matrix product
between coefficient matrices of distributions f ∈ AΘ is always well defined. If f(t, s) is
bounded for t, s ∈ [−1, 1], then the ?-resolvent of f(t, s), which is R?(f) = 1? +

∑
k≥1 f

?k,
exists since the series

∑
k≥1 f

?k converges uniformly in AΘ for every t, s ∈ [−1, 1]; see [16].
Since

R?(f) ? (1? − f) =

1? +
∑
k≥1

f?k

 ? (1? − f) = 1?,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LEGENDRE ODE SOLVER 299

the ?-resolvent is the ?-inverse of (1? − f), i.e., R?(f) = (1? − f)−?. Let g :=
∑
k≥1 f

?k.
Then g ∈ AΘ, and hence we can define its coefficient matrix G. Therefore, we have

R?(f) = 1? +
∑
k≥1

f?k = φ(t)T (I +G)φ(s), with φ(τ) :=

p0(τ)
p1(τ)

...

 ,
which allows us to derive the following relation between (I +G) and (I − F ),

1? = (R?(f) ? (1? − f))(t, s) =
(
φ(t)T (I +G)φ(s)

)
?
(
φ(t)T (I − F )φ(s)

)
,

= φ(t)T (I +G) (I − F )φ(s) = φ(t)T I φ(s).
(2.3)

As a consequence, we have the following result:
LEMMA 2.2. Consider f ∈ AΘ and its corresponding coefficient matrix F . If the inverse

of the infinite matrix (I − F ) exists, then

R?(f) =
[
p0(t) p1(t) . . .

]
(I − F )−1

p0(s)
p1(s)

...

 .
Proof. Let us define R?(f) := φ(t)T (I − F )−1φ(s), i.e., set (I + G) = (I − F )−1.

Then, by equations (2.3), we get R?(f) ? (1? − f) = 1?.
Combining Lemmas 2.1 and 2.2 allows us to obtain an expression for the Legendre

coefficients of ũ(t) in terms of coefficient matrices. This expression is the matrix counterpart
to the expression for ũ(t) in the ?-framework: ũ(t) = u(t, s)|s=−1 = Θ(t− s) ? R?(f)|s=−1

(see (1.4)) and is stated in the following theorem:
THEOREM 2.3. Consider f ∈ AΘ and its corresponding coefficient matrix F . Let T

denote the coefficient matrix of Θ(t− s), I the identity matrix, and {pk}k≥0 the sequence of
orthonormal Legendre polynomials. Assume that (I − F ) is invertible. Then the Legendre
coefficients {ck}k≥0 of the solution ũ(t) of the ODE (1.1) are given by

(2.4)


c0
c1
c2
...

 = T (I − F )−1


p0(−1)
p1(−1)
p2(−1)

...

 .
Based on Theorem 2.3, we can formulate a matrix problem that is equivalent to the problem of
solving the ODE (1.1).

PROBLEM 2.1 (Infinite matrix problem). Given a smooth function f̃(t), compute the
Legendre coefficients {ck}∞k=0 of the solution ũ(t) to the ODE (1.1). By (2.4) this corresponds
to three matrix problems:

1. Construct the infinite coefficient matrix F =
[
fk,`
]∞
k,`=0

of Fourier coefficients in the

Legendre basis fk,` =
∫ 1

−1

∫ 1

−1
f̃(τ)Θ(τ − ρ)pk(τ)p`(ρ)dρdτ .

2. Solve the infinite linear system of equations (I−F )x = φ(−1) for x. The right-hand
side is the column vector φ(−1) =

[
pk(−1)

]∞
k=0

, and I is the infinite identity matrix.

3. Compute the matrix-vector product Tx =
[
c0 c1 c2 · · ·

]>
, where T is the

coefficient matrix of Θ(t− s).
Problem 2.1 is the main problem to solve. In the remainder of this paper, we develop a

numerical method to approximate its solution and investigate the conditions under which this
approximation is expected to converge.
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3. The coefficient matrix and its properties. Since the coefficient matrix is central
to our analysis and to the proposed procedure, we study its structure. In Section 3.1, an
analytical expression for the entries of the coefficient matrices is presented, and we show that
the entries decay along the diagonals. Section 3.2 proves that the coefficient matrices can be
approximated by a banded matrix. These results allow us to show, in Section 3.3, that the
matrix-matrix product between two coefficient matrices of distributions in AΘ is well defined;
see Lemma 2.1.

3.1. Formula for the Fourier coefficients. The Fourier coefficients fk,` (2.2) of
f(t, s) = f̃(t)Θ(t − s) ∈ AΘ are studied by relying on the Legendre expansion of the
analytical function f̃(t) =

∑∞
d=0 αdpd(t), its fast decaying coefficients {αd}d≥0, and the

coefficient matrices of pd(t)Θ(t− s) ∈ AΘ. The Fourier coefficients of pd(t)Θ(t− s) can be
computed via an analytical formula; see Theorem 3.3. This formula follows from combining
the two known properties of Legendre polynomials stated below.

PROPERTY 3.1 (Integral of a Legendre polynomial on a subinterval [37, p. 178]). Let
p`(t) denote the orthonormal Legendre polynomial of degree `. For ` = 0 it holds that

∫ τ

−1

p0(ρ)dρ =
1√
3
p1(τ) + p0(τ),

and for ` > 0

∫ τ

−1

p`(ρ)dρ =
1√

2`+ 1

(
1√

2`+ 3
p`+1(τ)− 1√

2`− 1
p`−1(τ)

)
.

PROPERTY 3.2 (Integral of the triple product of Legendre polynomials [14]). Let p`
be the orthonormal Legendre polynomial of degree `. Consider integers a, b, c ≥ 0, and set
s := a+b+c

2 and α := |b − c|. The integral of the product of three orthonormal Legendre
polynomials is

Fa,b,c :=

∫ 1

−1

pa(ρ)pb(ρ)pc(ρ)dρ

=


0 if a+ b+ c odd,
0 if s < max(a, b, c),

0 if a < |b− c|,√
(2a+1)(2b+1)(2c+1)√

2(a+b+c+1)

(
2s−2a
s−a

)(
2s−2b
s−b

)(
2s−2c
s−c

)
( 2s
s )
−1 else

=



0 if a+ b+ c odd,
0 if b+ c < a

0 if a < α,
√

(2a+1)(2b+1)(2c+1)

2(2a+1/2)

∏a
j=1

−a+b+c+2j
−a+b+c+2j−1

(a+b+c+1)

∏a+α

j=( a+α
2

+1)
j2

∏ a−α
2

j=1 j2
∏a+α
j=(a−α+1)

j

else.
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THEOREM 3.3 (Coefficients of a Legendre polynomial in AΘ). Let pd(t), pk(t), p`(s)
be the orthonormal Legendre polynomials of degree d, k, `, respectively, and Fa,b,c as in
Property 3.2. Then the coefficients b(d)

k,` of the Legendre expansion of pd(t)Θ(t− s) are given,
for ` = 0, by

b
(d)
k,0 =

1√
3
Fd,k,1 + Fd,k,0,

and, for ` > 0, by

(3.1) b
(d)
k,` =

1√
2`+ 1

(
1√

2`+ 3
Fd,k,`+1 −

1√
2`− 1

Fd,k,`−1

)
.

Proof. By orthonormality of the Legendre polynomials, the Fourier coefficients for ` > 0
are given by

b
(d)
k,` :=

∫ 1

−1

∫ 1

−1

pd(τ)Θ(τ − ρ)pk(τ)p`(ρ)dρdτ

=

∫ 1

−1

pd(τ)pk(τ)

(∫ 1

−1

Θ(τ − ρ)p`(ρ)dρ

)
dτ

=

∫ 1

−1

pd(τ)pk(τ)

(∫ τ

−1

p`(ρ)dρ

)
︸ ︷︷ ︸

Apply Property 3.1

dτ

=
1√

2`+ 1

[
1√

2`+ 3

∫ 1

−1

pd(τ)pk(τ)p`+1(τ)dτ

− 1√
2`− 1

∫ 1

−1

pd(τ)pk(τ)p`−1(τ)dτ

]

=
1√

2`+ 1

[
1√

2`+ 3
Fd,k,`+1 −

1√
2`− 1

Fd,k,`−1

]
.

For ` = 0 the same derivation holds using the formula for ` = 0 stated in Property 3.1.

Denote the coefficient matrix of pd(t)Θ(t − s) by B(d) :=
[
b
(d)
k,`

]∞
k,`=0

, with b(d)
k,` as in

Theorem 3.3. We will call such a matrix the Legendre basis matrix of degree d. Along a
diagonal of B(d), the entries decay linearly; this is formally stated in Lemma 3.4.

LEMMA 3.4 (Decay of the Legendre basis coefficients). For b(d)
k,l as in Theorem 3.3, it

holds that

lim
k,`→∞

|k−`| constant

|b(d)
k,`| ∼ O(1/`).

Proof. In the last equality in the formula in Property 3.2, the last fraction is constant since
α = |b− c| is constant and a = d is fixed. Then, it is straightforward to see that there is no
decay in the expression of the integral over the triple product,

lim
k,`→∞

|k−`| constant

Fd,k,` ∼ O(1).
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Since

lim
k,`→∞

|k−`| constant

1√
(2`+ 1)(2`− 1)

∼ O(1/`),

the statement follows from (3.1).
The coefficient matrix F := [fk,`]

∞
k,`=0 of f(t, s) = f̃(t)Θ(t− s) ∈ AΘ can be written

as F =
∑∞
d=0 αdB

(d), where {αd}d≥0 are the Legendre coefficients of f̃(t). Thus, we can
relate properties of B(d) to properties of F . Namely, the fact that along a diagonal of F the
entries decay linearly follows from Lemma 3.4 and is illustrated in Example 3.6.

COROLLARY 3.5 (Decay of the expansion coefficients). Let α = |k − `| be constant as
k, ` go to infinity. Then the coefficients fk,` of the Legendre expansion of f(t, s) ∈ AΘ decay
asymptotically at the rate 1

` .
EXAMPLE 3.6. The polynomial of degree one f̃(t) = −ıτ(t+1), with τ > 0, can be writ-

ten as a linear combination of p0(t) and p1(t), namely−ıτ(t+1) = −2ıτp0(t)−
√

2
3 ıτp1(t).

Thus, its coefficient matrix is F = −2ıτB(0) −
√

2
3 ıτB

(1), which is a pentadiagonal matrix.
The order of magnitude of the entries of F for τ = 4 are displayed in Figure 3.1. A linear
decay is observed in this figure.

0 20 40

0

20

40

k

ℓ

0

-2

-4

lo
g
1
0
(|a

k
,ℓ
|)

100 101 102 103

10−2

100

ℓ

|fℓ,ℓ+1|
2.2
ℓ

FIG. 3.1. Left: the order of magnitude of the entries fk,` of F , the coefficient matrix of
f(t, s) = [−ı4(t+ 1)] Θ(t− s). Right: the magnitude of the entries on the first superdiagonal |f`,`+1| together
with the predicted decay rateO( 1

`
).

3.2. Banded coefficient matrix. A key property of the coefficient matrices of distri-
butions in AΘ is that they are numerically banded. That is, they can be approximated by a
banded matrix for any given threshold, e.g., machine precision. A matrix A is said to be an
N -banded matrix or to have bandwidth N , if ak,` = 0, for |k − `| > N . In this convention a
diagonal matrix is a 0-banded matrix. The following corollary follows from Property 3.2 and
Theorem 3.3.

COROLLARY 3.7 (Bandedness of the Legendre basis matrix B(d)). Consider the coeffi-
cient matrix B(d) of pd(t)Θ(t− s), where pd(t) is the orthonormal Legendre polynomial of
degree d. Then B(d) is a (d+ 1)-banded matrix, i.e.,

b
(d)
k,` = 0, for |k − `| > d+ 1.

We would like to truncate the infinite series F :=
∑∞
d=0 αdB

(d) to a finite series
F (N) :=

∑N
d=0 αdB

(d), which is justified if F (N) is in some sense close to F . Closeness will
be expressed in terms of the maximum norm ‖F − F (N)‖∞. In order to bound this quantity
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we state an upper bound for the maximum norm of the Legendre basis matrices B(d) in the
next lemma.

LEMMA 3.8. Consider the Legendre basis matrix B(d). Its maximum norm can be
bounded by

‖B(d)‖∞ ≤ 3d+ 2.

The proof of this lemma is technical and lengthy and is, therefore, postponed to Appendix A.
We remark that we have observed, by numerical computations, that the infinity norm ‖B(d)‖∞
can be bounded by a constant. So the bound is too pessimistic. However, it is sufficient to
prove the following result.

THEOREM 3.9. Consider the coefficient matrix F of f̃(t)Θ(t− s) = f(t, s) ∈ AΘ. For
any given tolerance δtol > 0, the matrix F can be approximated by an (N + 1)-banded matrix
F (N) satisfying

‖F − F (N)‖∞ ≤ δtol.

In other words, F is a numerically banded matrix.

Proof. Let f̃(t) =
∑∞
d=0 αdpd(t) be the Legendre series of the function f̃(t), analytic

in the Bernstein ellipse Eρ, ρ > 1. Its coefficient matrix is F =
∑∞
d=0 αdB

(d). Using the
bound (2.1) and Lemma 3.8, we have, for F (N) :=

∑N
d=0 αdB

(d), that

‖F − F (N)‖∞ =

∥∥∥∥∥
∞∑

d=N+1

αdB
(d)

∥∥∥∥∥
∞

≤
∞∑

d=N+1

|αd|‖B(d)‖∞

≤
∞∑

d=N+1

Cρ−d−1(3d+ 2).

(3.2)

Therefore, there exists an N for which
∑∞
d=N+1 Cρ

−d−1(3d + 2) ≤ δtol. This proves the
statement.

In the proof above, note that the truncated series

F (N) =

N∑
d=0

αdB
(d)

defines an (N + 1)-banded matrix sufficiently close to F for N large enough. The numerical
bandedness of F and the bound in equation (3.2) for F (N) are illustrated in the following
example.

EXAMPLE 3.10. Consider the function f̃(t) = −ıω sin(ωt), where ω controls the
oscillation of the function. This function is not a polynomial, so we cannot expect a banded
coefficient matrix; however, it is numerically banded. For ω = 1, Figure 3.2 illustrates (left)
the norm ‖F − F (N)‖∞ and the upper bound (3.2) for increasing N and (right) the order
of magnitude of the entries of F , i.e., log10(|fk,`|). We see a clear numerical band structure
of the matrix F and that the upper bound holds. With the given threshold chosen equal to
machine precision δtol = εmach, the bandwidth is N = 14.

For ω = 5, Figure 3.3 displays the same. We notice that ‖F − F (N)‖∞ reaches machine
precision at N = 24, and again this corresponds to the numerical bandwidth of F . The
bandwidth has increased compared to the less oscillatory function with ω = 1 since now we
require more Legendre coefficients to represent the function accurately.
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FIG. 3.2. Coefficient matrix F of [−ıω sin(ω(t+ 1))] Θ(t − s) with ω = 1. Left: maximum norm
‖F − F (N)‖∞ (∗) and the upper bound

∑∞
d=N+1 |αd|(3d+ 2) (◦). Right: order of magnitude of the entries fk,`.
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FIG. 3.3. Coefficient matrix F of [−ıω sin(ω(t+ 1))] Θ(t − s) with ω = 5. Left: maximum norm
‖F − F (N)‖∞ (∗) and the upper bound

∑∞
d=N+1 |αd|(3d+ 2) (◦). Right: order of magnitude of the entries fk,`.

3.3. Well-defined matrix product. Given the distributions f, g ∈ AΘ and their coef-
ficient matrices F,G, until now and in particular in Lemma 2.1, we have assumed that the
matrix product FG is well defined. Thanks to the properties above, we can show that each
element of FG exists, i.e., the matrix product is well defined.

Consider the Legendre series

f̃(t) =

∞∑
d=0

αdpd(t), g̃(t) =

∞∑
d=0

βdpd(t)

and the related matrix expansions

F =

∞∑
d=0

αdB
(d), G =

∞∑
d=0

βdB
(d).

Using Corollary 3.7 and Lemma 3.8, for k, ` = 0, 1, . . . , we get bounds for the (k, `)-entry of
these coefficient matrices

|fk,`| ≤
∞∑

d=|k−`|−1

|αd|(3d+ 2), |gk,`| ≤
∞∑

d=|k−`|−1

|βd|(3d+ 2)

(by convention, when k = `, d is set to start from 0). As recalled in equation (2.1),
|αd| ≤ Cfρ−d−1

f , with Cf > 0, ρf > 1. Therefore, there exists Kf > 0 such that

|fk,`| ≤ Cf
∞∑

d=|k−`|−1

(3d+ 2)

ρd+1
f

≤ Cfρ−|k−`|f

∞∑
d=0

(3d+ 3|k − `| − 1)

ρd+2
f

≤ Kfρ
−|k−`|
f .
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The same applies to |gk,`| for some Kg > 0 and ρg > 1. Note that this shows that F is
characterized by an off-diagonal exponential decay. As a consequence, there exist constants
ρ > 1 and C > 0 such that

|(FG)k,`| =

∣∣∣∣∣∣
∞∑
j=0

Fk,jGj,`

∣∣∣∣∣∣ ≤
∞∑
j=0

|Fk,j ||Gj,`| ≤
∞∑
j=0

Cρ−(|j−k|+|j−`|) <∞,

proving that, for every k, ` = 0, 1, . . . , the product (FG)k,` is well defined. Hence, Lemma 2.1
holds for all the distributions in AΘ. This allows us to state that there is a correspondence
between the ?-product algebraic structure and the matrix (sub)algebra of Legendre coefficient
matrices. This is summarized in Table 3.1.

TABLE 3.1
The ?-operations for distributions f, g ∈ AΘ and the associated matrix algebra operations for the respective

coefficient matrices F,G.

?-framework matrix algebra
f(t, s) ? g(t, s) FG
f + g F +G
1? = δ(t− s) I
R?(f)(t, s) = 1? +

∑
k≥1 f

?k(t, s) (I − F )−1

4. Practical computation in the matrix algebra. The second matrix problem in Prob-
lem 2.1 is to find the solution x to the infinite system of equations

(I − F )x = φ(−1).

From Section 3.2 we know that we can accurately represent the infinite numerically banded
coefficient matrix F by an infinite banded matrix F (N). In Section 4.1, we will discuss the
existence of (I − F (N))−1. That is, the banded infinite system of equations

(I − F (N))x = φ(−1)

has a unique solution x. This solution can be arbitrarily close to the solution of the original
system by choosing N appropriately, and therefore we make a slight abuse of notation by
using the same variable x for both these solutions in favor of an easier notation.

To be able to use standard linear algebra techniques we would like to work with a finite
system of equations instead of an infinite system. In Section 4.2, we discuss how an accurate
approximation ẋ to the first entries of x can be obtained by solving the finite system

(IM − F (N)
M )ẋ = φM (−1),

with φM (−1) =
[
p0(−1) p1(−1) . . . pM−1(−1)

]>
and F (N)

M the M × M leading
principal submatrix of F (N). In Section 4.3, we elaborate on choosing an appropriate value
for M and how the Legendre coefficients can be obtained from ẋ. Section 4.4 explores further
improvements to compute the solution ẋ more efficiently based on exploiting hidden matrix
structures.

4.1. Resolvent existence and decay phenomenon. In this section, we deal with the
existence of the resolvent (I − F (N))−1. Addressing this problem means discussing the
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invertibility of an operator. More precisely, consider the Hilbert space H with orthonormal
basis {ė0, ė1, ė2, . . . }. The coefficients fk,` of the (banded) matrix F (N) define the operator
R : H → H as follows:

(4.1) R ė` =

`+N∑
k=max{`−N,0}

fk,` ėk.

Denoting by HM the linear span of {ė0, . . . , ėM−1} and with PM : H → HM the related
orthogonal projection, we can define the finite-dimensional operatorRM = PMRPM . The
operator RM is then represented by the matrix F (N)

M . Theorem 3.1 in [25] shows that the
operatorR is invertible under the following conditions:

1. F (N) is banded;
2. For every M = 1, 2, . . . and for j = 1, . . . , (N + 1), there exist positive constants
Kj , Lj , such that∥∥∥∥(IM − F (N)

M

)−1

eM−j

∥∥∥∥
2

≤ Kj ,

∥∥∥∥∥
(
IM −

(
F

(N)
M

)H)−1

eM−j

∥∥∥∥∥
2

≤ Lj .

In the following, we demonstrate that Condition 2 is satisfied under certain assumptions on
the field of values of the matrices F (N)

M , i.e., the convex set in C defined as

W (F
(N)
M ) :=

{
vHF

(N)
M v, ‖v‖2 = 1

}
.

Under these assumptions, we show that the matrix (IM − F
(N)
M )−1 is characterized by

the so-called decay phenomenon (e.g., [3, 4, 5]), i.e., the magnitude of its elements decay
exponentially as we move away from the band of F (N)

M .
LEMMA 4.1. Let A be a matrix with bandwidth N + 1 and so that W (A) is contained in

D(0, r), a disk with radius r < 1 centered at the origin. Then,∣∣∣(I −A)−1
k,`

∣∣∣ ≤ Cµd(k,`), d(k, `) :=
|k − `|

(N + 1)
,

for every r < µ < 1 and a constant C determined by µ.
The proof follows immediately from Theorem 2.3 in [32]; see also [5]. Assume that

W (F
(N)
M ) ⊂ D(0, r) for a fixed r < 1 and for M ≥ M0 with M0 large enough. Then, for

every ` = 0, 1 . . . ,M − 1, we get∥∥∥∥(IM − F (N)
M

)−1

e`

∥∥∥∥2

2

=

M∑
k=0

∣∣∣∣(IM − F (N)
M

)−1

k,`

∣∣∣∣2

≤ C2
M∑
k=0

µ2d(k,`) ≤ C2
M∑
k=0

τ |k−`|, τ = µ2/(N+1) < 1,

≤ C2
∞∑
k=0

τ |k−`| =: K` <∞.

Note that K` is independent of M , proving that Condition 2 above holds (a similar argument
holds for the Hermitian transposed case). Therefore, by Theorem 3.1 in [25], we proved the
following result:
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THEOREM 4.2. Assume that W (F
(N)
M ) ⊂ D(0, r), with r < 1, for every M > M0 with

M0 large enough. Then the operatorR defined in (4.1) is invertible. Moreover, consider the
operator equationsRx = y andRMxM = PMy. If y is in the range ofR, then xM → x in
the norm topology.

As a final step, we need to determine conditions for the function f̃(t) so that the coefficient
matrix F (N)

M of f̃(t)Θ(t− s) satisfies W (F
(N)
M ) ⊂ D(0, r) for every M large enough. Since

these matrices are usually characterized by a field of values with a disk shape, we estimate it
by using the numerical radius, which is defined, for a given matrix A, as

ν(A) := sup{|λ|, λ ∈W (A)}.
Note that W (A) ⊆ D(0, ν(A)). Moreover, the numerical radius can also be expressed via the
formula

ν(A) ≤ max
k

(∑
`

|ak,`|+ |a`,k|
2

)
;

see, e.g., [20, Corollary 5.2-3]. Unfortunately, obtaining bounds for the numerical radius has
proved to be difficult. Therefore, for the moment, we rely on arguments based on numerical
observations.

First, consider B(d), the Legendre basis matrix of degree d, and the related truncated
matrix B(d)

M . For M = 2000 and d = 0, . . . , 500, we observed numerically that

max
k

(∑
`

|(B(d)
2000)k,`|+ |(B(d)

2000)`,k|
2

)
≤ 0.87.

Moreover, for all the tested matrices, the maximum was obtained for k = 0, i.e., the first row.
As the magnitude of the elements of B(d)

M tends to decay along the diagonal (see Lemma 3.4),
we can bound the numerical radius by

ν(B(d)) ≤ 0.87, d = 0, . . . , 500.

Finally, by the Legendre expansion of f̃(t) =
∑∞
d=0 αdpd(t) we get the bound

ν(F (N)) ≤
N∑
d=0

|αd|ν(B(d)).

For the reasons given above, we conjecture that as long as

(4.2)
N∑
d=0

|αd| ≤ 1.1494,

we get the inclusion:

W (F
(N)
M ) ⊆ D(0, 0.87), M = 0, 1, . . .

Nevertheless, we have often observed that the solution xM still converges even when
ν(F

(N)
M ) > 1. The condition in (4.2) is very restrictive; it gives the impression that the

techniques presented in this paper are applicable only to slowly oscillating, low amplitude
functions f̃(t). However, in numerical experiments (Section 5) we observe that even when
the sum of coefficients is orders of magnitude larger than 1.1494 or ν(F

(N)
M ) > 1, the matrix

(I − F (N)
M ) is still invertible, and its inverse still has an off-diagonal decay. Hence, both condi-

tions are nondescriptive in our context; they are too pessimistic. More descriptive conditions
might be obtained by looking at the pseudospectrum of F (N). Exploring this path is part of
ongoing research.
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4.2. Truncation error. The finite banded system is obtained by taking the M ×M
leading principal submatrix of the matrix (I − F (N)):

(IM − F (N)
M )ẋ = φM (−1).

We analyze the error |ẋ− xM |, where xM denotes the vector containing the first M entries of
the infinite solution x.

First, we derive an analytical expression for xM in terms of submatrices of the infinite
matrix (I − F (N)). Set, for a more compact notation, A := (IM − F (N)

M ) ∈ CM×M and the
matrices B,C,D as in Figure 4.1. In this figure, the colored region contains generic nonzeros,
white indicates zeros, and arrows are used to emphasize the size of a block or region. Note
that N + 2 is equal to the bandwidth of the matrix plus one.

A

C

B

D

N + 2

M

FIG. 4.1. Block subdivision of an infinite banded matrix (I − F (N)). The colored region shows the band
of the matrix. The left upper block is A := (IM − F

(N)
M ) ∈ CM×M ; the dimensions of the other blocks follow

immediately from this. Open lines indicate that the row and/or column index goes to infinity.

This block subdivision allows us to rewrite the infinite system of equations as

(I − F (N))x = φ(−1)⇔
[
A B
C D

] [
xM
z

]
=

[
ẏ
v

]
,

with xM ∈ CM , ẏ = φM (−1) ∈ CM , and v =
[
pM (−1) pM+1(−1) . . .

]>
. Assume that

A and D are invertible. Then the first M entries of the solution are

xM = (IM −A−1BD−1C)−1A−1ẏ − (IM −A−1BD−1C)−1A−1BD−1v.

The object under study is the error |ẋ− xM |, where ẋ = A−1ẏ, which is given by

(4.3)
∣∣∣ [(IM −A−1BD−1C)−1 − IM

]
ẋ− (IM −A−1BD−1C)−1A−1BD−1v

∣∣∣ .
To study this error we look at the matrix structures of the matrices appearing in equation (4.3).
Assume that A−1 = (IM − F (N)

M )−1 is a numerically banded matrix; see Section 4.1. In
the following, matrix entries with magnitude below a given threshold are truncated. As a
consequence, the matrix A−1 is a K-banded matrix. Since W (D) ⊆W (I − F (N)), if F (N)

shows a decay, then, by Lemma 4.1, D−1 also shows a decay and can be approximated
accurately by an L-banded matrix. The values K and L can be estimated a priori by using
spectral information of F (N) using, e.g., Lemma 4.1. In Figure 4.2, the structure of the matrix
products A−1BD−1 and A−1BD−1C appearing in (4.3) is derived.

The structure of the error is now easily determined from the structure of these matrices.
Namely, plug the matrices into the formula |xM − ẋ|, and we obtain that (at least) the first
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B

N + 2

D−1

L

L

= BD−1

N + 2 + L

N
+

2

(a) Structure of BD−1.

A−1

K

K

BD−1

N + 2 + L

N
+

2

= A−1BD−1

N + 2 + LN
+

2
+

K K

K

(b) Structure of A−1BD−1.

A−1BD−1

N + 2 + LN
+

2
+

K K

K

N + 2 N
+

2

C = A−1BD−1C

N + 2 N
+

K
+

2

(c) Structure of A−1BD−1C.

FIG. 4.2. Structure of the matrices appearing in the error analysis of ẋ. Colored regions indicate generic
nonzeros and dashed lines indicate the boundary of the matrix; the lack of a dashed line indicates that the row and/or
column index goes to infinity.

M −N −K − 2 entries are computed accurately; see Figure 4.3. In practice, thanks to the
decay phenomenon, more than M −N −K − 2 entries might be computed accurately. This
is illustrated in Example 4.3.

EXAMPLE 4.3. Consider f̃(t) = −ı sin(t + 1). For M = 50, Figure 4.4 displays the
corresponding matrix (IM − FM ), its inverse, and the 50× 50 leading principal submatrix of
D−1. All these matrices are numerically banded, and for δtol = εmach they have the bandwidth
N + 2 = 16, K = 22, and L = 16, respectively.

From the above error analysis, we expect that the first M −N −K − 2 entries of ẋ are
close to those of the exact (infinite) solution x. In our example, this would be a number of
50− 14− 22− 2 = 12 entries. The predicted structure in Figure 4.3 is verified by computing
these matrices numerically. This is illustrated in Figure 4.5, where we have chosen to set
elements smaller than 10−19 to zero (i.e., the color white in the colorbar). The observed
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0

M −N −K − 2

N +K + 2

ẋ −

N + L+ 2N
+

K
+

2 v =
0

N
+

K
+

2

FIG. 4.3. Structure of the truncation error
|xM − ẋ| = |

[
(I −A−1BD−1C)−1 − I

]
ẋ− (I −A−1BD−1C)−1A−1BD−1v|.

Colored regions indicate generic nonzeros, and dashed lines indicate the boundary of the matrix; the lack of a dashed
line indicates that the row and/or column index goes to infinity.

0 20 40

0

20

40

k

ℓ

0 20 40

0

20

40

k

ℓ

0 20 40

0

20

40

k

ℓ

0

-10

-20

lo
g
1
0
(|a

k
,ℓ
|)

FIG. 4.4. Order of magnitude of the entries of the matrices (IM−FM ), (IM−FM )−1, andD−1, respectively,
for the function f̃(t) = −ı sin(t+ 1) and M = 50. On the far right the colorbar indicates the colors corresponding
to the orders of magnitude.

matrices adhere to the predicted structure, but thanks to the decay of the entries it does not
fill the whole predicted submatrix with large elements. As a consequence, more than the
predicted 12 entries of ẋ are computed accurately; we observe that 30 entries are computed up
to machine precision.

0 20 40

0

20

40

k

ℓ

0 20 40

0

20

40

k

ℓ

0
12
20
30

40

k

0

-10

-20

lo
g
1
0
(|a

k
,ℓ
|)

FIG. 4.5. Order of magnitude of the entries of the matrices (I − A−1BD−1C)−1 − I and
(I −A−1BD−1)−1A−1BD−1 and of the error vector |xM − ẋ| for the function f̃(t) = −ı sin(t + 1), from
left to right, respectively. On the far right the colorbar indicates the colors corresponding to the orders of magnitude.
Dashed red lines indicate the predicted structure as shown in Figure 4.3.

The above example numerically validates the error analysis in this section. Thus, the
truncation to the leading principal submatrix is both theoretically and numerically justified.
We would like to stress that the inverse of A = (IM − FM ) is not computed explicitly in
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our proposed procedure, but instead the system of equations (IM − F (N)
M )ẋ = φM (−1) is

solved to obtain ẋ. Once ẋ is available, the approximate Legendre coefficients are obtained as
ċ = TM ẋ. Since TM is a tridiagonal matrix, it follows immediately that at leastM−N−K−3
coefficients of ċ are computed accurately.

4.3. Finding the accurate Legendre coefficients. From the analysis in the above section
two questions arise:

1. What is an optimal choice for M , large enough to accurately compute a sufficient
amount of Legendre coefficients and as small as possible, to reduce computational
costs?

2. After computing the Legendre coefficients ċ, how many should we keep?
For the first question we require some information about the coefficient matrix of the

solution. The solution ũ(t) is analytic inside and on some Bernstein ellipse Eρ, therefore,
from [44], we know that its Legendre coefficients {ck}k≥0 satisfy

(4.4) |ck| ≤
(2k + 1)`(Eρ)Mρ

πρk+1(1− ρ−2)
,

whereMρ = max
z∈Eρ
|ũ(z)| and `(Eρ) is the circumference of Eρ. Thus, by Theorem 3.9 it follows

that the coefficient matrix U of ũ(t)Θ(t− s) is a numerically banded matrix.
Let K denote the integer such that ‖U −U (K)‖∞ ≤ δsol, i.e., U is a numerically (K+ 1)-

banded matrix for the requested tolerance. By the truncation error analysis from Section 4.2,
it then follows that a Legendre basis of size M = 2K + N + 4, with N the numerical
bandwidth of F , suffices to compute the K + 1 first Legendre coefficients of ũ(t) up to the
requested accuracy. If it is known in which Bernstein ellipses the solution ũ(t) is analytic,
then an estimate of K can be obtained. In the numerical examples in Section 5, f(t) are entire
functions and so are the corresponding solutions u(t), thus the bound (4.4) holds for all ρ > 1.
In order to obtain an estimate, we will replace the ellipse Eρ in the bound by the circle ρeiθ.

Set M̂ρ := exp

(
ρ max
θ∈[0,2π]

|f(ρeiθ)|
)

. Then,

|ck| ≤
(2k + 1)`(Eρ)Mρ

πρk+1(1− ρ−2)
≤ (2k + 1)2πρM̂ρ

πρk+1(1− ρ−2)
≤ 2(2k + 1)eρ

ρk(1− ρ−2)
=

2(2k + 1)eρ

1− ρ−2
ρ−k.

Using this bound we get, for all ρ > 1,

‖U − U (K)‖∞ ≤
∞∑

d=K+1

|cd|‖B(d)‖∞ ≤
∞∑

d=K+1

2(3d+ 2)(2d+ 1)eρ

1− ρ−2
ρ−d.

Thus, K can be chosen such that
∑∞
d=K+1

2(3d+2)(2d+1)eρ

1−ρ−2 ρ−d ≤ δsol, and choosing
M = 2K +N + 4 guarantees that we can approximate ũ(t) up to an error of O(δsol). Note
that this choice forM is an overestimate of the optimal choice. Since the Legendre coefficients
of the solution are computed directly and provide an estimate of the error, they can be used as
an automatic way to change M [2].

The second question is answered by a particular truncation combined with a numerical
method that chooses the right amount of coefficients automatically. We describe the truncation
using an example. Consider the function f̃(t) = −ıω sin(ω(t+1)), for which we approximate
the solution to the ODE (1.1), that is, ũ(t) = exp (−ı(1− cos(ωt+ ω))). For ω = 1, this
function is the one considered in Example 4.3, from which we know that for M = 50,
computing about 30 Legendre coefficients up to machine precision suffices to represent ũ(t).
In Figure 4.6, we display the Legendre coefficients obtained in the following two ways:
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1. Solve (I − F (N)
M )ẋ = φM (−1) and compute ċ = TM ẋ.

2. Solve (I − F (N)
M )ẋ = φM (−1) and compute ċ = TM ẋ, where the entries of the

coefficient matrices are set to zero in the last N + 1 rows and where N + 1 is the
bandwidth of the matrix. This means that the first M −N − 1 rows of F (N)

M equal
those of F (N)

M , and the last N + 1 rows are all zeros. Since TM has bandwidth equal
to one, omitting its last row gives us TM .

For ω = 1 and M = 50, the Legendre coefficients ċ without truncation lead to the first 30
coefficients being accurately computed, and after this the coefficients increase in amplitude,
resulting in a u-shaped curve for the coefficients. This u-shape does not correspond to the
actual Legendre coefficients, and it makes it more difficult to determine how many coefficients
one would keep to obtain an accurate approximation of ũ(t), because using more than 30
coefficients will cause the approximation to deteriorate.

The Legendre coefficients ċ with truncation of the coefficient matrices is equally accurate
as ċ for the first 30 coefficients and does not have an increase after this; the truncation, in
fact, pushes these last coefficients to zero. Thus, ċ is easier to use since it has a simpler
shape allowing a chopping of the series by, e.g., the procedure in [2]. Moreover, using more
coefficients than 30 will not deteriorate the approximation of ũ(t).

0 20 40
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i

0 20 40
10−16

10−8

100

i
(a) ω = 1 and M = 50.
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10−20
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i

0 20 40 60 80 100
10−16

10−8
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(b) ω = 5 and M = 100.

0 20 40
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10−10

100

i

0 20 40
10−10
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i
(c) ω = 5 and M = 50.

FIG. 4.6. Legendre coefficients obtained by a system solve for the coefficient matrix F
(N)
M for

f̃(t) = −ıω sin(ω(t+ 1)). Left: Legendre coefficients, exact c (∗), approximation ċ (◦), approximation with
truncation ċ (4). Right: the error of the computed coefficients, |c− ċ| (◦) and |c− ċ| (4).

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LEGENDRE ODE SOLVER 313

In Figure 4.6, we also present the Legendre coefficients and their error for two other
choices of parameters. For ω = 5 and M = 100, we observe a similar behavior as for ω = 1.
For ω = 5 and M = 50, M is chosen smaller than the minimal required size to represent ũ(t)
up to machine precision. Now the first coefficients in ċ are computed less accurately than ċ
due to the truncation. This might be because the last N = 24 rows of the coefficient matrix
F

(N)
M of size M = 50 are truncated, thereby discarding too many entries.

4.4. Fast computation of Fourier coefficients. The first subproblem in Problem 2.1 is
to construct the coefficient matrix F . We have shown that in fact it suffices to approximate F
by the finite banded matrix

F
(N)
M =

N∑
d=0

αdB
(d)
M .

The efficient construction of the coefficient matrix thus requires the efficient computation of
{αd}d≥0 and {B(d)

M }d≥0. Since B(d)
M are the coefficient matrices of the basis, they must be

computed only once for each d and can then be reused for different functions.
First, an efficient algorithm to approximate the Legendre coefficients {αd}Nd=0 of f̃(t) is

discussed. We use functions that are available in the MATLAB package chebfun [12] . The
Legendre coefficients for the smooth function f̃(t) are given by αd =

∫ 1

−1
f̃(t)pd(t)dt and

will be approximated by {α̂d}Nd=0 as follows:

1. Using chebfun, we compute the coefficients of the interpolating Chebyshev se-
ries

∑N
k=0 ĉdTd(t) ≈ f̃(t). Given a required accuracy, an appropriate truncation

value N is chosen automatically [2]. The coefficients {ĉd}Nd=0 are obtained with
a complexity O(N log(N)). For details on the error incurred by interpolation in-
stead of by computing the integral cd =

∫ 1

−1
f̃(t)Td(t)√

1−t2 dt, we refer to the book by
Trefethen [42, Chapter 4].

2. The Chebyshev coefficients {ĉd}Nd=0 can be transformed into Legendre coefficients
{α̂d}Nd=0 with a complexityO(N log2(N)) by using the method proposed by Towns-
end et al. [41]. In chebfun, this method is available under the name cheb2leg.
This transformation from Chebyshev to Legendre coefficients is expected to have a
worst-case error growth ofO(

√
N log(N)), and for a fast decaying set of coefficients

{ĉd}Nd=0, Townsend and collaborators have observed numerically that there is no
error growth with N .

Thus, at an overall complexity of O(N log2(N)) we are able to compute the coefficients
{α̂d}Nd=0 representing f̃(t) in the Legendre basis. The coefficient matrixF (N)

M =
∑N
d=0 αdB

(d)
M

can be accurately approximated by F̂ (N)
M =

∑N
d=0 α̂dB

(d)
M .

Second, we want to compute and store the Legendre basis matrices B(d)
M efficiently.

Equation (3.1) provides an expression for the entries b(d)
k,` in terms of integrals of the triple

product of Legendre polynomials Fa,b,c. Our approach is based on expressing the matrix
[Fa,b,c]M−1

b,c=0 as

[Fa,b,c]M−1
b,c=0 =

√
2a+ 1 (CM ◦HM ◦ TM ) ,

with CM =
[√

(2b+ 1)
√

(2c+ 1)
]M−1

b,c=0
, HM a Hankel matrix, TM a Toeplitz matrix, and ◦

denotes the Hadamard product. The Hankel matrix depends on the value γ := b + c and is
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characterized completely by its last row r>H and first column cH . Let us define a function that
generates the entries in HM ,

h(a, γ) :=
1

(a+ γ + 1)

 a∏
j=1

−a+ γ + 2j

−d+ γ + 2j − 1

 .

Then, for (m+ a) even, the last row and first column are

r>H =
[
h(a,m) 0 h(a,m+ 2) 0 . . . h(a, 2m− 2) 0 h(a, 2m)

]>
,

cH =
[
0 · · · 0︸ ︷︷ ︸

a

h(a, a) 0 h(a, a+ 2) 0 . . . h(a,m− 2) 0 h(a,m)
]>
,

and, for (m+ a) odd,

r>H =
[
h(a,m) 0 h(a,m+ 2) 0 . . . 0 h(a, 2m− 1) 0

]>
,

cH =
[
0 · · · 0︸ ︷︷ ︸

a

h(a, a) 0 h(a, a+ 2) 0 . . . 0 h(a,m− 1) 0
]>
.

The Toeplitz matrix TM depends on α := |b− c|, and since it is symmetric, it is characterized
by its first column cT . Using the following function generating the entries of TM ,

t(a, α) :=
1

2(2a+1/2)

∏a+α

j=( a+α2 +1)
j2∏ a−α

2
j=1 j

2
∏a+α
j=(a−α+1) j

,

the first column of the Toeplitz matrix is given, for a odd, by

cT =
[
t(a, 0) 0 t(a, 2) 0 . . . t(a, a) 0 · · · 0︸ ︷︷ ︸

m−a

]>
and, for a even, by

cT =
[
0 t(a, 1) 0 t(a, 3) . . . 0 t(a, a) 0 · · · 0︸ ︷︷ ︸

m−a

]>
.

Using this expression, the matrices [Fd,b,c]M−1
b,c=0, for d = 0, 1, . . . , N , can be stored by

3(N + 1)M +M2 numbers instead of (N + 1)M2 if each matrix is stored naively. Further
reduction of memory cost can be obtained by exploiting the zero structure of the Hankel and
Toeplitz matrix.

The Legendre basis matrix of degree d can now be written as

(4.5) B
(d)
M =

[
b
(d)
k,l

]M−1

k,l=0
=
√

2d+ 1
(
C̃M ◦ ((HM ◦ TM )ZM )

)
,

where C̃M :=
[√

2k+1√
2`+1

]M−1

k,`=0
∈ RM×M , HM and TM are, respectively, HM+1 and TM+1

with the last row removed, and

ZM :=



1 −1
1 0 −1

1 0 −1
. . . . . . . . .

1 0 −1
1 0

1


∈ R(M+1)×M .
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The representation of the Legendre basis matrices B(d)
M given by equation (4.5) creates pos-

sibilities for the development of efficient methods for storing and computing the coefficient
matrix F̂ (N)

M ; see, for example, the procedure proposed in [41] for the positive semidefinite
case. Further exploring and implementing efficient memory and computational schemes is
subject of ongoing research and is out of the scope of this paper.

5. The proposed numerical procedure. Using the presented results, we can replace the
infinite matrix problem formulated in Problem 2.1 by the following finite matrix problem:

PROBLEM 5.1 (Finite matrix problem). Given a smooth function f̃(t) and a tolerance δsol,
compute the approximate Legendre coefficients {ĉk}M̂k=0 of the solution ũ(t) to the ODE (1.1)

such that they satisfy ‖ũ(t) −∑M̂
d=0 ĉdpd(t)‖∞ . δsol on the interval t ∈ [−1, 1]. This

corresponds to solving five subproblems:
1. Compute the interpolating Legendre coefficients {α̂k}Nk=0 of f̃(t) for an appropriate

value of N .
2. Determine an appropriate value for the size M of the coefficient matrix F such that

enough Legendre coefficients, M̂ , are computed accurately in order to reach the
given tolerance; see Section 4.2.

3. Construct the finite banded coefficient matrix F̂ (N)
M =

∑N
d=0 α̂dB

(d)
M .

4. Solve the finite linear system of equations (IM−F̂ (N)
M )ẋ = φM (−1) for ẋ. The right-

hand side is the column vector φM (−1) =
[
pk(−1)

]M−1

k=0
, and IM is the identity

matrix.
5. Compute the finite matrix vector product TM ẋ = ĉ, thereby obtaining the approxi-

mate Legendre coefficients {ĉk}Mk=0.

The procedure developed in this paper proposes to solve the subproblems in Problem 5.1
as follows:

1. Using chebfun, the coefficients {α̂k}Nk=0 are computed with a complexity of
O(N log2(N)) as described in Section 4.4. Moreover, for a given tolerance, the
value for N is chosen automatically.

2. Section 4.3 gives sufficient condition for choosing a large enough truncation parame-
ter M (which might be an overestimation).

3. Compute the sum F̂
(N)
M =

∑N
d=0 α̂dB

(d)
M . An analytical formula for the entries

of B(d)
M is stated in Property 3.2. Equation (4.5) provides a formulation for the

construction of B(d)
M that is more memory and computationally efficient.

4. Solve the finite system of equations (IM − F̂
(N)

M )ẋ = φM (−1), where F (N)
M equals

F
(N)
M with its last N + 1 rows set equal to zero. See Section 4.2 and Section 4.3 for

details. The system is solved in MATLAB by the backslash function.
5. Form the product TM ẋ = ĉ, where TM equals TM with its last row set to zero. If

requested, the Legendre series can be chopped by applying the procedure proposed
by Aurentz and Trefethen [2]; see also Section 4.3.

A MATLAB code implementing this procedure is freely available on the website
https://github.com/nielvb/starLegendre. In the following, we present nu-
merical experiments which will confirm the validity of this procedure. The invertibility of
(IM − F (N)

M ) is studied by its spectral properties. We report the numerical radius ν(F
(N)
M )

and the upper bound (4.2). However, these quantities are not descriptive of the observed
numerical behavior, therefore we also report the pseudospectra of (IM − F (N)

M ) which might
provide a better description. We denote by σ(A) the spectrum of A. Then, for ε > 0, the
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ε-pseudospectrum of (IM − F (N)
M ) is defined by

σε(IM − F (N)
M ) =

{
z ∈ C|z ∈ σ(IM − F (N)

M + E) for some E with ‖E‖ ≤ ε
}
.

See, for example, the book by Trefethen and Embree [43] for details.
Since for the scalar ODEs the analytical solution ũ(t) is available, we can compute the

error of our approximation û(t) :=
∑M
d=0 ĉdpd(t) in the maximum norm

errf := ‖ũ(t)− û(t)‖∞.

This error is estimated by evaluating the solution and the approximation in 10M equidistant
nodes in t ∈ [−1, 1]. Denote by c the vector of the first M Legendre coefficients of ũ(t). Then
the error in the computed Legendre coefficients ĉ is quantified by

errc =
|c− ĉ|
‖c‖∞

.

Timings are not performed since in this paper we focus on the validity and accuracy of
the procedure. For the scalar case studied here we do not expect to outperform state-of-the-art
methods. However, thanks to the fact that (1.4) is valid for scalar as well as matrix-valued
functions, a similar discretization technique to the one presented here can be used for the
matrix case. Proving that the discretization via Legendre polynomials is well defined and the
analysis of the truncation error is more challenging for the matrix case; ongoing research aims
to develop a similar procedure as the one presented in this paper for the matrix ODE case,
which is competitive with the state-of-the-art methods. Understanding the applicability and
accuracy of the scalar case is a fundamental step towards developing a competitive procedure
for the matrix case.

Because SHBVMs are spectral methods that also use a Legendre basis, we expect that for
a similar size M of the basis, both SHBVMs and our proposed one obtain a similar accuracy.
For an ODE solved on the time domain [0, tend], we will compute an approximation using the
(single-step) SHBVM [1] and an approximation using our numerical approach for the same
size M of the basis. The obtained approximations are compared to the exact solution at the
time point t = tend.2 We remark that for the scalar examples below, neither of these methods
are the method of choice. The comparison we make only serves to validate our proposed
procedure by comparing to a known method.

5.1. Toy problem. The following function is constructed so that we have control over its
behavior:

f̃(t) = −ıω
β

sin(ω(t+ 1)).

The parameter ω controls the oscillation of the function, and β controls its amplitude. The
solution to the ODE

d

dt
ũ(t) = −ıω

β
sin(ω(t+ 1))ũ(t), ũ(−1) = 1, on t ∈ [−1, 1]

is

ũ(t) = exp

(
− ı
β

(1− cos(ωt+ ω))

)
.

2The code for SHBVM can be found on the webpage:
https://people.dimai.unifi.it/brugnano/LIMbook/software.html.
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We report results for three different choices of parameters. The first choice is ω = 5, β = 10,
and we take M = 100. The condition (4.2) is satisfied, namely

∑N
d=0 |αd| = 1.0909, and

the numerical radius is ν(F100) = 0.2151. Thus, the matrix (IM − F (N)
M ) is nonsingular and

subproblem 4 in Problem 5.1 has a unique solution. The approximation has accurate Legendre
coefficients, max(errc) = 1.7828 · 10−15, and a function error of errf = 1.3345 · 10−15.

The second choice is ω = 5, β = 1, for M = 100. Condition (4.2) is not satisfied,∑N
d=0 |αd| = 10.909, and the numerical radius of the coefficient matrix is ν(F

(24)
100 ) = 2.151.

Thus the existence of (I100 − F (24)
100 )−1 cannot be guaranteed by looking at these quantities.

Nevertheless, it exists, and the approximation obtained is accurate, errf = 1.8621 · 10−15 and
max(errc) = 2.5823 · 10−15.

As a final choice we take a more oscillatory function ω = 100 and β = 1 and compute an
approximation for M = 1500. The numerical radius ν(F

(148)
1500 ) = 45.11 is much larger than 1,

and
∑N
d=0 |αd| = 796.7 does not satisfy the condition (4.2). The approximation is accurate,

errf = 9.9812 · 10−14 and max(errc) = 3.6107 · 10−14. The numerical radius for the second
and third choice of parameters does not guarantee the existence of (IM −F (N)

M )−1. Therefore,
in Figure 5.1, we show the pseudospectra for several levels for (IM − F (N)

M ) for these choices
with M = 1500. They indicate that even for perturbations E that are relatively large in the
norm (up to 10−5), the spectrum of (I1500−F (N)

1500 +E), for both functions, remains contained
in a disk centered at (1, 0) with a radius equal to one.

0.9 1 1.1
−0.2

−0.1

0

0.1

0.2

0.9 1 1.1
−0.2

−0.1

0

0.1
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10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3

FIG. 5.1. Spectrum (·) and pseudospectra of (I − FM ) for the coefficient matrix FM of the function
f̃(t) = −ı ν

β
sin(ν(t+ 1)). Left: ν = 5, β = 1, and M = 1500. Right: ν = 100, β = 1, and M = 1500.

Using the SHBVM we compute an approximation ûHBVM ≈ ũ(1), and our procedure
provides Legendre coefficients for the function û(t), which can be evaluated in t = 1 such
that û(1) ≈ ũ(1). Table 5.1, Table 5.2, and Table 5.3 show the error |ûHBVM − ũ(1)| and
|û(1) − ũ(1)| for the toy problem with different parameters. Table 5.1 and Table 5.2 show
that for a fixed size of the basis, SHBVM is more accurate for lower oscillatory functions,
and, as the function becomes more highly oscillatory, our method becomes more accurate; see
Table 5.3. This numerical experiment verifies the validity of our proposed numerical method
and shows that it is essentially different from SHBVMs.

5.2. A polynomial problem. Consider the following ODE which appeared, e.g., in [39],

d

dτ
ũ(τ) = −ıτ ũ(τ), ũ(0) = 1, on τ ∈ [0, τend] .

The function f̃(τ) = −ıτ is a degree-one polynomial, and the solution is ũ(τ) = exp(−ıτ2).
Since the Legendre polynomials are defined on [−1, 1], we perform a transformation of the
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TABLE 5.1
Accuracy of the SHBVM and our method for approximating û(1) for the toy problem f̃(t) = −ıω

β
sin(ω(t+1)),

with ω = 5 and β = 10.

M 20 30 40 50 60 70
SHBVM 3.0e-06 3.5e-09 2.4e-12 8.1e-16 8.1e-17 1.8e-16
Our method 1.4e-02 9.0e-03 1.2e-05 3.3e-09 1.1e-12 7.2e-16

TABLE 5.2
Accuracy of the SHBVM and our method for approximating û(1) for the toy problem f̃(t) = −ıω

β
sin(ω(t+1)),

with ω = 5 and β = 1.

M 20 40 60 80 100
SHBVM 2.5e-02 2.9e-05 5.5e-09 2.9e-13 9.2e-16
Our method 3.3e-01 1.1e-02 9.2e-07 1.8e-11 5.4e-16

ODE, mapping τ ∈ [0, τend] onto t ∈ [−1, 1]. This transformation is t = 2τ
τend
− 1 with its

inverse τ = (t+ 1) τend
2 , and this leads to

d

dt
ũ(t) = −ı

(τend

2

)2

(t+ 1)ũ(t),

with the solution ũ(t) = exp
(
− ı

2

(
τend
2

)2
(t+ 1)

)
. The coefficient matrix F of the function

f(t, s) = f̃(t)Θ(t − s) with f̃(t) = −ı
(
τend
2

)2
(t + 1) is pentadiagonal and is discussed in

Example 3.6.

For a fixed size of the coefficient matrix, M = 1000, we run our procedure for τend = 25
and τend = 50. Table 5.4 shows the metrics for these cases; a good approximation is obtained
in both cases even though the numerical radius is much larger than one.

In Figure 5.2, the spectrum and pseudospectra for the two choices are shown. The
eigenvalues of (I − F (N)

1000) lie on a circle, and, as τend increases, the radius of this circle
increases; however, the center of the circle also shifts, and the circle does not cross the real
line. Thus, (I − F (N)

1000)−1 exists in both cases. The pseudospectra that contain the origin are
those associated with large perturbations of the coefficient matrix. In Figure 5.3, the order of
magnitude of the entries of the inverse for both cases is presented. It shows that the inverse is
characterized by the decay phenomenon.

Tables 5.5 and 5.6 show for both the choices τend = 25 and τend = 50 the function error
errf and the amplitude of the last accurately computed Legendre coefficient, respectively. The
last accurately computed Legendre coefficient for both choices is ĉM−1. From the tables we
can conclude that, for M large enough, an estimate for errf can be obtained by looking only
at the Legendre coefficients, which is the expected behavior in function approximation with
Legendre polynomials [42].

TABLE 5.3
Accuracy of the SHBVM and our method for approximating û(1) for the toy problem f̃(t) = −ıω

β
sin(ω(t+1)),

with ω = 100 and β = 1.

M 800 1000 1200 1400 1600
SHBVM 3.6e-05 3.6e-07 5.7e-10 1.6e-11 5.6e-14
Our method 1.6e-06 6.0e-10 1.6e-11 7.0e-14 5.8e-14
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TABLE 5.4
Metrics for the function f̃(t) = −ı

( τend
2

)2
(t+ 1) and for the approximation to ũ(t) obtained for M = 1000.

τend |α0|+ |α1| ν(F
(1)
1000) errc errf

25 348.5 147.6 5.228 · 10−14 1.067 · 10−13

50 1394 590.6 3.210 · 10−13 3.008 · 10−13
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FIG. 5.2. Spectrum (·) and pseudospectra of (IM − F
(N)
M ) for the coefficient matrix F (N)

M of the function

f̃(t) = −ı
( τend

2

)2
(t+ 1). Left: τend = 25 and M = 1000. Right: τend = 50 and M = 1000.

FIG. 5.3. Order of magnitude of the entries of (IM − F
(N)
M )−1 for M = 1000, where F (N)

M is the coefficient

matrix of f̃(t) = −ı
( τend

2

)2
(t+ 1). Left: τend = 25. Right: τend = 50.

A comparison of the accuracy of the approximation by SHBVM and our method to ũ(τend)
is shown in Table 5.7 and Table 5.8. We observe that our method requires a significantly
smaller basis to achieve the same accuracy as the SHBVM.

5.3. NMR-inspired problem. The following experiment is inspired by a problem in
nuclear magnetic resonance spectroscopy (NMR), where the matrix ODE

d

dt
Ã(t) = H̃(t)Ã(t), [0, tend] ,

governs the dynamics of, e.g., a magic angle spinning experiment. The matrix-valued function
H̃(t) is the Hamiltonian and is of size 2`×2`, where ` is the number of spins in the sample [27].
The functions appearing in H̃(t) are of the form

(5.1) f̃(t) = −2ıπ(α+ β cos(2πνt) + γ cos(4πνt)),

where α ∈ [−1, 1] and β, γ ∈ [100, 5000] are typical ranges for these parameters. In a magic
angle spinning experiment [21], the sample spins at an angular velocity ν ∈ [5000, 120000]
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TABLE 5.5
Error of the Legendre coefficients and the magni-

tude of the last accurate Legendre coefficient ĉM−N for
increasing M for τend = 25.

M errf |ĉM−1|
200 1.8 · 100 2.7 · 10−2

210 3.3 · 10−1 1.3 · 10−2

220 1.6 · 10−2 1.9 · 10−3

230 4.6 · 10−4 9.0 · 10−5

240 8.0 · 10−6 2.2 · 10−6

250 8.5 · 10−8 2.9 · 10−8

260 5.9 · 10−10 2.4 · 10−10

270 2.8 · 10−12 1.2 · 10−12

280 9.9 · 10−14 2.1 · 10−14

290 8.4 · 10−14 1.2 · 10−14

300 8.7 · 10−14 1.2 · 10−14

TABLE 5.6
Error of the Legendre coefficients and the magni-

tude of the last accurate Legendre coefficient ĉM−1 for
increasing M for τend = 50.

M errf |ĉM−1|
830 8.3 · 10−2 2.4 · 10−3

840 1.1 · 10−2 5.5 · 10−4

850 1.1 · 10−3 8.4 · 10−5

860 9.9 · 10−5 9.3 · 10−6

870 7.0 · 10−6 8.0 · 10−7

880 4.0 · 10−7 5.4 · 10−8

890 1.9 · 10−8 3.0 · 10−9

900 7.7 · 10−10 1.3 · 10−10

910 2.6 · 10−11 5.0 · 10−12

920 9.6 · 10−13 1.6 · 10−13

930 3.1 · 10−13 1.6 · 10−14

TABLE 5.7
Accuracy of the SHBVM and our method for approximating û(τend) for the polynomial problem with τend = 25.

M 100 200 300 400 500
SHBVM 7.5e-01 1.1e+00 2.0e-01 9.7e-01 2.8e-13
Our method 8.1e-01 1.2e+00 1.4e-14 1.33e-14 1.7e-14

TABLE 5.8
Accuracy of the SHBVM and our method for approximating û(τend) for the polynomial problem with τend = 50.

M 800 1100 1400 1700 2000
SHBVM 9.4e-01 1.0e+00 3.8e-01 8.8e-06 1.4e-14
Our method 1.3e+00 6.8e-14 6.7e-14 9.6e-14 1.2e-13

chosen by the user. The experiment typically runs for about tend = 10−2 seconds. Here, we
consider the simpler problem of a scalar ODE

d

dt
ũ(t) = f̃(t)ũ(t), [0, tend] .

We lose the connection to NMR, but studying this problem provides insight into the capabilities
of our proposed procedure to tackle the physically relevant matrix case. For α = 0.05,
β = γ = 3450, ν = 5000, and M = 1500, we compute an approximation to ũ(t). The
function approximation error is errf = 1.5994 · 10−4; increasing M will improve on this error.
However, an accuracy of the order 10−4 suffices for NMR experiments, where one is limited
by the accuracy of the measurements. In Table 5.9, the comparison between SHBVM and our
method shows that our method obtains better accuracy in terms of the size of the basis. The
spectrum and pseudospectra are displayed in Figure 5.4.

6. Conclusion. We presented a new approach for the solution of linear non-autonomous
scalar ODEs based on the discretization of the ?-product by using expansions into series of
Legendre polynomials. This approach effectively transforms operations defined on bivariate
distributions to operations in a (sub)algebra of infinite matrices. We studied the properties of
such matrices and used them to prove the existence of the ODE solution in the infinite matrix
algebra. Once the Legendre polynomial series is truncated, the ODE solution is accessible by
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TABLE 5.9
Accuracy of the SHBVM and our method for approximating û(tend) for the NMR-inspired problem with

ν = 5000 and tend = 10−2.

M 1100 1200 1300 1400 1500
SHBVM 2.2e-01 1.4e-01 1.2e-02 9.9e-03 7.2e-03
Our method 1.1e-02 2.8e-03 2.2e-03 5.4e-04 8.5e-05
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FIG. 5.4. Spectrum (·) and pseudospectra of (I − FM ) for the coefficient matrix FM of f̃(t) (5.1) with
parameters ν = 5000, α = 0.05, β = γ = 3450, tend = 10−2, and M = 1500.

solving a (finite) linear system. We studied the truncation error, proving that obtaining accurate
approximations from this finite system is possible. We also presented effective methods to
compute the discretization and tested the method on several numerical examples.

The new method was numerically analyzed for the scalar case and validated by comparing
its accuracy to an existing method, a spectral Hamiltonian boundary value method. The
scalar analysis is a fundamental step toward understanding the more general case of systems
of non-autonomous linear ODEs [18, 33]. In fact, the authors are developing a method for
this more general case whose analysis and understanding will be built on the crucial results
presented here.

Acknowledgments. The second author thanks Marcus Webb for discussion in an early
stage of this project. We also thank an anonymous referee for pointing out valuable references.

Appendix A. Proof of Lemma 3.8. In this proof, it is easier to work with the formula
based on Legendre polynomials ṗk(t), which are normalized such that ṗk(1) = 1. Then,
setting s = (a+ b+ c)/2, we have

Ḟa,b,c :=

∫ 1

−1

ṗa(τ)ṗb(τ)ṗc(τ)dτ

=



0 if a+ b+ c odd,
0 if s < max(a, b, c),

0 if a < |b− c|,

2
a+b+c+1

(
2(s− a)

s− a

)(
2(s− b)
s− b

)(
2(s− c)
s− c

)(
2s

s

)−1

else.
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=



0 if a+ b+ c odd,
0 if b+ c < a,

0 if a < α := |b− c|,
1

2(2a−1)
1

(a+b+c+1)

(∏a
j=1

−a+b+c+2j
−a+b+c+2j−1

) ∏a+α

j=( a+α
2

+1)
j2

∏ a−α
2

j=1 j2
∏a+α
j=(a−α+1)

j

else.

First, we need the following property:
PROPERTY A.1. The following equality holds for x ∈ R and d = 1, 2, . . . :

∂

∂x

 d∏
j=1

2x+ 2j

2x+ 2j − 1

 = −2

d∏
j=1

2x+ 2j

2x+ 2j − 1

d∑
j=1

1

(2x+ 2j)(2x+ 2j − 1)
.

Proof. This follows by induction on d. For d = 1:

∂

∂x

2x+ 2

2x+ 1
= −2

2x+ 2

2x+ 1

1

(2x+ 1)(2x+ 2)
.

Assume the equality holds for d, and consider d+ 1:

∂

∂x

d+1∏
j=1

2x+ 2j

2x+ 2j − 1

 =
∂

∂x

2x+ 2d+ 2

2x+ 2d+ 1

d∏
j=1

2x+ 2j

2x+ 2j − 1


= −2

d+1∏
j=1

2x+ 2j

2x+ 2j − 1

d+1∑
j=1

1

(2x+ 2j)(2x+ 2j − 1)
.

This proves the statement.
LEMMA A.2 (Monotonous decay along the diagonals). For given integers d ≥ 0 and

k ≤ d , the following equality is satisfied for i = 1, 2, . . . :

Ḟd,k,d−k > Ḟd,k+i,d−k+i > 0.

Proof. For d = 0 the integral of the triple product is

Ḟ0,b,c

∫ 1

−1

ṗ0(τ)ṗb(τ)ṗc(τ)dτ =

∫ 1

−1

ṗb(τ)ṗc(τ)dτ =
2

b+ c+ 1
,

which clearly satisfies Ḟ0,0,0 > Ḟ0,i,i > 0. Next, we prove the statement for d ≥ 1. The
elements Ḟd,k+i,d−k+i are clearly positive and nonzero. Set α = |2k − d|. Then,

Ḟd,k+i,d−k+i =
1

2(2d−1)

1

d+ 2i+ 1

d∏
j=1

2i+ 2j

2i+ 2j − 1

∏d+α

j= d+α
2 +1

j2∏ d−α
2

j=1 j
2
∏d+α
j=d−α+1 j

.

The term C(d, α) := 1
2(2d−1)

∏d+α

j= d+α
2

+1
j2

∏ d−α
2

j=1 j2
∏d+α
j=d−α+1 j

is independent of i. To show that the

expression decreases as i increases, we take the derivative with respect to 0 ≤ x ∈ R and use
Property A.1:

∂

∂x
Ḟd,k+x,d−k+x = C(d, α)

∂

∂x

 1

d+ 2x+ 1

d∏
j=1

2x+ 2j

2x+ 2j − 1


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= − 2C(d, α)

d+ 2x+ 1

d∏
j=1

2x+ 2j

2x+ 2j − 1

 1

d+ 2x+ 1
+

d∑
j=1

1

(2x+ 2j)(2x+ 2j − 1)


< 0.

Since Ḟ > 0 for i = 0, 1, . . . , replacing x with integers i ≥ 0 proves the statement.
LEMMA A.3. For given integers d ≥ 0 and k ≤ d,

Ḟd,k,d−k ≤
2

2d+ 1
.

Proof. In order to prove this lemma it is sufficient to show that

max
k=0,...,d

(
2(d− k)
d− k

)(
2k
k

)
=

(
2d
d

)
.

Note that, because of symmetry, this is equivalent to showing that, for d/2 ≤ k < d and d > 0,
it holds that (

2(d− k)
d− k

)(
2k
k

)
≥
(

2(d− k)− 2
d− k − 1

)(
2k − 2
k − 1

)
.

The equation above can be reformulated as the quadratic problem

4(2d− 2k − 1)(2k − 1) ≥ k(d− k).

For d ≥ 2, the inequality above is satisfied for every d/2 ≤ k < d. The proof is then
concluded since the cases d = 0, 1 are trivial.

Proof of Lemma 3.8. The coefficients of B(d) =
[
b
(d)
k,`

]∞
k,`=0

are given by the formula

b
(d)
k,` =

√
(2d+ 1)(2k + 1)√

8
√

2l + 1

(
Ḟd,k,`+1 − Ḟd,k,`−1

)
.

Then, by the definition of the infinity norm, we have

‖B(d)‖∞ = max
k≥0

∞∑
`=0

|b(d)
k,`| =

√
2d+ 1√

8
max
k≥0

∞∑
`=0

(√
2k + 1√
2`+ 1

∣∣∣Ḟd,k,`+1 − Ḟd,k,`−1

∣∣∣)

≤
√

2d+ 1√
8

max
k≥0

∞∑
`=0

(√
2k + 1√
2`+ 1

∣∣∣Ḟd,k,`+1

∣∣∣+
∣∣∣Ḟd,k,`−1

∣∣∣)

=

√
2d+ 1√

8

(
max
k≥0

∞∑
`=0

√
2k + 1√
2`+ 1

∣∣∣Ḟd,k,`+1

∣∣∣+ max
k≥0

∞∑
`=0

√
2k + 1√
2`+ 1

∣∣∣Ḟd,k,`−1

∣∣∣) .
Consider the first term, and use Lemma A.2, which implies that Ḟd,k+i,d−k+i, for any i ≥ 0,
can be bounded from above by Ḟd,k,d−k. We can also bound the term

√
2k+1√
2`+1

:

max
0≤k≤d
`=d−k

2k + 1

2`+ 1
= max

0≤k≤d

(
2d+ 2

2d− (2k − 1)

)
− 1 =

2d+ 2

2d− (2d− 1)
− 1 = 2d+ 1.
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Since Ḟd,k,`+1 = 0, for |k − `− 1| > d, the infinite sum can be bounded by a finite sum:

max
k≥0

∞∑
`=0

√
2k + 1√
2`+ 1

∣∣∣Ḟd,k,`+1

∣∣∣ ≤ √2d+ 1

d∑
k=0

Ḟd,k,d−k.

Since |Ḟd,d,−1| = |Ḟd,d,0|, similar arguments lead to the following bound for the second term:

max
k≥0

∞∑
`=0

√
2k + 1√
2`+ 1

|Ḟd,k,`−1| ≤
√

2d+ 1Ḟd,d,0 +
√

2d+ 1

d∑
k=0

Ḟd,k,d−k.

Hence, we obtain

‖B(d)‖∞ ≤
2d+ 1√

8

(
Ḟd,d,0 + 2

d∑
k=0

Ḟd,k,d−k
)
.

Now we plug in the formula for Ḟd,k,d−k, note that d+k+d−k = 2d and−d+k+d−k = 0,
and let α(k) := |2k − d|. Then,

‖B(d)‖∞ ≤
2d+ 1√

8

(
Ḟd,d,0 + 2

d∑
k=0

Ḟd,k,d−k
)
≤ 2d+ 1√

8

(
1 + 2

d∑
k=0

2

2d+ 1

)

≤ 2d+ 1√
8

(
1 +

4(d+ 1)

2d+ 1

)
≤ 6d+ 5√

8
< 3d+ 2,

which proves Lemma 3.8.
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