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CONVERGENCE OF THE EBERLEIN DIAGONALIZATION METHOD UNDER
GENERALIZED SERIAL PIVOT STRATEGIES∗

ERNA BEGOVIĆ KOVAČ† AND ANA PERKOVIĆ†

Abstract. The Eberlein method is a Jacobi-type process for solving the eigenvalue problem of an arbitrary matrix.
In each iteration two transformations are applied to the underlying matrix, a plane rotation and a non-unitary core
transformation. The paper studies the method under the broad class of generalized serial pivot strategies. We prove
global convergence of the Eberlein method under the generalized serial pivot strategies with permutations and present
several numerical examples.
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1. Introduction. The Jacobi diagonalization method is an iterative method for solving
the eigenproblem for dense symmetric matrices. Compared to other state-of-the-art diago-
nalization methods, the main advantage of the Jacobi method is its high relative accuracy;
see [4, 5, 22, 26]. The method has been modified to deal with different matrix structures
in [10, 16, 19, 20, 23] and to tackle various problems of numerical linear algebra in [3, 6, 7, 24].
Its convergence has been extensively studied; see, e.g., [13, 21]. One of the generalizations of
the Jacobi method is known as the Eberlein method.

The Eberlein method, originally proposed in [8] in 1962, is a Jacobi-type process for
solving the eigenvalue problem of an arbitrary matrix. It is one of the first efficient norm-
reducing methods of this type. The iterative process for a general matrix A ∈ Cn×n takes the
form

(1.1) A(k+1) = T−1k A(k)Tk, k ≥ 0,

where A(0) = A and Tk = RkSk are non-singular core transformations. By core transfor-
mations we understand matrices differing from the identity in a 2 × 2 submatrix; see [1].
In particular, the matrices Rk are plane rotations, and the Sk are non-unitary core transfor-
mations. The transformations Rk are chosen to annihilate the pivot element of the matrix
1
2 (A(k) + (A(k))∗), while the transformations Sk reduce the Frobenius norm of A(k). In
Eberlein’s experiments, the matrices A(k), k ≥ 0, given by the process (1.1) converge to a
normal matrix. Eberlein proved this convergence but only under a specific pivot strategy.

In [27], Veselić studied a slightly altered Eberlein algorithm where in the kth step only
one transformation is applied, either Rk or Sk, but not both at the same time. He proved the
convergence of this modified method under the classical Jacobi pivot strategy. Specifically, he
showed that, for an arbitrary n×n starting matrixA(0), the sequenceA(k), k ≥ 0, converges to
a block diagonal normal matrix. At the same time, the sequence 1

2 (A(k) + (A(k))∗) converges
to a diagonal matrix diag(µ1, µ2, . . . , µn), where {µ1, µ2, . . . , µn} are the real parts of the
eigenvalues of A. Later in [12], Hari proved global convergence of the original method under
the column/row cyclic pivot strategy for real matrices. In [25] Hari and Pupovci proved
convergence of the Eberlein method for complex matrices with the pivot strategies that are
weakly equivalent to the row cyclic strategy. Moreover, they considered a parallel method
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and proved its convergence under pivot strategies that are weakly equivalent to the modulus
strategy.

In this paper we expand the global convergence result for the Eberlein method to a
significantly broader class of cyclic pivot strategies, i.e., the generalized serial strategies
with permutations studied in [2, 14, 15]. We consider the method in the form given in [25].
The novel result on global convergence of the Eberlein method under the generalized serial
pivot strategies with permutations is given in Theorem 4.4. Precisely, we show that for
an arbitrary n × n starting matrix A(0), the sequence A(k), k ≥ 0, converges to a block
diagonal normal matrix and that the sequence 1

2 (A(k) + (A(k))∗) converges to a diagonal
matrix diag(µ1, µ2, . . . , µn), where {µ1, µ2, . . . , µn} are the real parts of the eigenvalues
of A. Moreover, we present several numerical examples and discuss the cases of unique and
multiple eigenvalues.

The paper is organized as follows. In Section 2 we describe the Eberlein method, both in
its complex and real forms, while in Section 3 we characterize the set of pivot strategies we
deal with. The main part of the paper is contained in Section 4, where we prove convergence
of the method under the strategies presented in Section 3. Finally, in Section 5 we discuss
results of our numerical tests.

2. The Eberlein method. As it was mentioned in the introduction, there are several
variations of the Eberlein method. The method can be applied to complex matrices using
the transformations Tk ∈ Cn×n, k ≥ 0, or one can obtain the real version with Tk ∈ Rn×n,
k ≥ 0. In this paper we mostly focus on the complex method described in Section 2.1, but we
outline the real case as well in Section 2.2.

Throughout, we denote the imaginary unit with ı =
√
−1. Besides, given a complex

number x, Re(x) stands for the real part of x, and Im(x) stands for its imaginary part.

2.1. The complex case. The Eberlein method is an iterative Jacobi-type method used to
find the eigenvalues and eigenvectors of an arbitrary matrix A ∈ Cn×n. One iteration step of
the method is given by the relation (1.1). In the kth iteration, the transformation Tk is a core
transformation that differs from the identity only in one of its 2× 2 principal submatrices T̂k
determined by the pivot pair (p(k), q(k)) and given by

T̂k =

t(k)p(k)p(k) t
(k)
p(k)q(k)

t
(k)
q(k)p(k) t

(k)
q(k)q(k)

 .
The matrix Tk is set to be the product of two nonsingular matrices, a plane rotation Rk and
a non-unitary core transformation Sk, that is, Tk = RkSk. Denote the kth pivot pair by
(p, q) = (p(k), q(k)). The pivot pair is the same for both Rk and Sk and consequently for Tk.
In addition to (p, q), the matrices Rk and Sk depend on the transformation angles αk, ϕk and
βk, ψk, respectively. The pivot submatrix T̂k is equal to T̂k = R̂kŜk ∈ C2×2, where

(2.1) R̂k =

[
cosϕk −eıαk sinϕk

e−ıαk sinϕk cosϕk

]
, Ŝk =

[
coshψk −ıeıβk sinhψk

ıe−ıβk sinhψk coshψk

]
.

The process (1.1) can be written with an intermediate step as

Ã(k) = R∗kA
(k)Rk, A(k+1) = S−1k Ã(k)Sk, k ≥ 0.

Let

B(k) =
1

2
(A(k) + (A(k))∗),(2.2)

B̃(k) = R∗kB
(k)Rk.
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By definition, the matrixB(k) is the Hermitian part ofA(k), and likewise, B̃(k) is the Hermitian
part of Ã(k). Now, let C be the operator defined by

(2.3) C(A) = AA∗ −A∗A.

We denote C(A(k)) = (c
(k)
ij ), C(Ã(k)) = (c̃

(k)
ij ), and Ã(k) = (ã

(k)
ij ). Obviously, C(A) = 0 if

and only if A is a normal matrix. The definition of C(A) is linked to one of the measures of
nonnormallity of matrices given by Elsner and Paardekooper in [9].

The rotation Rk is chosen such that the element of B(k) in position (p, q) is annihilated.
The real number αk, as well as the sine and cosine of ϕk in (2.1), are calculated from the
following expressions:

αk = arg(b(k)pq ),(2.4)

tan 2ϕk =
2|b(k)pq |

b
(k)
pp − b(k)qq

, |ϕk| ≤
π

4
.(2.5)

These formulas are the same as for the complex Jacobi method for Hermitian matrices. Then,
in order to get sinϕk and cosϕk, we use the formulas

tanϕk =
2|b(k)pq | sign(b

(k)
pp − b(k)qq )

|b(k)pp − b(k)qq |+
√
|b(k)pp − b(k)qq |2 + 4|b(k)pq |2

,

cosϕk =
1√

1 + tan2 ϕk
, sinϕk =

tanϕk√
1 + tan2 ϕk

.(2.6)

On the other hand, Sk is chosen to reduce the Frobenius norm of A(k). Set

∆k = ‖A(k)‖2F − ‖A(k+1)‖2F .

In [8], Eberlein proved that

∆k = ‖Ã(k)‖2F − ‖A(k+1)‖2F

= g(k)pq (1− cosh 2ψk)− h(k)pq sinh 2ψk +
1

2
(|ξ̃(k)pq |2 + |d̃(k)pq |2)(1− cosh 4ψk)

+ Im(ξ̃(k)pq d̃
(k)∗
pq ) sinh 4ψk,

where

g(k)pq =

n∑
i=1
i6=p,q

|ã(k)ip |
2 + |ã(k)pi |

2 + |ã(k)iq |
2 + |ã(k)qi |

2,

h(k)pq = −Re(l(k)pq ) sinβk + Im(l(k)pq ) cosβk,

l(k)pq = 2

n∑
i=1
i 6=p,q

(ã
(k)
pi ã

(k)∗
qi − ã

(k)∗
ip ã

(k)
iq ),

d̃(k)pq = ã(k)pp − ã(k)qq ,

ξ̃(k)pq = (ã(k)pq + ã(k)qp ) cosβk − ı(ã(k)pq − ã(k)qp ) sinβk.
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It is shown in [8] that the choice of βk and ψk such that

tanβk = −Re(c̃
(k)
pq )

Im(c̃
(k)
pq )

,(2.7)

tanhψk =
1

2

2Im(ξ̃
(k)
pq d̃

(k)∗
pq )− h(k)pq

g
(k)
pq + 2(|ξ̃(k)pq |2 + |d̃(k)pq |2)

,

coshψk =
1√

1− tanh2 ψk
, sinhψk =

tanhψk√
1− tanh2 ψk

(2.8)

implies

(2.9) ∆k ≥
1

3

|c̃(k)pq |2

‖A(k)‖2F
≥ 1

3

|c̃(k)pq |2

‖A‖2F
, k ≥ 1.

The values of βk and ψk determined by (2.7) and (2.8) are approximations of values that
maximizes ∆k. We summarize this procedure in Algorithm 2.1.

ALGORITHM 2.1 (Eberlein method).
Input: A ∈ Cn×n
Output: matrix A(k)

A(0) = A;
k = 0;
repeat

Choose a pivot pair (p, q) according to the pivot strategy;
Find αk using (2.4) and sinϕk, cosϕk using (2.6);
Ã(k) = R∗kA

(k)Rk;
Find βk using (2.7) and sinψk, cosψk using (2.8);
A(k+1) = S−1k Ã(k)Sk;
k = k + 1;

until convergence

One should keep in mind that it is not necessary to build the matrices Ã(k) explicitly but
only their pth and qth rows and columns are needed.

2.2. The real case. Suppose that A is a real matrix. We then modify the complex
algorithm to ensure that the iterates A(k) stay real during the process (1.1). Firstly, we can
take αk = π and βk = π/2. This implies

R̂k =

[
cosϕk sinϕk
− sinϕk cosϕk

]
, Ŝk =

[
coshψk sinhψk
sinhψk coshψk

]
.

Same as before, we do not need to calculate the angles ϕk and ψk directly. It is sufficient to
find the matrices R̂k and Ŝk.

As in the complex case, ϕk is selected to annihilate the pivot element of B(k) while ψk
is chosen to reduce ‖A(k)‖F . The angle ϕk is calculated from the following relation similar
to (2.5):

tan 2ϕk =
2b

(k)
pq

b
(k)
qq − b(k)pp

, |ϕk| ≤
π

4
.
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Considering that βk = π/2 and that all the elements of A(k) are real, the formula for ψk is
transformed into

tanhψk =
c̃
(k)
pq

g
(k)
pq + 2((ẽ

(k)
pq )2 + (d̃

(k)
pq )2)

,

where

ẽ(k)pq = ã(k)pq − ã(k)qp ,

while g(k)pq and d̃(k)pq are the same as in the complex case.

3. Generalized serial pivot strategies. In each iteration k of Algorithm 2.1, the pivot
position is selected according to a pivot strategy. In this section we describe the large class
of pivot strategies we are going to deal with, i.e., the generalized serial pivot strategies with
permutations defined in [14].

For an n × n matrix, possible pivot pairs are those of the upper triangular part of the
matrix, i.e., Pn := {(i, j) : 1 ≤ i < j ≤ n}. A pivot strategy is a function I : N0 → Pn, with
N0 = {0, 1, 2, . . .}. We work with cyclic pivot strategies, thus we take I as a periodic function
with period T = N ≡ n(n−1)

2 and image Pn.
Pivot strategies are often better understood using pivot orderings. A cyclic strategy I

defines a sequence OI that is an ordering of Pn of the form

OI = I(0), I(1), . . . , I(N − 1) ∈ O(Pn),

where O(Pn) stands for the set of all finite sequences of elements of Pn, provided that each
pair belonging to Pn appears at least once in every sequence. An admissible transposition in a
pivot sequence O is any transposition of two adjacent pivot pairs

(ir, jr), (ir+1, jr+1)→ (ir+1, jr+1), (ir, jr),

assuming that the sets {ir, jr} and {ir+1, jr+1} are disjoint. The following definition concerns
several equivalence relations for pivot orderings; see, e.g., [14].

DEFINITION 3.1. Two pivot sequencesO andO′, withO = (i0, j0), (i1, j1), . . . , (ir, jr),
are said to be

1. equivalent (O ∼ O′) if one can be obtained from the other by a finite set of admissible
transpositions;

2. shift-equivalent (O s∼ O′) if O = [O1,O2] and O′ = [O2,O1], where [ , ] denotes
the concatenation. The length of O1 is called the shift length;

3. weak equivalent (O w∼ O′) if there exist Oi ∈ O(S), 0 ≤ i ≤ t, such that every
two adjacent terms in the sequence O = O0,O1, . . . ,Ot = O′ are equivalent or
shift-equivalent;

4. permutation equivalent (O p∼ O′ or O′ = O(q)) if there is a permutation q of the set
O such that O′ = (q(i0), q(j0)), (q(i1), q(j1)), . . . , (q(ir), q(jr));

5. reverse (O′ = O←) if O′ = (ir, jr), . . . , (i1, j1), (i0, j0).
Two pivot strategies IO and IO′ are equivalent (shift-equivalent, weak equivalent, permutation
equivalent, reverse) if the same is true for their corresponding pivot orderings O and O′.

It is easy to see that if O and O′ are weak equivalent O w∼ O′, then there exists a finite
sequence O = O0,O1, . . . , Ot = O′ such that

(3.1) O ∼ O1
s∼ O2 ∼ O3

s∼ O4 · · · O′ or O s∼ O1 ∼ O2
s∼ O3 ∼ O4 · · · O′.
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The chains in (3.1) connecting O and O′ are said to be in canonical form.
The most intuitive cyclic strategies are the row-cyclic, Irow = IOrow

, and the column-
cyclic strategy, Icol = IOcol

, collectively named serial pivot strategies. Cyclic strategies that
are equivalent to serial pivot strategies are called wavefront strategies.

In [8], Eberlein adopted the strategy where the pivot pair (p, q) is chosen such that the
quantity 4|c(k)pq |2 + (c

(k)
pp − c

(k)
qq )2 is larger or equal to the average of all possible results

for 4|c(k)ij |2 + (c
(k)
ii − c

(k)
jj )2, 1 ≤ i < j ≤ n. Veselić [27] used the classical Jacobi pivot

strategy, which takes the pivot pair that is largest in absolute value. Employing both such
strategies results in slowing the algorithm down for large matrices. Later in [12], Hari proved
convergence for the real method under the wavefront strategies. In [25] Pupovci and Hari
provided a convergence proof for the complex method using the parallel modulus strategy and
the strategies that are weakly equivalent to it.

Now let us describe the generalized serial pivot strategies with permutations; for more
details, see [14, 15]. Given l1 < l2, denote by Π(l1,l2) the set of all permutations of the set
{l1, l1 + 1, l1 + 2, . . . , l2}. Moreover, let

C(n)c =
{
O ∈ O(Pn) | O =(1, 2), (τ3(1), 3), (τ3(2), 3), . . . , (τn(1), n), . . .

. . . , (τn(n− 1), n), τj ∈ Π(1,j−1), 3 ≤ j ≤ n
}
.

The orderings from C(n)c go through the matrix column by column, starting from the second
one, just like in the standard column strategy Icol. However, in each column, pivot elements
are chosen in some arbitrary order. If O ∈ C(n)c , then O is called a column-wise ordering with
permutations. Similarly, the set of row-wise orderings with permutations is defined as

C(n)r =
{
O ∈ O(Pn) | O =(n− 1, n), (n− 2, τn−2(n− 1)), (n− 2, τn−2(n)), . . .

. . . , (1, τ1(2)), . . . , (1, τ1(n)), τi ∈ Π(i+1,n), 1 ≤ i ≤ n− 2
}
.

By employing these two sets of orderings and their reverses, we define the set of serial
orderings with permutations as

C(n)sp = C(n)c ∪
←−
C (n)
c ∪ C(n)r ∪

←−
C (n)
r .

We now expand the set C(n)sp by using the equivalence relations in Definition 3.1. Let

C(n)sg =
{
O ∈ O(Pn) | O w∼ O′ p∼ O′′ or O p∼ O′ w∼ O′′,O′′ ∈ O(n)

sp

}
,

with O′ ∈ O(Pn). Strategies defined by orderings from C(n)sg are called generalized serial
pivot strategies with permutations.

4. Convergence of the Eberlein method. In this section we prove that the iterative
process (1.1) converges under any pivot ordering O ∈ C(n)sg . In what follows, we use the
notation introduced in Section 2.

Let us start by listing some auxiliary results from the literature and their direct implica-
tions:

• As shown by Eberlein in [8], for ‖A(k)‖2F we have

(4.1) ∆k = ‖A(k)‖2F − ‖A(k+1)‖2F = ‖Ã(k)‖2F − ‖A(k+1)‖2F ≥ 0.
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• Since the sequence (‖A(k)‖2F , k ≥ 0) is nonincreasing and bounded, it is convergent.
Therefore, the inequalities (4.1) and (2.9) imply

(4.2) lim
k→∞

c̃(k)pq = 0.

• As shown by Hari in [12], for Ã(k) = R∗kA
(k)Rk, k ≥ 0, and

(4.3) E(k) = A(k+1) − Ã(k),

we have

(4.4) ‖E(k)‖2F ≤
3

2
n2|c̃(k)pq |.

• Again in [12] it has been proven that for B̃(k) = R∗kB
(k)Rk, k ≥ 0, and

(4.5) F (k) = B(k+1) − B̃(k),

we have

(4.6) ‖F (k)‖2F ≤
3

2
n2|c̃(k)pq |.

• For any k ≥ 0, we have

C(Ã(k)) = C(R∗kA
(k)Rk)

= R∗kA
(k)(A(k))∗Rk −R∗k(A(k))∗A(k)Rk

= R∗k(A(k)(A(k))∗ − (A(k))∗A(k))Rk

= R∗kC(A(k))Rk.(4.7)

We define the off-norm of an n× n matrix X as the Frobenius norm of its off-diagonal
part, that is,

off2(X) =

n∑
i,j=1
i 6=j

|xij |2.

The matrix X is diagonal if and only if off(X) = 0. Of course, the off-norm is not a matrix
norm as off(X) = 0 does not imply X = 0.

We will also use a result from [15] for the complex Jacobi operators. Jacobi annihilators
and operators were introduced in [17] and later generalized in [13]. Here we give a simplified
definition of the complex Jacobi annihilators and operators, the one designed to meet our
needs.

For an n× n matrix B we define its vectorization as the vector b = vecoff(B) ∈ C2N ,
N = n(n− 1)/2, containing all off-diagonal elements of B. In our case we assume that B
is Hermitian. Let R be an n × n rotation matrix that differs from the identity matrix in its
2× 2 submatrix R̂ defined by the pivot position (p, q), as in (2.1), such that the rotation angle
ϕ satisfies |ϕ| ≤ π

4 . Moreover, let Npq : Rn×n 7→ Rn×n be an operator that sets to zero
the elements at positions (p, q) and (q, p) in a given matrix. A complex Jacobi annihilator
Rp,q(R) ∈ C2N×2N is defined by the rule

(4.8) Rp,q(R)vecoff(B) = vecoff(Npq(R∗BR)).
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For a pivot ordering O = (p0, q0), (p1, q1), . . . , (pN−1, qN−1) ∈ O(Pn), a complex
Jacobi operator determined by the ordering O is defined as a product of N Jacobi annihilators

JO = RpN−1,qN−1
(RN−1) · · ·Rp1,q1(R1)Rp0,q0(R0).

The definitions given above are special cases of those in [15]. It is useful to recall that the
spectral norm of a Jacobi annihilator is equal to one, except for the case of the 2×2 annihilator
which is a zero-matrix. This follows from the structure of the annihilators; see, e.g., [15].

PROPOSITION 4.1. Let O ∈ C(n)sg . Suppose that O p∼ O′ w∼ O′′ or O w∼ O′ p∼ O′′,
O′′ ∈ C(n)sp and that the weak equivalence relation is in canonical form containing exactly d
shift equivalences. Then, for any d+ 1 Jacobi operators JO,1,JO,2, . . . ,JO,d+1, there is a
constant γn depending only on n such that

‖JO,1JO,2 · · · JO,d+1‖2 ≤ γn, 0 ≤ γn < 1.

Proof. This is a special case of [15, Theorem 3.6].
Further on, we prove the following two auxiliary propositions.
PROPOSITION 4.2. Let (xk, k ≥ 0) be a sequence of nonnegative real numbers such that

(4.9) xk+1 = γxk + ck, 0 ≤ γ < 1.

If limk→∞ ck = 0, then

lim
k→∞

xk = 0.

Proof. First, we show that the sequence (4.9) is bounded from above. Take

C = max{x0, sup
k
ck}.

We prove the boundedness by mathematical induction. For k = 0,

x0 ≤ C ≤
C

1− γ
=: M, for 0 ≤ γ < 1.

Assume that xk ≤M for some given k. Then, for k + 1, we have

xk+1 = γxk + ck ≤ γM + C = γM + (1− γ)M = M.

As a consequence, xk ≤M for any k ≥ 0 and lim supk→∞ xk = L ∈ R. Then,

L = lim sup
k→∞

xk+1 ≤ γ lim sup
k→∞

xk + lim sup
k→∞

ck = γL.

Due to 0 ≤ γ < 1, the upper inequality can only hold with L = 0. Since (xk)k is a sequence
of nonnegative real numbers, lim infk→∞ xk ≥ 0, which implies that

lim sup
k→∞

xk = lim inf
k→∞

xk = 0

and then that limk→∞ xk = 0.
PROPOSITION 4.3. Let H 6= 0 be a Hermitian matrix. Let (H(k), k ≥ 0) be a sequence

generated by applying the following iterative process to H:

(4.10) H(k+1) = R∗kH
(k)Rk +M (k), H(0) = H, k ≥ 0,
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where Rk are complex plane rotations acting in the (p(k), q(k)) plane, p(k) < q(k), with the
rotation angles |ϕk| ≤ π

4 , k ≥ 0. Suppose that the pivot strategy is defined by an ordering
O ∈ C(n)sg and that

(4.11) lim
k→∞

off(M (k)) = 0.

Then,

(4.12) lim
k→∞

∣∣∣h(k+1)
p(k)q(k)

∣∣∣ = 0 and lim
k→∞

∣∣∣h(k+1)
q(k)p(k)

∣∣∣ = 0

implies

lim
k→∞

off(H(k)) = 0.

Proof. The proof follows the same lines of arguments as [15, Theorem 3.8]. To simplify
the notation, let (p, q) = (p(k), q(k)) denote the pivot pair at step k. The transformation
R∗kH

(k)Rk does not annihilate the elements at positions (p, q) and (q, p) of H(k), but we can
write it as

(4.13) R∗kH
(k)Rk = Npq(R∗kH(k)Rk) + (R∗kH

(k)Rk)pq(epe
∗
q) + (R∗kH

(k)Rk)qp(eqe
∗
p),

where er is the rth column vector of the identity matrix In andNpq is as in (4.8). By using the
vecoff operator for equation (4.10) and the definition of a Jacobi annihilator (4.8), we obtain
from relation (4.13)

(4.14) χ(k+1) = Rpk,qk(Rk)χ(k) +m(k), k ≥ 0,

where χ(k) = vecoff(H(k)), and

m(k) = vecoff(M (k)) + (R∗kH
(k)Rk)pqeτ(p,q) + (R∗kH

(k)Rk)qpeτ(q,p)

= vecoff(M (k)) + (h(k+1)
pq −M (k)

pq )eτ(p,q) + (h(k+1)
qp −M (k)

qp )eτ(q,p).(4.15)

Here, τ(p, q) stands for the position of the matrix element xpq in the vectorization vecoff(X),
and eτ(p,q) is the column vector of the identity matrix I2N with one in position τ(p, q). The
relation (4.15) and the assumptions (4.11), (4.12) imply that

(4.16) lim
k→∞

m(k) = 0.

We denote the matrix obtained from H after t cycles of the process (4.10) by H(tN). The
vector χ(tN) = vecoff(H(tN)) can be written as

χ(tN) = J [tN ]
O χ((t−1)N) +m[tN ], t ≥ 1.

The Jacobi operator J [tN ]
O that appears in the previous equation is determined by the ordering

O = (p0, q0), (p1, q1), . . . , (pN−1, qN−1) ∈ O(Pn) and by the Jacobi annihilators

J [tN ]
O = RpN−1,qN−1

(RtN−1) · · ·Rp1,q1(R(t−1)N+1)Rp0,q0(R(t−1)N ),

while

m[tN ] = RpN−1,qN−1
(RtN−1) · · ·Rp1,q1(R(t−1)N+1)Rp0,q0(R(t−1)N )m((t−1)N)

+ · · ·+RpN−1,qN−1
(RtN−1)m(tN−2) +m(tN−1).(4.17)
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Due to the fact that the spectral norm of any Jacobi annihilator is equal to one (or zero if it is a
2× 2 annihilator), the relation (4.17) implies that

‖m[tN ]‖2 ≤ ‖m((t−1)N)‖2 + · · ·+ ‖m(tN−2)‖2 + ‖m(tN−1)‖2, t ≥ 1.

Thus, from the limit (4.16) it holds

(4.18) lim
t→∞

m[tN ] = 0.

For O ∈ C(n)sg , i.e., the pivot strategy is generalized serial, suppose that

(4.19) χ((t+d)N) = J [(t+d)N ]
O · · · J [(t+1)N ]

O J [tN ]
O χ((t−1)N) +m

[tN ]
[d+1], t ≥ 1,

where

m
[tN ]
[d+1] = J [(t+d)N ]

O · · · J [(t+1)N ]
O m[tN ] + · · ·+ J [(t+d)N ]

O m[(t+d−1)N ] +m[(t+d)N ].

Again because of the property of the spectral norm of the Jacobi operator, we have

‖m[tN ]
[d+1]‖2 ≤ ‖m

[tN ]‖2 + ‖m[(t+1)N ]‖2 + · · ·+ ‖m[(t+d)N ]‖2,

and by leveraging on the limit (4.18), we obtain

lim
t→∞

m
[tN ]
[d+1] = 0.

Applying Proposition 4.1 to the Jacobi operators in (4.19) it holds that

(4.20) ‖J [(t+d)N ]
O · · · J [(t+1)N ]

O J [tN ]
O ‖2 ≤ γn, 0 ≤ γn < 1.

Therefore, thanks to the bound in (4.20), the spectral norm of (4.19) satisfies

‖χ[(t+d)N)‖2 ≤ ‖J [(t+d)N ]
O · · · J [(t+1)N ]

O J [tN ]
O ‖2‖χ((t−1)N)‖2 + ‖m[tN ]

[d+1]‖2

≤ γn‖χ[(t−1)N ]‖2 + ‖m[tN ]
[d+1]‖2.

Considering that 0 ≤ γn < 1 and ‖m[tN ]
[d+1]‖2 → 0, as t→∞, by Proposition 4.2 it holds that

limt→∞ χ(tN) = 0. Therefore, the iterations obtained after each cycle converge to zero.
Additionally, for the iterations 0 < k < N within one cycle, from relation (4.14) we have

χ((t−1)N+k)

= Rpk−1,qk−1
(R(t−1)N+k−1) · · ·Rp1,q1(R(t−1)N+1)Rp0,q0(R(t−1)N )χ((t−1)N)

+Rpk−1,qk−1
(R(t−1)N+k−1) · · ·Rp1,q1(R(t−1)N+1)Rp0,q0(R(t−1)N )m((t−1)N)

+ · · ·+Rpk−1,qk−1
(R(t−1)N+k−1)m((t−1)N+k−2) +m((t−1)N+k−1)

and

‖χ((t−1)N+k)‖2
≤ ‖χ((t−1)N)‖2 + ‖m((t−1)N)‖2 + · · ·+ ‖m((t−1)N+k−2)‖2 + ‖m((t−1)N+k−1)‖2
≤ ‖χ((t−1)N)‖2 + k max

0≤r≤k−1
‖m((t−1)N+r)‖2.
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Thus, limt→∞ ‖χ((t−1)N+k)‖2 = 0, and then

lim
k→∞

‖χ(k)‖2 = 0.

Finally, since off(H(k)) = ‖χ(k)‖2, k ≥ 0, we have limk→∞ off(H(k)) = 0, which completes
the proof.

Now we can prove the convergence theorem for the Eberlein method under the serial
orderings with permutations O ∈ C(n)sg . In what follows, B(k) is defined as in equation (2.2)
and C(B(k)) is as in (2.3).

THEOREM 4.4. Let A ∈ Cn×n, and let (A(k), k ≥ 0) be a sequence generated by the
Eberlein method under a generalized serial pivot strategy defined by an ordering O ∈ C(n)sg .
Then

(i) The sequence of the off-norms (off(B(k)), k ≥ 0) tends to zero, that is,

lim
k→∞

off(B(k)) = 0.

(ii) The sequence (A(k), k ≥ 0) tends to a normal matrix, that is,

lim
k→∞

C(A(k)) = 0.

(iii) The sequence of matrices (B(k), k ≥ 0) tends to a fixed diagonal matrix, that is,

lim
k→∞

B(k) = diag(µ1, µ2, . . . , µn),

where µi, 1 ≤ i ≤ n, are the real parts of the eigenvalues of A.
(iv) If µi 6= µj , then limk→∞ a

(k)
ij = 0 and limk→∞ a

(k)
ji = 0.

Proof.
Item (i). For F (k) defined as in (4.5) we have

(4.21) B(k+1) = R∗kB
(k)Rk + F (k), k ≥ 0.

At the pivot position (p, q) in step k we have

b(k+1)
pq = b̃(k)pq + f (k)pq ,

where F (k) = (f
(k)
ij ).

The relations (4.6) and (4.2) imply limk→∞ F (k) = 0 and limk→∞ f
(k)
pq = 0. Fur-

thermore, the rotation Rk is chosen to annihilate b̃(k)pq . It annihilates b̃(k)qp as well because
B(k) is Hermitian. Therefore, limk→∞ b

(k+1)
pq = 0 and limk→∞ b

(k+1)
qp = 0. The matrix

B(0) = B is Hermitian by definition, and the iterative process (4.21) satisfies the assumptions
of Proposition 4.3. Hence,

lim
k→∞

off(B(k)) = 0.

Item (ii). For E(k) defined as in (4.3) we have

C(A(k+1)) = C(Ã(k) + E(k)).
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Then,

C(A(k+1)) = (Ã(k) + E(k))(Ã(k) + E(k))∗ − (Ã(k) + E(k))∗(Ã(k) + E(k))

= Ã(k)(Ã(k))∗ + E(k)(Ã(k))∗ + (Ã(k) + E(k))(E(k))∗

− (Ã(k))∗Ã(k) − (E(k))∗Ã(k) − (Ã(k) + E(k))∗E(k)

= C(Ã(k)) +A(k+1)(E(k))∗ − (A(k+1))∗E(k)

+ E(k)(Ã(k))∗ − (E(k))∗Ã(k)

= C(Ã(k)) +W (k),(4.22)

where

W (k) = A(k+1)(E(k))∗ − (A(k+1))∗E(k) + E(k)(Ã(k))∗ − (E(k))∗Ã(k).

Moreover, applying relation (4.7), we can write (4.22) as

C(A(k+1)) = R∗kC(A(k))Rk +W (k).

Using the properties of the norm and inequality (4.1) we obtain

‖W (k)‖F ≤ ‖A(k+1)(E(k))∗‖F + ‖(A(k+1))∗E(k)‖F
+ ‖E(k)(Ã(k))∗‖F + ‖(E(k))∗Ã(k)‖F

= 2‖E(k)‖F (‖A(k+1)‖F + ‖Ã(k)‖F ) ≤ 4‖E(k)‖F ‖Ã(k)‖F

and

‖W (k)‖2F ≤ 16‖E(k)‖2F ‖Ã(k)‖2F .

It follows from relations (4.3) and (4.4) that

‖W (k)‖2F ≤ 16‖E(k)‖2F ‖A‖2F ≤ 24n2|c̃(k)pq |‖A‖2F .

Thus, relation (4.2) implies

(4.23) lim
k→∞

‖W (k)‖F = 0.

We consider the off-diagonal and the diagonal part of C(A(k)) separately. Similarly as
for matrices B(k), at the pivot position (p, q) in step k we have

c(k+1)
pq = c̃(k)pq + w(k)

pq ,

where W (k) = (w
(k)
ij ). The relations (4.2) and (4.23) imply limk→∞ c

(k+1)
pq = 0. It is easy to

verify that the matrices C(A(k)), k ≥ 0, are Hermitian. Then limk→∞ c
(k+1)
qp = 0, and we

can use Proposition 4.3 again to obtain

(4.24) lim
k→∞

off(C(A(k))) = 0.

It remains to show that

lim
k→∞

c
(k)
ii = 0.
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Set A(k) = B(k) + Z(k), where B(k) is Hermitian and given in (2.2) and Z(k) is skew-
Hermitian. Then,

(4.25) C(A(k)) = 2(Z(k)B(k) −B(k)Z(k)).

The diagonal element of C(A(k)) is given by

c
(k)
ii = 2

n∑
j=1

(z
(k)
ij b

(k)
ji − b

(k)
ij z

(k)
ji ).

In proving assertion (i), it is shown that limk→∞ off(B(k)) = 0, that is,

lim
k→∞

b
(k)
ij = 0, for i 6= j.

Thus,

(4.26) lim
k→∞

c
(k)
ii = 2(z

(k)
ii b

(k)
ii − b

(k)
ii z

(k)
ii ) = 0.

The relations (4.24) and (4.26) imply the assertion (ii) of the theorem.
Item (iii). In proving assertion (i) we showed that the matrices B(k) tend to a diagonal

matrix. The fact that the diagonal elements of the matrix limk→∞B(k) correspond to the real
parts of the eigenvalues of A is then proved as in [25], using the assertion (ii) of this theorem.

Item (iv). Using the relation (4.25) and the assertions (i) and (ii) of the theorem it follows
that

0 = lim
k→∞

c
(k)
ij = 2 lim

k→∞

n∑
r=1

(z
(k)
ir b

(k)
rj − b

(k)
ir z

(k)
rj )

= 2 lim
k→∞

(z
(k)
ij b

(k)
jj − b

(k)
ii z

(k)
ij ) = 2(µj − µi) lim

k→∞
z
(k)
ij , 1 ≤ i, j ≤ n.

If µi 6= µj , then limk→∞ z
(k)
ij = 0. Finally, since limk→∞ b

(k)
ij = 0, for i 6= j, we have

a
(k)
ij = b

(k)
ij + z

(k)
ij → 0 and a

(k)
ji = (b

(k)
ij )∗ − (z

(k)
ij )∗ → 0, as k →∞.

Therefore, starting with an n× n matrix A, the Eberlein method under a pivot strategy
defined by any generalized serial pivot ordering converges to some matrix Λ. If all of the
real parts of the eigenvalues of A are distinct, then Λ is a diagonal matrix. If the real parts µi
and µj of the eigenvalues of A(0) are the same, then we can not claim that the corresponding
off-diagonal elements a(k)ij and a(k)ji tend to zero. This can result in the presence of blocks on
the diagonal of Λ. Assuming that the diagonal elements of Λ are arranged such that their real
parts appear in decreasing order, based on Theorem 4.4, we get to the following conclusion:
the matrix Λ is a block diagonal matrix with block-sizes corresponding to the number of times
the same real part appears in the spectrum of A.

The eigenvalues with distinct real parts can be read from the diagonal of Λ. Pairs of
complex conjugate eigenvalues with nonrepeating real parts, if they create a block, will
correspond to 2× 2 matrices with the real parts on the diagonal. Such eigenvalues are easy to
be read from 2× 2 blocks. For repeating real parts, the blocks can have larger size. In order
to find all eigenvalues of A, it is then enough to find the eigenvalues of such blocks. To this
end, e.g., the nonsymmetric Jacobi algorithm for the computation of the Schur form discussed
in [24] can be applied.

In our numerical tests, we observed that blocks appear in the cases when there are complex
eigenvalues having the same real part but different imaginary parts. Repeating real or complex
eigenvalues did not create blocks in practice.
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5. Numerical results. In this section, we numerically test Algorithm 2.1 under the
generalized pivot strategies with permutations. All experiments are done in Matlab R2021a.
To depict the performance of the Eberlein algorithm, we observe three quantities: off(A(k)),
off(B(k)), and ‖C(A(k))‖F . The results are presented in logarithmic scale. The algorithm
is terminated when the change in the off-norm of B(k) becomes small enough, here, 10−8.
According to Theorem 4.4, both off(B(k)) and ‖C(A(k))‖F should converge to zero.
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(a) Complex algorithm, random A ∈ C50×50.
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(b) Real algorithm, random A ∈ R50×50.

FIG. 5.1. Change in off(A(k)), off(B(k)), and ‖C(A(k))‖F for different pivot strategies.

Figure 5.1 displays the results of the Eberlein algorithm applied to a non-structured
random complex matrix, as well as the results of the real Eberlein algorithm applied to a
non-structured random real matrix. We test the algorithm under different pivot strategies.
Each line represents the results of a different pivot strategy IO, O ∈ C(n)sg . The strategies are
randomly chosen at the beginning of the algorithm. No pivot strategy is superior to others.
A strategy that leads to the fastest convergence for one matrix will be slow for a different
matrix. We observe that off(B(k)) and ‖C(A(k))‖F converge to zero in both the complex and
the real algorithm, although the convergence is slower for the real algorithm. In the complex
case, off(A) converges to zero as well. In other words, the matrix is diagonalized. On the
other hand, this is not the case for the real algorithm. The reason is that for the real algorithm,
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blocks are formed in correspondence with the eigenvalues with equal real part.
The algorithm is significantly faster if it is applied to a normal matrix; see, e.g., [11, 18].

We construct a unitarily diagonalizable 400 × 400 matrix A = A(0) by multiplying some
chosen complex diagonal matrix from the left- and right-hand sides by a random unitary
matrix. In Figure 5.2, we display the results of the Eberlein method under a randomly chosen
pivot strategy IO, O ∈ C(n)sg , applied to a diagonalizable complex matrix. Here we do not
show ‖C(A(k))‖F because A(0) is normal, that is, C(A(0)) = 0, and it stays normal during
the process.
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FIG. 5.2. Progress of the off-norms of A(k) and B(k) for a unitarily diagonalizable complex matrix.

In order to show the block diagonal structure of A(k) discussed at the end of the previous
section, we applied the Eberlein method to matrices in C10×10 and C50×50. To generate the
starting matrix A, first we set the upper-triangular matrix T to have the specified diagonal
elements. Then we multiply T by a random unitary matrix Q, that is, A = Q∗TQ. In our
implementation of the algorithm, we introduce an additional condition so that the real part of
the diagonal elements appear in decreasing order. If necessary, this is achieved by translating
the angle αk by π/2 in the kth step of the process. The evolution of the matrix structure of the
iterates is shown in Figure 5.3. Specifically, the figure shows the logarithm of the absolute
values of the elements of A(k). Lighter squares represent the elements with larger absolute
value. According to Theorem 4.4, the algorithm should converge to a block diagonal matrix in
both cases described below.

In Figure 5.3a, the matrix has distinct eigenvalues with spectrum

{5, 4, 3, 1± 2ı, 1± ı,−1,−2,−3}.

Thus, we deal with two complex conjugate pairs of eigenvalues with the same real part. On the
other hand, in Figure 5.3b, the spectrum of a 50× 50 matrix consists of two random complex
numbers of multiplicity ten and three pairs of complex conjugate complex numbers, each of
multiplicity five.

For both matrices, after a few cycles, we can faintly see the diagonal blocks. After a few
more cycles, the block diagonal structure is clear. For the first matrix, the obtained 4× 4 block
has eigenvalues that are (approximately) 1± i and 1± 2i. The rest of the diagonal carries the
real eigenvalues of the original matrix. On the other hand, for the second matrix we observe
three blocks that correspond to three pairs of complex conjugate eigenvalues. The rest of
the diagonal corresponds to two repeating eigenvalues, and they do not form blocks despite
the tenfold multiplicity of each eigenvalue. Compared to the part that formed the blocks, for
the repeating eigenvalues there are no other eigenvalues with the same real part but different
imaginary part.
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(a) Two complex conjugate pairs of eigenvalues with the same real part that formed a 4× 4 diagonal block.

10
-3

10
-2

10
-1

10
0

(b) Three complex conjugate eigenvalues formed 10× 10 diagonal blocks, while the rest of the diagonal carries two
repeating eigenvalues.

FIG. 5.3. Block diagonal structure.

In Figure 5.4 we test the accuracy of the Eberlein method. The top graph demonstrates
that the Eberlein method for a random 50× 50 matrix converged to the same solution as the
Matlab eig function. The bottom graphs displays the relative errors in the real and imaginary
parts of the obtained eigenvalues, regarding the solutions obtained by the Matlab eig function.
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FIG. 5.4. Accuracy of the Eberlein method in comparison to the Matlab eig function.
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To summarize, in this final section we showed the numerical behavior of the Eberlein
algorithm. The obtained numerical results depict the theoretical results given in Theorem 4.4.
Precisely, for B(k) = 1

2 (A(k) + (A(k))∗), the sequence (off(B(k)), k ≥ 0) converges to
zero, that is, the Hermitian part of A(k) converges to a diagonal matrix. Moreover, for
C(A(k)) = A(k)(A(k))∗ − (A(k))∗A(k), the sequence (C(A(k)), k ≥ 0) converges to zero,
that is, A(k) converges to a normal matrix. Moreover, we showed that if the real parts of the
eigenvalues of A are distinct, then A(k) converges to a diagonal matrix. Otherwise, blocks
corresponding to the repeating eigenvalues could appear. Regarding the accuracy of the
method, we compared it to the Matlab eig function, and the results are satisfactory.
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[27] K. VESELIĆ, A convergent Jacobi method for solving the eigenproblem of arbitrary real matrices, Numer.
Math., 25 (1975/76), pp. 179–184.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

