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MOBILE DISKS IN HYPERBOLIC SPACE AND MINIMIZATION OF
CONFORMAL CAPACITY∗

HARRI HAKULA†, MOHAMED M. S. NASSER‡, AND MATTI VUORINEN§

Abstract. Our focus is to study constellations of disjoint disks in the hyperbolic space, i.e., the unit disk equipped
with the hyperbolic metric. Each constellation corresponds to a set E which is the union of m > 2 disks with
hyperbolic radii rj > 0, j = 1, . . . ,m. The centers of the disks are not fixed, and hence individual disks of the
constellation are allowed to move under the constraints that they do not overlap and their hyperbolic radii remain
invariant. Our main objective is to find computational lower bounds for the conformal capacity of a given constellation.
The capacity depends on the centers and radii in a very complicated way even in the simplest cases when m = 3 or
m = 4. In the absence of analytic methods, our work is based on numerical simulations using two different numerical
methods, the boundary integral equation method and the hp-FEM method, respectively. Our simulations combine
capacity computation with minimization methods and produce extremal cases where the disks of the constellation are
grouped next to each other. This resembles the behavior of animal colonies minimizing heat flow in arctic areas.
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1. Introduction. Many extremal problems of physics, exact sciences, and mathematics
have solutions which exhibit varying degree of symmetry. A typical situation is to minimize
or maximize a set functional of a planar set under the constraint that some other functional is
constant. The classical isoperimetric problem [31] is an example. Here one maximizes the
area of a planar set given its perimeter, and the extremal domain is the disk. G. Pólya and
G. Szegö [31] initiated a systematic study of a large class of isoperimetric-type problems of
mathematical physics for domain functionals such as moment of inertia, principal frequency,
torsional rigidity, and, in particular, capacities of condensers. Certain geometric transforma-
tions, known under the general name “symmetrization” have the property that they decrease
the value of domain functionals and thus can give hints about the extremal configuration of
isoperimetric problems [4, 9]. We study here new types of transformations which decrease the
value of conformal capacity.

In a very interesting recent paper, A. Solynin [34] describes capacity problems, motivated
by the behavior of herds of arctic animals, which stay close together to minimize the total
loss of heat of the herd or to defend against predators (see the figures in [34]). Such a herd
behavior seems to suggest the heuristic idea that “minimization of the herd’s outer perimeter”
minimizes the loss of heat or danger from predators. This kind of extremal problem can be
classified as a special type of an isoperimetric problem. As an illustration of the connection
between the kind of transformations we are interested in and the observed behavior in nature,
see Figure 1.1.

In a recent paper [29], isoperimetric inequalities in hyperbolic geometry were applied
to estimate the conformal capacity of condensers of the form (B2, E), where E is a union
of finitely many disjoint closed disks Ej , j = 1, . . . ,m, in the unit disk B2. Thus, E is a
constellation of disks. Gehring’s lower bound [10] (see also [29]) is given by condensers
of the form (B2, E∗) where E∗ is a disk with the hyperbolic area equal to that of

⋃m
j=1Ej .

∗Received October 3, 2023. Accepted November 24, 2023. Published online on January 18, 2024. Recommended
by L. Reichel.

†Aalto University, Department of Mathematics and Systems Analysis, P.O. Box 11100, FI-00076 Aalto, Finland
(harri.hakula@aalto.fi).

‡Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, KS 67260-0033, USA
(mms.nasser@wichita.edu).

§Department of Mathematics and Statistics, FI-20014 University of Turku, Finland (vuorinen@utu.fi).

1

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol60s1


ETNA
Kent State University and

Johann Radon Institute (RICAM)

2 H. HAKULA, M. M. S. NASSER, AND M. VUORINEN

(a)

(b) (c)

FIG. 1.1. Examples of constrained optimization. (a) Tree swallows huddle on a branch during a spring
snowstorm. (K. Williams: Tree swallows huddle in snow May 12, 2011). (b) Minimal capacity configuration for four
hyperbolic disks on a diameter. (c) Minimal capacity configuration for four hyperbolic disks on a hyperbolic circle.
In (b) and (c) the hyperbolic disks are inside the unit disk equipped with the hyperbolic metric.

Further recent investigations of condenser capacity in the framework of hyperbolic geometry
include [28, 26, 27], where pointers to earlier work can be found. It should be noticed that due
to the conformal invariance of the conformal capacity, the hyperbolic geometry provides the
natural setup for this study.

We continue here this work, and our goal is to analyze extremal cases of the aforemen-
tioned capacity and how the capacity depends on the geometry of the disk constellation.
The constraint that the disks do not overlap leads to problems of combinatorial geometry.
Some examples of such geometric problems, related to this work and the herd behavior men-
tioned above, are Descartes’ problem of four circles with each circle tangent to three circles,
Apollonian circle packings, and Soddy’s “complex kiss precise” problem for configurations
of mutually tangent circles [22]. Combinatorial geometry extremal problems motivated by
biochemistry research and drug development are described in [24]. A very interesting discus-
sion of many topics of combinatorial geometry including packing problems is given in the
encyclopedic work of M. Berger [7]. The three-dimensional case is much more difficult than
the planar case, and it is the subject of the extensive review paper [21], where topics range
from optimal packing of spheres to constrained motion of small spheres on the surface of the
unit sphere. For an extensive survey of potential-theoretic extremal problems, see [8].
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Analyzing the extremal cases of the lower bound for

cap(B2,

m⋃
j=1

Ej)

for a constellation of disjoint hyperbolic disks Ej seems to be very difficult even in the
simplest cases m = 3, 4. Therefore we consider this problem for special cases such as the
case when the circle centers are at the same distance from the origin or analyze constrained
motion of one circle along three other fixed circles (see Figure 1.1). Simulations indicate that
several constellations yield local minima of the capacity. Throughout, the hyperbolic geometry
provides the natural geometric framework for our study, because of the conformal invariance
of the capacity. We use two numerical methods for computing the capacity, the hp-FEM
and the boundary integral equation (BIE) method. The numerical results lead to a number
of conjectures and improved bounds. Indeed, the existing lower bound for constellations
considered here is improved of the order of 10% for disks of unit hyperbolic radius. Moreover,
the asymptotic nature of the theoretical lower bound as the hyperbolic radii rj →∞ is easily
understood in the context of hyperbolic geometry.

In modern physics, in particular in condensed matter physics, there has been a lot of
interest in geometric settings with negative curvature [20, 23], that is, exactly our natural
setup. The purpose of this paper is also to show how computations can be formulated and
performed in both Euclidean and hyperbolic geometries, even with the possibility of moving
from one to another. This is highlighted in the last section where the optimal configurations
in hyperbolic geometry are found by successive transformations to a Euclidean coordinate
system employed in the optimization routines. For information about potential theory and its
applications, see [8, 31, 32, 37].

The contents are organized into sections as follows. Section 2 contains the key facts
about hyperbolic geometry, including the transformation formulae from Euclidean disks to
Poincaré disks and back. Section 3 covers the preliminary notations of conformal capacity,
collected from various sources, e.g., from [5, 9, 11, 12, 18, 17]. These are the cornerstones of
the geometric setup of the computations in the sequel. Section 3 also provides an overview of
the hp-FEM [16, 15] adjusted to the present computational tasks, our second computational
work horse, the BIE method [25, 28], and the interior-point method used in optimization.
The numerical experiments are discussed in Sections 4 and 5. In Section 4 the selected
configurations have been designed a priori with the goal of forming an understanding of
the identifiable geometric features of the minimal capacity configurations. In Section 5
that understanding is challenged by searching for the minimal capacity configurations using
numerical optimization starting with random initial configurations. Finally, the conclusions
are drawn in Section 6.

2. From Euclidean to Poincaré Disk and back. In this section the central transforma-
tion formulae collected from various sources are presented. In Figure 2.1 different properties
of the geometry on the Poincaré disk have been illustrated. In particular, the facts that for all
ε > 0, M > 0, there are hyperbolic disks with radii M but Euclidean diameter < ε and that
hyperbolic disks with equal radii have different Euclidean radii depending on their location
are important for our discussion below.

For a point x ∈ Rn and a radius r > 0, define an open Euclidean ball and its boundary
sphere

Bn(x, r) = {y ∈ Rn | |x− y| < r} Sn−1(x, r) = {y ∈ Rn | |x− y| = r}.

For the unit ball and the unit sphere, we use the simplified notations Bn = Bn(0, 1) and
Sn−1 = Sn−1(0, 1). The segment joining two points x, y ∈ Rn is denoted [x, y].
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FIG. 2.1. Visualizations on the Poincaré disk. Left: Images of hyperbolic disks with hyperbolic radii equal
to 1, 2, 3, 4, 5. Right: Hyperbolic disks on three diameters all with equal radii. Notice the lens-shaped regions
containing the disks on each diameter.

Define the hyperbolic metric in the Poincaré unit disk B2 as in [5], [6, (2.8) p. 15]

sh2 ρB2(x, y)

2
=

|x− y|2

(1− |x|2)(1− |y|2)
, x, y ∈ B2.

We use the notation sh and arsh for the hyperbolic sine and its inverse, respectively, and
similarly, th and arth for the hyperbolic tangent and its inverse. The hyperbolic midpoint of
x, y ∈ B2 is given by [38]

mH(x, y) =
y
(
1− |x|2

)
+ x

(
1− |y|2

)
1− |x|2|y|2 +A[x, y]

√
(1− |x|2)(1− |y|2)

,

where A[x, y] =
√
|x− y|2 + (1− |x|2)(1− |y|2). We use the notation

Bρ(x,M) = {z ∈ B2 : ρB2(x, z) < M}

for the hyperbolic disk centered at x ∈ B2 with radius M > 0 . It is a basic fact that they are
Euclidean disks with the center and radius given by [17, p. 56, (4.20)]

(2.1)


Bρ(x,M) = B2(y, r) ,

y =
x(1− t2)

1− |x|2t2
r =

(1− |x|2)t

1− |x|2t2
t = th(M/2) .

Note the special case x = 0,

(2.2) Bρ(0,M) = B2(0, th(M/2)) .

Conversely, the Euclidean disks can be considered as hyperbolic ones by [38]B
2(y, r) = Bρ(x,M) ,

x = t y/|y| M = ρB2(x, z) t = mH (|y| − r, |y|+ r) .

LEMMA 2.1 ([5, Thm. 7.2.2, p. 132]). The area of a hyperbolic disc of radius r is
4π sh2(r/2), and the length of a hyperbolic circle of radius r is 2π sh(r).
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3. Conformal capacity and numerical methods. A condenser is a pair (G,E), where
G ⊂ B2 is a domain and E is a compact non-empty subset of G. The conformal capacity of
this condenser is defined as [9, 11, 12, 17, 18]

cap(G,E) = inf
u∈A

∫
G

|∇u|2dm,(3.1)

where A is the class of C∞0 (G) functions u : G→ [0,∞) with u(x) ≥ 1 for all x ∈ E and
dm is the 2-dimensional Lebesgue measure. In this paper we assume that G = B2 is the
unit disk and E =

⋃m
j=1Ej , where E1, . . . , Em are m closed disjoint disks in the unit disk.

Hence, Ω = G\E is a multiply connected circular domain of connectivity m+ 1. In this case,
the infimum is attained by a function u which is harmonic in Ω and satisfies the boundary
conditions u = 0 on ∂G and u = 1 on ∂E [9]. The capacity can be expressed in terms of this
extremal function as

cap(G,E) =

∫∫
Ω

|∇u|2dm.

The conformal capacity of a condenser is one of the key notions of the potential theory of
elliptic partial differential equations [18, 12], and it has numerous applications to geometric
function theory, both in the plane and in higher dimensions [9, 11, 12, 17, 18]. Numerous
variants of the definition (3.1) of capacity are given in [11, 12]. First, the family A may be
replaced by several other families by [11, Lemma 5.21, p. 161]. Furthermore,

cap(G,E) = M(∆(E, ∂G;G)),

where ∆(E, ∂G;G) is the family of all curves joining E with the boundary ∂G in the domain
G and M stands for the modulus of a curve family [11, Thm. 5.23, p. 164]. For the basic facts
about capacities and moduli, the reader is referred to [11, 12, 17, 18].

3.1. Numerical methods. In this section the numerical methods used in the numerical
experiments are briefly described. The capacities are computed using the hp-version of
the finite element method (FEM) and the boundary integral equation with the generalized
Neumann kernel method (BIE). The minimization problems are computed using the interior-
point method as implemented in MATLAB and Mathematica.

Since the Dirichlet problem (3.1) is one of the primary numerical model problems, any
standard solution technique can be viewed as having been validated. Verification of the results
is discussed in connection with one of the numerical experiments below.

3.1.1. hp-FEM. What is of particular interest in the context of this paper is that the
hp-FEM allows for large curved elements without significant loss of accuracy. Since the
number of elements can be kept relatively low given that additional refinement can always
be added by increasing elementwise the polynomial degree, variation in the boundary can be
addressed directly at the level of the boundary representation in some exact parametric form.
This is illustrated in Figure 3.1.

The following theorem due to Babuška and Guo [2, 3] sets the limit to the rate of
convergence. Notice that the construction of the appropriate spaces is technical. For a rigorous
treatment of the theory involved, see Schwab [33] and the references therein.

THEOREM 3.1. Let Ω ⊂ R2 be a polygon, v the FEM-solution of (3.1), and let the weak
solution u0 be in a suitable countably normed space where the derivatives of arbitrarily high
order are controlled. Then

inf
v
‖u0 − v‖H1(Ω) ≤ C exp(−b 3

√
N),
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FIG. 3.1. Discretization and optimization. For the given set of four hyperbolic disks with centers constrained on
a diameter, the configuration shown here minimizes the capacity. Left: Configuration and hp-FEM mesh. Center:
Potential in 2D. Right: Potential in 3D.

where C and b are independent of N , the number of degrees of freedom. Here v is computed
on a proper geometric mesh, where the order of an individual element is set to be its element
graph distance to the nearest singularity. (The result also holds for meshes with constant
polynomial degree.)

Consider the abstract problem setting with u defined on the standard piecewise polynomial
finite element space on some discretization T of the computational domain Ω. Assuming that
the exact solution u ∈ H1

0 (D) has finite energy, we arrive at the approximation problem: Find
û ∈ V such that

a(û, v) = l(v) (= a(u, v)) (∀v ∈ V ),

where a( · , · ) and l( · ), are the bilinear form and the load potential, respectively. Additional
degrees of freedom can be introduced by enriching the space V . This is accomplished via the
introduction of an auxiliary subspace or “error space” W ⊂ H1

0 (D) such that V ∩W = {0}.
We can then define the error problem: Find ε ∈W such that

a(ε, v) = l(v)− a(û, v) (= a(u− û, v)) (∀v ∈W ).

This can be interpreted as a projection of the residual to the auxiliary space.
The main result on this kind of estimators for the Dirichlet problem (3.1) is the following

theorem.
THEOREM 3.2 ([15]). There is a constant K depending only on the dimension d, the

polynomial degree p, the continuity and coercivity constants C and c, and the shape-regularity
of the triangulation T such that

c

C
‖ε‖1 ≤ ‖u− û‖1 ≤ K (‖ε‖1 + osc(R, r, T )) ,

where the residual oscillation depends on the volumetric and face residuals R and r, and the
triangulation T .

3.1.2. BIE method. We review a BIE method from [28] for computing the capacity
cap(B2, E). The method is based on the BIE with the generalized Neumann kernel. The
domains considered in this paper are circular domains, i.e., domains whose boundary compo-
nents are circles. The external boundary is the unit circle, denoted by C0, parametrized by
η0(t) = eit for t ∈ J0 = [0, 2π]. The inner circlesCj are parametrized by ηj(t) = zj+rje

−it,
t ∈ Jj = [0, 2π], for j = 1, 2, . . . ,m, where zj is the center of the circle Cj and rj is its

http://etna.ricam.oeaw.ac.at
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radius. Let J be the disjoint union of the m + 1 intervals Jj = [0, 2π], j = 0, 1, . . . ,m.
We define a parametrization of the whole boundary C =

⋃m
j=0 Cj on J by (see [25] for the

details)

η(t) =


η0(t), t ∈ J0,

η1(t), t ∈ J1,
...
ηm(t), t ∈ Jm.

With the parametrization η(t) of the whole boundary C, we define a complex function A by

A(t) = η(t)− α,

where α is a given point in the domain G. The generalized Neumann kernel N(s, t) is defined
for (s, t) ∈ J × J by

N(s, t) :=
1

π
=
(
A(s)

A(t)

η′(t)

η(t)− η(s)

)
.

We define also the following kernel

M(s, t) :=
1

π
<
(
A(s)

A(t)

η′(t)

η(t)− η(s)

)
, (s, t) ∈ J × J.

The kernel N(s, t) is continuous, and the kernel M(s, t) is singular where the singular part
involves the cotangent function. Hence, the integral operator N with the kernel N(s, t) is
compact, and the integral operator M with the kernel M(s, t) is singular. Further details can
be found in [39].

For each k = 1, 2, . . . ,m, let the function γk be defined by

γk(t) = log |η(t)− zk|,

let µk be the unique solution of the BIE

(3.2) µk −Nµk = −Mγk,

and let the piecewise constant function hk = (h0,k, h1,k, . . . , hm,k) be given by

(3.3) hk = [Mµk − (I−N)γk]/2.

For each k = 1, 2, . . . ,m, the solution µk of the BIE (3.2) and the piecewise constant function
hk in (3.3) will be computed using the MATLAB fbie from [25]. In the function fbie,
the integral equation (3.2) is solved using the Nyström method with the trapezoidal rule.
Solving the integral equation is then educed to solving an (m + 1)n × (m + 1)n linear
system, which is solved by the MATLAB function gmres. The matrix-vector product in
gmres is computed by the MATLAB function zfmm2dpart from the MATLAB toolbox
FMMLIB2D [13]. To use the MATLAB function fbie, we define a vector s = [s1, . . . , sn]
where sk = 2(k − 1)π/n, k = 1, . . . , n, and n is a given even positive integer. Then we
compute the (m+ 1)n× 1 discretization vectors et and etp of the parametrization η(t) of
the boundary C and its derivative η′(t) by

et = [η0(s), η1(s), . . . , ηm(s)]T , etp = [η′0(s), η′1(s), . . . , η′m(s)]T .

http://etna.ricam.oeaw.ac.at
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We also discretize the functions A(t) and γk(t) by A = et − α and gamk = γk(et),
k = 1, . . . ,m. Then we compute (m+ 1)n× 1 approximate discretizations muk and hk of
the functions µk(t) and hk(t) by calling

[muk, hk] = fbie(et, etp, A, gamk, n, 5, [ ], 1e− 14, 100),

i.e., the tolerance of the FMM is 0.5×10−15, the GMRES is used without restart, the tolerance
of the GMRES method is 10−14 and the maximal number of GMRES iterations is 100.

By computing the (m + 1)n × 1 vector hk, we obtain approximate discretizations
of the piecewise constant function hk = (h0,k, h1,k, . . . , hm,k) in (3.3). Note that, for
k = 1, . . . ,m, the constant hj,k is the value of the function hk on the boundary component
Γj . We approximate the values of the real constants hj,k by taking arithmetic means

hj,k =
1

n

(j+1)n∑
i=1+jn

hki, j = 0, 1, . . . ,m, k = 1, . . . ,m.

The values of the m real constants a1, . . . , am are then approximated by solving the
(m+ 1)× (m+ 1) linear system [28]

(3.4)


h0,1 h0,2 · · · h0,m 1
h1,1 h1,2 · · · h1,m 1

...
...

. . .
...

...
hm,1 hm,2 · · · hm,m 1



a1

a2

...
am
c

 =


0
1
...
1

 .

Since m+ 1 is the number of boundary components of the domain Ω = G \E, we can assume
that m is small and solve the linear system (3.4) using the Gauss elimination method. By
solving the linear system, the capacity cap(B2, E) will be computed by [28, Eq. (3.9)]

cap(B2, E) = 2π

m∑
k=1

ak.

In this paper, the boundary components of the domain Ω are circles. Thus, the integrands
in (3.2) and (3.3) will be 2π-periodic functions and can be extended holomorphically to
some parallel strip |=t| < σ in the complex plane. Hence, the trapezoidal rule will then
converge exponentially with O(e−σn) [36] when it is used to discretize the integrals in (3.2)
and (3.3). The numerical solution of the integral equation will converge with a similar rate of
convergence [1, p. 322] (see Figure 4.2 (right) below).

3.1.3. Nonlinear optimization: interior-point method. The two methods outlined
above are combined with a numerical optimization routine in the last set of numerical
experiments below. The task is to find an optimal configuration for a set of hyperbolic
disks E with fixed radii. We use the interior-point method as implemented in Mathematica
(FindMinimum, [40]) and Matlab (fmincon, [35]).

In the most general case the problem is defined as in (3.5), where the only constraint is a
geometric one, that is, the disks are not allowed to overlap. Here, the radii are fixed, and the
optimization concerns only the locations of the disks.

min
E

cap(G,E)

subject to:
Ei ∩ Ej = ∅ ∀ i, j = 1, . . . ,m, i 6= j,

Ej ⊂ G ∀ j = 1, . . . ,m.

(3.5)

http://etna.ricam.oeaw.ac.at
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This nonlinear optimization problem can be solved using the interior-point method, whose so-
lution would be a local minimum. The standard textbook reference is Nocedal and Wright [30].

Notice, that the objective function is indeed the capacity of the constellation. Often
optimization problems with geometric constraints are related to packing and fitting problems.
The task here is orders of magnitude more demanding since, at every point the evaluation of
one solution of the capacity problem has to be computed, and as the disks move, the constraints
change as well. The number of evaluations is larger than the number of iteration steps since the
gradients and Hessians must be approximated numerically. It should be noted that the success
of the optimization depends on the high accuracy of the capacity solver, since otherwise the
approximate derivatives are not sufficiently accurate.

In the context of this work, there have been no attempts to devise a special method that
would incorporate some of the insights gathered during this study. Instead, the numerical
optimization is used to challenge those insights, and therefore the optimization has been
computed with minimal input information.

4. Minimizing capacity: constrained configurations. As mentioned above, even with a
small number of disks the combinatorial explosion of the number of configurations is evident.
Therefore, we restrict ourselves to a series of experiments each with increasing complexity
building toward an understanding of the fundamental geometric principles behind the minimal
configurations. In each case we consider a set of hyperbolic disks Ej with radii rj , where
some geometric constraint is placed on all or some of the disks in the constellation.

An initial observation is that due to conformal invariance of the capacity, its numerical
value remains invariant under a Möbius transformation of the unit disk onto itself. Therefore
we may assume that the disk with the largest radius r1 is centered at the origin.

Further, consider a disk Bρ(z2, r2) with center z2 on the segment (0, 1). The disk lies in
the lens-shaped region

W = B2(iτ,
√

1 + τ2) ∩B2(−iτ,
√

1 + τ2), τ > 0,

with ρB2(0, iv) = r2, where v =
√

1 + τ2 − τ and is tangent to both boundary arcs of W
and ±1 ∈ ∂W ; see Figure 2.1 (right). Every disk lies within its own associated lens-shaped
domain.

4.1. Disks with collinear centers. Consider a set of m hyperbolic disks Ej with radii rj
and centers on the diameter (−1, 1) with

∑m
j=1 2rj = d1 = ρB2(−0.6, 0.6). We choose the

hyperbolic centers of these disks so that the hyperbolic distance between them is d ≥ 0, where
d = 0 corresponds to the case when they touch each other. The goal is to establish upper and
lower bounds for cap(B2,

⋃m
j=1Ej). Since the hyperbolic radius of a hyperbolic disk is invari-

ant under a Möbius transform, in view of (2.1), we have cap(B2, Ej) = 2π/ log(1/ th(rj/2))
for all Ej .

The cases cap(B2,
⋃m
j=1Ej) for m = 2, 3, 4 over the range 0.02 ≤ d ≤ 4 are illustrated

in Figure 4.1. The conjectured lower bound with d = 0 is computed with hp-FEM (see the
‘red dot’ in Figure 4.1 (right)), all other capacities are computed with BIE. From Figure 4.1 we
also see that

cap(B2,

m⋃
j=1

Ej) ≈
m∑
j=1

cap(B2, Ej),

as the separation d becomes large.
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FIG. 4.1. The hyperbolic disks when the hyperbolic distance d between them is d = 0.02 (left) and d = 1
(middle). On the right, cap(B2,

⋃k
j=1 Ej) is given as a function of d. In the first row: r1 = 0.55d1/2 and

r2 = 0.45d1/2, where d1 = ρB2 (−0.6, 0.6). In the second row: r1 = 0.35d1/2, r2 = 0.25d1/2, and
r3 = 0.40d1/2. In the third row: r1 = 0.35d1/2, r2 = 0.15d1/2, r3 = 0.20d1/2, and r4 = 0.30d1/2.

4.1.1. Verification of results. Let us consider the case with four disks and set
E =

⋃4
j=1Ej . The initial position is when the disks are contiguous, tangent to each other,

and then the hyperbolic distance d between the disks increases from 0 to 0.3. The conclusion
is that the value d = 0 yields the minimal value of the capacity of the constellation.

The values of the capacity cap(B2, E) in Table 4.2 have been computed using both
methods, the FEM and the BIE method. For the BIE, we use n = 27 and α = 0.8i. Table 4.2
shows the absolute differences between the computed values, which indicates a good agreement
between the two methods. As in [14], the values computed using the FEM will be considered
as reference values and used to estimate the error in the values computed by the BIE method for
several n. The BIE method cannot be used for d = 0. The error for d = 0.05, 0.1, . . . , 0.3 is
presented in Figure 4.2 (right), which illustrates the exponential convergence with an order of
convergence O(e−σn), where σ = − log |α| ≈ 0.223. Numerical experiments (not presented
here) with other values of α indicate that the order of convergence depends on α as well as
the centers z1, . . . , zm and the radii r1, . . . , rm of the inner circles. A detailed analysis of the
order of convergence for the above BIE method is a subject of future work.
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TABLE 4.1
Disks with collinear centers: m hyperbolic disks Ej with radii rj and centers on the diameter (−1, 1) with∑m

j=1 2rj = d1 = ρB2 (−0.6, 0.6). Conjectured lower and upper bounds of the capacity cap(B2,
⋃m

j=1 Ej).

m Lower Upper
2 8.515312094751020 11.463763614692954
3 7.450131756754710 12.744594178229441
4 7.017838565418236 14.282099489357595

TABLE 4.2
Computed values of cap(B2, E) when m = 4 for a constellation with disk radii (from left to

right) r1 = 0.15d1/2, r2 = 0.35d1/2, r3 = 0.20d1/2, and r4 = d1/2 − (r1 + r2 + r3), where
d1 = ρB2 (−0.6, 0.6). The centers on the diameter (−1, 1) as a function of the hyperbolic distance d between disks
are c1 = − th((r2 + r1 + d)/2), c2 = 0, c3 = th((r2 + r3 + d)/2), c4 = − th((r2 + 2r3 + r4 + 2d)/2).

d FEM BIE Agreement
0.00 7.017838565413617 — —
0.05 7.230698262298420 7.230698262298405 1.51× 10−14

0.10 7.442082617728579 7.442082617728490 8.88× 10−14

0.15 7.651760366696882 7.651760366696745 1.37× 10−13

0.20 7.859490827905997 7.859490827905935 6.22× 10−14

0.25 8.064996233395842 8.064996233395734 1.08× 10−13

0.30 8.267972932727597 8.267972932727497 9.95× 10−14

4.2. Four disks: permutation of contiguous disks. We consider next two cases where
all the disks of the constellation have fixed hyperbolic radii A > B > C > D > 0, but their
relative ordering is not constrained other than that each disk is tangent to at least one other
disk of the constellation and their hyperbolic centers lie (a) either on the diameter (−1, 1) or
(b) on the circle {z : |z| = 1/2}.

Now the question is what is the effect of the permutation of the disks on the capacity.
There are 24 permutations with 12 different capacities due to symmetry. For every realization,
the radii are denoted by rj from left to right, and the constellations are denoted by ED and
EC , respectively. For ED we set (A,B,C,D) = (1/2, 2/5, 1/4, 1/5), and for EC slightly
perturbed (A,B,C,D) = (1/2, 1/3, 1/4, 1/5). The results are collected in Table 4.3, and
Figure 1.1 displays the observed extremal permutations. Interestingly, the resulting capacities
have exactly the same dependence on the relative sizes of the radii.

4.3. Three immobile disks, one rolling disk. In the final experiment of this section we
study the situation when one disk is free to roll on the remaining three contiguous immobile
disks, centered on the diameter (−1, 1) and tangent to each other. The route of the mobile disk
is parametrized with a parameter τ ∈ [0, 1], where the values 0 and 1 are for the case when also
the mobile disk has its center on the diameter (−1, 1) and the values 1/3 and 2/3 correspond
to the intermediate points on the route when the rolling disk is tangent to two immobile disks.
Depending on the radii, it might also happen that there is only one such point. In Figure 5.1
below we see that for the values 1/3 and 2/3, the capacity of the constellation attains a local
minimum. The numerical results for this example are computed using the BIE method. So,
instead of assuming that the disks are touching each other, we assume that the disks are close
to each other such that the hyperbolic distance between them is d = 0.02. In all cases the
hyperbolic centers of the three fixed disks are z1 = − th((r1 − d)/2), z2 = th((r2 + 2d)/2),
and z3 = th((r3 + 2r2 + 3d)/2). The hyperbolic center z4 of the moving disk is represented
by the red curve shown in the figure. The observed results are summarized in the second row
of Figure 5.1.
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FIG. 4.2. The error for the constellation of four disks in Table 4.2. Left: The hp-FEM error estimate as a
function of 3

√
N , where N is the number of d.o.f. (logplot) for a four disk configuration with contacts (d = 0). The

observed constant or the slope of the graph is 37.1. Right: The errors in the computed values of cap(B2, E) using
the BIE method as functions of n, for α = 0.8i, where σ = − log |α| ≈ 0.223.

TABLE 4.3
Permutations of contiguous constellations. ED with centers on the segment (−1, 1) and (A,B,C,D) =

(1/2, 2/5, 1/4, 1/5). EC with centers on the circle {z : |z| = 1/2} and (A,B,C,D) = (1/2, 1/3, 1/4, 1/5).

Case r1 r2 r3 r4 capC(ED) capC(EC)

1 D B A C 6.781488018927628 6.451424010111881
2 D A B C 6.788910565780309 6.455800945561348
3 D C A B 6.843774515059010 6.475070264106950
4 C D A B 6.882473842468833 6.485425869048534
5 A B C D 6.890544149275032 6.496389476635198
6 B C A D 6.897202225461369 6.500210100051595
7 C A D B 6.919626376828870 6.520197932005349
8 A B D C 6.928074481413122 6.523073055329720
9 A C B D 6.932436180755356 6.542555705939787
10 C B D A 6.962814943144452 6.542981227003898
11 A C D B 7.053764008325471 6.575258877036491
12 A D C B 7.055565195334228 6.576332514877286

5. Minimizing capacity: optimization under free mobility. In this section we consider
a series of experiments, where some disks are given fixed positions but the others are free to
move within constraints. The constraints can restrict the admissible configurations to specific
regions. In the most general case, the only constraint is that the disks should not overlap. In
all simulations it is assumed that the disks have a minimal separation δ > 0. In those cases
where the disks touch, that is, δ = 0, only hp-FEM results are reported.

5.1. Three fixed disks. One freely moving disk. Consider three hyperbolic disks
with equal hyperbolic radii = 0.2 and whose centers are at 0.5e2(k−1)πi/3, k = 1, 2, 3. We
consider a fourth hyperbolic disk whose hyperbolic radius is r and its hyperbolic center is at
z = x+ iy such that the four disks are non-overlapping. Let a function u(x, y) be defined by
u(x, y) = cap(B2, E), where E is the union of the four disks. The level curves of the function
u(x, y) for six cases of r are given in Figure 5.2. Notice, that the locations of the local minima
depend on the chosen radius r of the free disk. Due to symmetry, there is a local minimum at
the origin in every case. The results suggest that there exists a critical radius rc such that the
global minimum is found at the origin for all sufficiently large r, that is, r > rc, but next to
one of the fixed disks for r < rc. The interior-point method is guaranteed to converge to one
of the local minima, and therefore for all r a local minimum may be attained when the mobile
disk is centered at the origin.
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TABLE 5.1
Hyperbolic radii used in Figure 5.1.

Case r1 r2 r3 r4

1 0.4 0.2 0.5 0.25
2 0.2 0.5 0.3 0.5
3 0.5 0.5 0.5 0.2
4 0.2 0.7 0.4 0.1

FIG. 5.1. Three immobile disks, one rolling disk. Cases 1 to 4 from left to right. Dependence of the capacity
on the relative location of the rolling disk is shown. The hyperbolic center z4 of the moving disk is on the red curve
shown in the figure.

5.2. One fixed disk. Two moving disks on a circle. Let us next consider three disks
D1, D2, D3 with equal hyperbolic radii r = 0.3. The centers of these three disks are placed
on the circle |z| = 0.5. We assume that the disk D1 is fixed with center on the positive real
line, D2 is in the upper-half plane, and D3 is in the lower-half plane. Starting when the three
disks are touching each others (see Figure 5.3 (left)), these disks start moving away from each
other such that the hyperbolic distance d between the hyperbolic centers of D1 and D2 is the
same as for D1 and D3. When all these disks are touching each other, d = 2r. The maximum
value dmax of d is obtained when the disks D2 and D3 are touching each other (see Figure 5.3
(middle)). The values of the capacity as a function of d are displayed in Figure 5.3 (right),
where the values of the capacity for 2r < d < dmax are computed by the BIE method and
for d = 2r and d = dmax by the FEM. The minimal capacity is found when d = 2r and the
maximal one when the centers of the three disks form an equilateral triangle.

5.3. One fixed disk. Three moving disks on a circle. Staying on the circle |z| = 0.5,
we consider four disks with centers on the circle and hyperbolic radii 3/30, 5/30, 7/30, and
9/30. Without any loss of generality, we will assume that the disk with hyperbolic radius
9/30 is fixed with its center on the positive real line at the point 0.5. Then, we search for the
positions of the other three disks that minimize the capacity. The initial positions of these
three disks are assumed to be 0.5e2kπi/4, for k = 1, 2, 3. For the optimized positions, we
have obtained six positions, with three different values of the capacity due to symmetry (see
Figure 5.4). For the disks in the first column in Figure 5.4, the capacity is 4.6269. The capacity
is 4.6193 for the second column and 4.6621 for the third column.
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(a) r = 0.6 (b) r = 0.5 (c) r = 0.4

(d) r = 0.3 (e) r = 0.2 (f) r = 0.1

FIG. 5.2. The level curves of the capacity u(x, y) of a constellation of four disks as a function of the center
z = x + iy of the fourth disk. Three hyperbolic disks with equal hyperbolic radii = 0.2 are at fixed locations,
whereas the fourth one with a given radius r is free to move (the mobile fourth disk is not shown). The number of
local minima depends on the radius of the fourth disk.

FIG. 5.3. Three disks with equal hyperbolic radius = 0.3 on the circle |z| = 0.5. One disk is fixed on the
positive real line, and the other two move symmetrically on the upper- and lower-half planes, respectively. The left
and middle figures illustrate the minimal dmin and maximal dmax values of the hyperbolic distance d between the
hyperbolic centers of the disk on the real line and the disk on the upper-half plane. The right figure shows the capacity
for the range between these extreme valued dmin ≤ d ≤ dmax.

FIG. 5.4. Four disks with hyperbolic radii 3/30, 5/30, 7/30, and 9/30, and with centers on the circle
|z| = 0.5. Representative configurations of the optimized cases.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

MOBILE DISKS IN HYPERBOLIC SPACE 15

FIG. 5.5. Four disks with hyperbolic radii 3/30, 5/30, 7/30, and 9/30. The three largest disks have fixed
positions, and the smallest one, centered at z = x+ iy, is free to move. The level curves of u(x, y) = cap(B2, E),
where E is the union of the four disks, indicate three local minima. The two configurations on the left have converged
to the global minimum.

5.4. One fixed disk. Three moving disks. Finally, we consider four disks with hy-
perbolic radii 3/30, 5/30, 7/30, and 9/30. This time, we will assume that the disk with
hyperbolic radius 9/30 is fixed with its center at the origin. The task is to find the positions of
the three free disks that minimize the capacity, where the initial positions of the three disks
are assumed to be 0.5e2kπi/3, for k = 0, 1, 2. For the optimized positions, we have obtained
two configurations, as shown in Figure 5.5, with the capacity 4.2322, which is the global
minimum.

Next, assume that the three disks with hyperbolic radii 5/30, 7/30, and 9/30 have fixed
positions as in Figure 5.5 (left), and the small disk with hyperbolic radius 3/30 is moving.
Assume that the center of the small disk is z = x + iy such that the four disks are non-
overlapping. Let a function u(x, y) be defined by u(x, y) = cap(B2, E), where E is the union
of the four disks. The level curves of the function u(x, y) are given in Figure 5.5 (right). As we
can see from the figure, the capacity has three local minima, and the capacity for the position
in Figure 5.5 (left) is the global minimum. This experiment has been repeated multiple times
with different initial starting positions for the free disks, and every one one of the local minima
has been observed.

5.4.1. On computational costs. Naturally, the optimization problems are the computa-
tionally most expensive ones of all our numerical experiments. In Table 5.2 performance data
on the four disks free mobility problem is presented. The comparison of the two methods is
only qualitative since both underlying hardware and the interior-point implementations are
different. However, some conclusions can be derived. In all cases the interior-point tolerance is
the same, ε = 10−6, and within the hp-FEM simulations, meshing is performed with the same
discretization control in every evaluation. For optimal performance, the individual solutions
must be accurate enough so that the error induced by the numerical approximation of the
gradients and Hessians is balanced with other sources of error. For the hp-FEM it appears
that the same mesh with p = 4 is not adequate in comparison with the one at p = 8. Even
though the time spent in one individual iteration step is doubled, the overall time for p = 8 is
significantly lower. At every evaluation the number of degrees of freedom is roughly 13000
(initial configuration: 13542, and final: 12589). Similarly, for BIE the performance at n = 27

is superior to that at n = 24.

The two implementations have very different requirements per iteration step. Observe that
the number of iteration steps is comparable, yet the number of evaluations is not. The average
time for one evaluation in BIE is four to five times faster than one evaluation in hp-FEM.
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TABLE 5.2
Solution times for the minimization process when one disk is fixed and three disks are mobile. Number of steps is

the number of iterations in the interior-point algorithm. Number of evaluations is the total number of solves performed
during the minimization.

Method Discretization Time Number of steps Number of evaluations
BIE n = 24 472.9 151 1455

n = 27 85.6 24 192
n = 210 150.7 24 192

hp-FEM p = 4 39600 202 39568
p = 6 11100 37 7494
p = 8 9100 20 4150

Matlab and Mathematica results have been computed on modern Intel and Apple Silicon
computers, respectively.

5.5. Hyperbolic area lower bound. Finally, we compute the capacity of a constellation
of disjoint hyperbolic disks and compare the computed values with the hyperbolic area lower
bound [10]. Let Er be the union of m disjoint hyperbolic disks with equal hyperbolic radii r
such the hyperbolic distance between any two disks is 0.02 (see Figure 5.6 for r = 0.5 and
m = 2, 3, 4). For m = 4, we consider two cases (as shown in Figure 5.6), where the centers
of the disks in Case I are on the real and imaginary axes. In Case II, the centers are on the
rays eiθ for θ = 0, π/3, 2π/3, 4π/3. The hyperbolic area of these m disks is 4mπ sh2(r/2).
Consider the hyperbolic disk Bρ(0,M) whose hyperbolic area is the same as the hyperbolic
area of the m disks,

M = 2 arsh
(√
m sh(r/2)

)
.

Then L(r) = cap(B2, Bρ(0,M)) is the hyperbolic area lower bound for cap(B2, Er). In
view of (2.2), we have

L(r) = cap(B2, Bρ(0,M)) = cap(B2, B2(0, th(M/2))) =
2π

log cth(M/2)
.

The BIE method is then used to compute cap(B2, Er) for several values of r with 0.02 ≤ r ≤ 2.
Our computed minimum value of the capacity can be considered a lower bound for the capacity
of the constellation of m disjoint hyperbolic disks. We compare the computed value with the
hyperbolic area lower bound by defining

Lr =
cap(B2, Er)− L(r)

L(r)
.

The graph of Lr is displayed in Figure 5.7 for 0.02 ≤ r ≤ 2 and m = 2, 3, 4. As r →∞ it
appears that the improvement tends to zero. This is a consequence of the nature of hyperbolic
geometry. With one disk fixed in the center, the other three will have ever smaller contributions
to the capacity since their Euclidean areas tend to zero as in Figure 2.1 (right). It is an
indication of the complexity of the problem that the graphs in Figure 5.7 do not reveal any
simple connection between the number of the disks and the minimal capacity.

6. Conclusions. We study lower bounds for the conformal capacity of a constellation
of disjoint hyperbolic disks Ej ⊂ B2, j = 1, . . . ,m, using a novel idea: instead of using a
symmetrization transformation, which usually leads to fusion of the disjoint disks, we are
looking for a lower bound in terms of another constellation which yields a minimal value. The
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FIG. 5.6. The four types of condensers (B2, Er) for the hyperbolic radius r = 0.5. From left: m = 2, m = 3,
m = 4 (Case I), m = 4 (Case II).

FIG. 5.7. The ratio Lr for the four types of condensers (B2, Er). As r →∞ the improvement relative to the
lower bound L(r) tends to zero as expected. Left: For m = 2, m = 3, the improvements are very similar. Right: In
line with our experiments above, the Case II is indeed optimal, and gives us an improved lower bound.

traditional symmetrization transformation [31, 4, 9] is now replaced by the free mobility of
individual disks with the constraint that the hyperbolic radii of the disks are invariant and the
disks are non-overlapping. In this process, due to the conformal invariance, the conformal
capacity of each disk stays invariant, whereas the capacity of the whole constellation may
significantly vary. Moreover, the hyperbolic area of the constellation is also constant.

The optimization methods we used produced (locally) minimal constellations such that
the disks group together as closely as possible. This coalescing is reminiscent of the behavior
of some animal colonies in cold weather conditions for the purpose of heat flow minimization.
Mathematical methods are not available for an analytic treatment of the problems, but we are
convinced that there is a strong connection with combinatorial geometry, topics like packing
and covering problems. Such problems often have many local minima [7, p. 157].

We carried out numerical simulations using two different methods, the BIE and hp-FEM
methods, and the close agreement of the two computational methods confirmed the results.
Because of the complexity of the problem, we studied various subproblems where disk centers
satisfied constraints such that the centers are on the interval (−1, 1) or at the same distance
from the origin. In both cases we observed the grouping phenomenon (cf. Figure 1.1) and,
moreover, noticed that a permutation of disks has an influence on the capacity if the radii are
different. Because the hyperbolic area of such a constellation stays constant, it is now clear
that the hyperbolic area alone does not define the constellation capacity.

This observation led us to compare our computed lower bound to Gehring’s sharp lower
bound given in terms of hyperbolic area. The conclusion was that we obtained in some cases
approximately 10% improvement when m = 4.
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The numerical agreement of the BIE and hp-FEM methods was very good, typically
ten decimal places or better, and the expected exponential convergence was observed; see
Figure 4.2. The performance of the BIE method was significantly faster than the hp-FEM
method when it comes to computational time and flexibility to modify the code to new
situations. This is probably due to the heavy data structure of the hp-FEM method due to a
hierarchical triangulation refinement process of the method.

A vast territory of open problems remains. First, it would be interesting to study whether
some kind of heuristic methods would lead to "close to extremal" constellations, to be used
as initial steps of the minimization. Such a method could be based on some computationally
cheaper object function than the capacity itself: for instance, first, the maximization of the
number of the mutual contact points of the constellation. Second, the case of m > 5 disks of
equal radii seems to be completely open. Perhaps in this case the number of locally minimal
constellations grows exponentially as a function of m. Third, one could study constellations
of other types of geometric figures like hyperbolic triangles.
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