
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 59, pp. 99–115, 2023.
Copyright © 2023, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol59s99

ORTHOGONALITY ON THE SEMICIRCLE: OLD AND NEW RESULTS∗
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Abstract. Orthogonal polynomials on the semicircle were introduced by Gautschi and Milovanović in [Rend.
Sem. Mat. Univ. Politec. Torino, Special Issue (July 1985), pp. 179-185] and [J. Approx. Theory, 46 (1986),
pp. 230-250]. In this paper we give an account of this kind of orthogonality, weighted generalizations mainly oriented
to Chebyshev weights of the first and second kinds, including several interesting properties of such polynomials.
Moreover, we also present a number of new results including those for Laurent polynomials (rational functions)
orthogonal on the semicircle. In particular, we give their recurrence relations and study special cases for the Legendre
weight and for the Chebyshev weights of the first and second kind. Explicit expressions for such orthogonal systems
with Chebyshev weights are presented, as well as the corresponding zero distributions.
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1. Introduction. Let Pn be the set of all algebraic polynomials of degree at most n, P be
a set of all polynomials, and {πk} be a system of monic orthogonal polynomials with respect
to a given inner product ( · , ·).

Two standard types of orthogonal polynomials are polynomials orthogonal on the real
line (cf. Szegő [30], Gautschi [6]), when the inner product is given by

(1.1) (p, q) =

∫
R
p(x)q(x)dσ(x) (p, q ∈ P),

where dσ(x) is a given nonnegative measure with finite or unbounded support, and polynomials
orthogonal on the unit circle (cf. Simon [25, 26]), when

(1.2) (p, q) =

∫ π

−π
p(eiθ)q(eiθ) dσ(θ) (p, q ∈ P),

where dσ(θ) is a positive measure on the interval [−π, π] whose support is an infinity set. The
last class of polynomials on a unit circle was introduced by Szegő; see [28, 29].

If x 7→ σ(x) is an absolutely continuous function in (1.1), then dσ(x) = w(x)dx, where
w(x) = σ′(x) is the weight function, i.e., a nonnegative function measurable in the Lebesgue
sense, for which all moments µk (k = 0, 1, . . .) exist and µ0 > 0. The famous examples are
classical (Jacobi, generalized Laguerre and Hermite) weight functions.

Orthogonal polynomials on curves and domains have also appeared occasionally; cf.
Mastroianni and Milovanović [14, p. 80].

In this paper we are interested in orthogonal polynomials on the semicircle [7, 8, 9], with
the inner product given by

(1.3) 〈p, q〉 =

∫ π

0

p(eiθ)q(eiθ)w(eiθ) dθ (p, q ∈ P),

where the second factor is not conjugated as in (1.2), so that the inner product (1.3) is not
Hermitian. Beside an account of old results for this type of orthogonality, we present some
new results.
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In [24] Lothar Reichel wrote: “In 1985, before the publication of the first paper by
Gautschi and Milovanović [GA95] on orthogonal polynomials on the semicircle, only polyno-
mials orthogonal with respect to an inner product on an interval or on a circle were known to
satisfy recurrence relations with few terms and not to suffer from the possibility of break down.
The results of this paper and of the more complete investigations [GA97, GA104] therefore
were quite surprising. The uncovering of the many nice properties of orthogonal polynomials
on the semicircle was very important for analysis, approximation theory, and computational
mathematics, and has spurred related work.”1

This paper is organized as follows. In Section 2 we give a short account of first results on
orthogonal polynomials on the semicircle and give same of their important properties, including
considerations for the Gegenbauer weight function. The so-called Laurent polynomials on
the semicircle and their numerator polynomials, with their recurrence relations, are studied
in Section 3, while special classes of these orthogonal systems with respect to Legendre and
Chebyshev weights of the first and second kind are treated in Section 4. Finally, Section 5 is
devoted to zero distribution of these classes of orthogonal systems.

2. Orthogonal polynomials on the semicircle. In the non-Hermitian case (1.3), Gaut-
schi and Milovanović firstly treated the simplest (Legendre) case w(z) = 1 by using an
approach based on a complex moment functional (cf. Chihara [2, pp. 6–10]) given by

L[zk] = µk, µk = 〈1, zk〉 =

∫ π

0

eikθdθ =

 π, k = 0,
2i/k, k is odd,
0, k is even, k 6= 0,

and proved that the related orthogonal polynomials exist uniquely, because the moment
sequence {µk} is quasi-definite, i.e.,

∆n =

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

...
. . .

...
µn−1 µn · · · µ2n−2

∣∣∣∣∣∣∣∣∣ 6= 0, n = 1, 2, . . .

Precisely, after a long calculation, they proved that

∆n =



2(n−1)2π

[((n− 1)/2)!]4


n−1∏
k=1

k!

(n−1)/2∏
k=1

(2k)!

(n+ 2k − 1)!


2

, n (odd) ≥ 1,

2n
2

[n!]2


n−1∏
k=1

k!

n/2∏
k=1

(2k)!

(n+ 2k − 2)!


2

, n (even) ≥ 2,

i.e., ∆n > 0 for each n ≥ 1, as well as the three-term recurrence relation (because of
〈zp, q〉 = 〈p, zq〉)

(2.1) πk+1(z) = (z − iαk)πk(z)− βkπk−1(z), k = 0, 1, . . . ,

with starting polynomials π−1(z) = 0, π0(z) = 1, where

α0 = θ0, αk = θk − θk−1, βk = θ2
k−1, k ≥ 1,

1References [GA95, GA97, GA104] are respectively [7, 8, 9] in this paper.
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and

θk =
2

2k + 1

[
Γ((k + 2)/2)

Γ((k + 1)/2)

]2

, k ≥ 0.

The case with a weight function w in (1.3) was considered in [9]. The function w is
positive and integrable on (−1, 1), with possible singularities at±1, and which can be extended
to a holomorphic function w(z) in the half disc D+ = {z ∈ C : |z| < 1, Im z > 0}.

To connect two monic polynomial systems {πk} and {pk}, the first orthogonal with
respect to the non-Hermitian product (1.3) and the second one orthogonal to the standard
inner product (1.1), we take a contour Cε, with small circular parts of radius ε and centers
at ±1 (see Figure 2.1), and consider the weighted integral of an arbitrary polynomial g ∈ P

over Cε. Then, by Cauchy’s theorem, we have
∫
Cε
g(z)w(z)dz = 0. Supposing that the

weight function w is such that integrals over γε,±1 tend to zero when ε → 0, we obtain the
following connection

(∀g ∈ P)

∫
Γ

g(z)w(z)dz +

∫ 1

−1

g(z)w(z)dz = 0.

It enables us to express the polynomials πk in terms of the real polynomials {pk}. Under the

-1 1

Γε

γε�-� γε��

FIG. 2.1. The contour Cε = [−1 + ε, 1− ε] ∪ γε,1 ∪ Γε ∪ γε,−1.

mild restriction

(2.2) Re 〈1, 1〉 = Re

{∫ π

0

w
(
eiθ
)
dθ

}
6= 0,

we proved that the orthogonal polynomials {πk} exist and can be expressed in terms of the
real orthogonal polynomials {pk}

πk(z) = pk(z)− iθk−1pk−1(z), k = 0, 1, . . . ,

where

θk−1 =
µ0pk(0) + iqk(0)

iµ0pk−1(0)− qk−1(0)
, k = 0, 1, . . . ,

µ0 = 〈1, 1〉 =
∫ π

0
w
(
eiθ
)
dθ, and {qk} are the associated polynomials, defined by (cf. [14,

pp. 111–114])

qk(z) =

∫ 1

−1

pk(z)− pk(x)

z − x
w(x)dx, k = 0, 1, . . .
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Also, the polynomials πk satisfy the three-term recurrence relation of the form (2.1), where
the coefficients αk and βk are given by

α0 =
b0
µ0
, αk = −θk−1 +

bk
θk−1

(k ≥ 1)

and

βk =
θk−1

θk−2
bk−1 = θk−1(θk−1 − iak−1),

where ak and bk are coefficients in the corresponding three-term relation for the real orthogonal
polynomials {pk}; for details see [9].

It follows from the three-term recurrence relation (2.1) that the zeros of the polynomial
πn(z) orthogonal on the semicircle are the eigenvalues of the (complex, tridiagonal) matrix

Jn =



iα0 1 0
β1 iα1 1

β2 iα2 1
. . . . . . . . .

1
0 βn−1 iαn−1


.

Under certain conditions, all zeros of polynomials πn orthogonal on the semicircle are
in D+. Some additional results on the zeros of such orthogonal polynomials are given in [5].

Polynomials orthogonal on a circular arc were considered by de Bruin [3] and Milo-
vanović and Rajković [21], as well as the Geronimus concept of orthogonality for such
polynomials [20].

Some applications of polynomials {πk} orthogonal on the semicircle in numerical differ-
entiation and numerical integration were given in [8], [1], [15] and [17], including error bounds
for the Gauss quadrature rules on the semicircle. The so-called s-orthogonal polynomials and
multiple orthogonal polynomials on the semicircle, as well as the corresponding quadratures
of Gaussian type, were considered in [27], [23], and [22].

2.1. Gegenbauer weight function. In this subsection we pay special attention to some
results related to the Gegenbauer weight function w(z) = wλ(z) = (1− z2)λ−1/2, with the
parameter λ > −1/2. Since the assumption (2.2) is satisfied, µ0 = 〈1, 1〉 = π 6= 0, the
corresponding orthogonal polynomials {πλk} on the semicircle Γ, in this case, exist uniquely
and can be expressed in terms of monic Gegenbauer polynomials Ĉk(z) as

πλk (z) = Ĉλk (z)− iθk−1Ĉ
λ
k−1(z),

where the sequence {θk} is given recursively by

θ0 =
Γ
(
λ+ 1

2

)
√
π Γ(λ+ 1)

, θk =
k(k + 2λ− 1)

4(k + λ)(k + λ− 1)
· 1

θk−1
, k = 1, 2, . . . ,

wherefrom we can obtain an explicit form in terms of the gamma function,

(2.3) θk =
1

λ+ k
·

Γ
(
k+2

2

)
Γ
(
λ+ k+1

2

)
Γ
(
k+1

2

)
Γ
(
λ+ k

2

) , k ≥ 0 .
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These polynomials {πk} satisfy the three-term recurrence relation (2.1), with the coefficients
(see [9] and [16])

α0 = θ0 , αk = θk − θk−1 , βk = θ2
k−1 , k ≥ 1.

Using Stirling’s formula (cf. [18, p. 111])

Γ(z) =
√

2πzz−1/2e−z
[
1 +

1

12z
+

1

288z2
+O

(
1

z3

)]
in (2.3), we find that θk → 1/2, i.e., αk → 0 and βk → 1/4, when k → +∞.

If λ > −1/2, then all zeros of the orthogonal polynomials πλk (z), k ≥ 2, are simple,
distributed symmetrically with respect to the imaginary axis, and contained in the open upper
unit half disk D+ = {z ∈ C : |z| < 1, Im z > 0}; see [9, Thms. 6.5 & 6.7].

The zero distribution of πλk (z) for λ = 0, 1/2, 1 is presented in Figure 2.2, for k = 3, 6, 10.
For example, the zeros of πλ3 (z), i.e.,

π0
3(z) = z3− iz2

2
− 3z

4
+

i

4
, π

1/2
3 (z) = z3− 8iz2

5π
− 3z

5
+

8i

15π
, π1

3(z) = z3− iz2

2
− z

2
+

i

8

are {i 0.3576126, ±0.8330738 + i 0.0711937}, {i 0.3150768, ±0.7275822 + i 0.0971095},
{i 0.2849201, ±0.6535706 + i 0.1075399}, respectively. With increasing k the zeros tend to
fall to the interval [−1, 1].
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FIG. 2.2. Zeros of πλk (z) for k = 3 (green), k = 6 (blue), k = 10 (red), when λ = 0 (left), λ = 1/2 (middle)
and λ = 1 (right).

In particular, two Gegenbauer cases are very interesting (see [19]).
1. For λ = 0 (Chebyshev weight of the first kind w0(z) = 1/

√
1− z2 ), we have

π0
0(z) = 1, π0

k(z) =
1

2k−1
(Tk(z)− iTk−1(z)) , k ≥ 1,

or in the explicit form

π0
k(z) =

1

2k

{[
1− i

(
z −

√
z2 − 1

)](
z +

√
z2 − 1

)k
+
[
1− i

(
z +

√
z2 − 1

)](
z −

√
z2 − 1

)k}
.

2. For λ = 1 (Chebyshev weight of the second kind w1(z) =
√

1− z2 ), we have

π1
0(z) = 1, π1

k(z) =
1

2k
(Uk(z)− iUk−1(z)) , k ≥ 1,
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or in the explicit form

π1
k(z) =

1

2k+1
√
z2 − 1

{[(
z +

√
z2 − 1

)
− i
] (
z +

√
z2 − 1

)k
−
[(
z −

√
z2 − 1

)
− i
] (
z −

√
z2 − 1

)k}
.

In all cases, |z +
√
z2 − 1| > 1, when z ∈ C \ [−1, 1].

3. Laurent polynomials on the semicircle. As before we use the non-Hermitian inner
product (1.3), with an appropriate weight function w, and again the concept of orthogonality
with respect to the complex moment functional

(3.1) L[zk] = µk = 〈1, zk〉, k = 0,±1,±2, . . . ,

which includes positive and negative exponents.

3.1. The linear space Λp,q and orthogonal Laurent polynomials. To begin with, let
Λp,q be a linear space, over the complex numbers C, of polynomials generated by the basis
Bp,q = {zp, zp+1, . . . , zq}, where p ≤ q and p, q ∈ Z.

Note that the standard space of polynomials of degree at most n (∈ N) of dimension
n + 1, i.e., Pn is just Λ0,n. For p = q = 0, the space Λp,q reduces to the space of complex
constants

Λ0,0 = Λ0 = P0 = {c ∈ C : c 6= 0}.

For each n ∈ N, we usually take p = −n + 1 and q = n, so that the dimension of the
space Λ−n+1,n is equal to 2n. Such a space is appropriate, for example, for considering
Gaussian quadrature formulas. Its extension when n→∞ will be denoted by Λ±. We can
also consider other spaces, e.g., Λ−n,n−1, Λ−n,n, etc.

Let {Rm(z)} be a system of orthogonal elements in Λ±, i.e., orthogonal Laurent polyno-
mials, obtained by applying the well-known Gram-Schmidt orthogonalization process to the
sequence of monomials {1, z, z−1, z2, z−2, . . .}.

REMARK 3.1. An alternative system {R̃m(z)} can be generated by the following se-
quence {1, z−1, z, z−2, z2, . . .} and it can be expressed in terms of the polynomials Rm(z).

By the construction orthogonal Laurent polynomials from the sequence of monomials
{1, z, z−1, z2, z−2, . . .}, we conclude that

Rm(z) ∈ Λ−[m/2],[(m+1)/2] (m ∈ N0),

so that the orthogonal element (Laurent’s polynomial) Rm(z) can be represented as

(3.2) Rm(z) =

m∑
ν=0

c(m)
ν zν−[m/2], m ∈ N0,

for some constants c(m)
ν , ν = 0, 1, . . . ,m. The coefficients c(m)

m and c(m)
0 are called the

leading and trailing coefficient of Rm(z), respectively. In our consideration these coefficients
c
(m)
m and c

(m)
0 are different from zero, and we always take the leading coefficient to be

c
(m)
m = 1, so that for orthogonal Laurent’s polynomials of even and odd indices we have

R2k(z) = c
(2k)
0 z−k + c

(2k)
1 z−k+1 + · · ·+ c

(2k)
2k−1z

k−1 + zk,(3.3)

R2k+1(z) = c
(2k+1)
0 z−k + c

(2k+1)
1 z−k+1 + · · ·+ c

(2k+1)
2k zk + zk+1.(3.4)

http://etna.ricam.oeaw.ac.at
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For such an orthogonal system {Rm(z)}, with respect to the non-Hermitian inner prod-
uct (1.3), we have

(3.5) 〈Rn, Rm〉 =

∫ π

0

Rn(eiθ)Rm(eiθ)w(eiθ) dθ = ‖Rn‖2δn,m (n,m ∈ N0),

where δn,m is Kronecker’s delta and the quasi-norm

‖Rn‖2 = 〈Rn, Rn〉 =

∫ π

0

Rn(eiθ)2w(eiθ) dθ (n ∈ N0)

is, in general, a complex number.

3.2. Recurrence relations for the orthogonal Laurent polynomials. Supposing that
orthogonal Laurent polynomials exist for a given weight functionw, we can prove the following
result. Otherwise, all weight functions used in this paper ensure the existence of these Laurent
orthogonal polynomials.

THEOREM 3.2. Let the complex moment functional be given by (3.1) and the correspond-
ing Laurent polynomials Rm(z) be orthogonal in Λ± satisfying (3.5). Then the following two
three-term recurrence relations

R2k+1(z) = (z − a2k)R2k(z) + b2kR2k−1(z)(3.6)

and

R2k+2(z) =
(

1− a2k+1

z

)
R2k+1(z) + b2k+1R2k(z)(3.7)

hold, where R0(z) = 1 and R−1(z) = 0, and {ak} and {bk} are sequences of complex
numbers depending only on the weight function w(z).

Proof. Evidently, R0(z) = 1 and R1(z) = z − 〈1, z〉/〈1, z〉 = z − µ1/µ0. Using the
previous expansions (3.3) and (3.4), we analyze the differenceR2k+1(z)−zR2k(z) for k ≥ 1,

R2k+1(z)− zR2k(z) =

2k+1∑
ν=0

c(2k+1)
ν zν−k −

2k∑
ν=0

c(2k)
ν zν+1−k

= c
(2k+1)
0 z−k +

2k∑
ν=1

(
c(2k+1)
ν − c(2k)

ν−1

)
zν−k.

Since it belongs to the space Λ−k,k, this difference can be expressed as a linear combination
of the orthogonal Laurent polynomials

(3.8) R2k+1(z)− zR2k(z) =

2k∑
ν=0

d(k)
ν Rν(z),

so that, because of the orthogonality (3.5),

〈R2k+1, Rj〉 − 〈zR2k, Rj〉 =

2k∑
ν=0

d(k)
ν 〈Rν , Rj〉 = d

(k)
j 〈Rj , Rj〉, 0 ≤ j ≤ 2k.

Note that for the non-Hermitian inner product (3.5) we have 〈zR2k, Rj〉 = 〈R2k, zRj〉.
Taking j ≤ 2k − 2, we conclude that d(k)

j = 0, while for j = 2k − 1 and j = 2k, we get the
following equalities

−〈R2k, zR2k−1〉 = d
(k)
2k−1〈R2k−1, R2k−1〉 and − 〈R2k, zR2k〉 = d

(k)
2k 〈R2k, R2k〉.
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Using the abbreviations for the coefficients d(k)
2k = −a2k and d(k)

2k−1 = b2k, according to (3.8),
we prove the first recurrence relation (3.6), with

(3.9) a2k =
〈R2k, zR2k〉
〈R2k, R2k〉

and b2k = − 〈R2k, zR2k−1〉
〈R2k−1, R2k−1〉

.

To prove the second recurrence relation (3.7), we again start with (3.3) and (3.4) in the
expression Ek(z; γk) := R2k+2(z)−R2k+1(z) + γkz

−1R2k+1(z), with a free parameter γk.
Since

Ek(z; γk) =

2k+2∑
ν=0

c(2k+2)
ν zν−k−1 −

2k+1∑
ν=0

c(2k+1)
ν zν−k + γk

2k+1∑
ν=0

c(2k+1)
ν zν−k−1

=
(
c
(2k+2)
0 + γkc

(2k+2)
0

)
z−k−1 +

2k∑
ν=0

(
c
(2k+2)
ν+1 − c(2k+1)

ν + γkc
(2k+1)
ν+1

)
zν−k,

because c(2k+2)
2k+2 = c

(2k+1)
2k+1 = 1, we see that Ek(z; γk) belongs to the space Λ−k−1,k. On the

other side, by hypothesis, the trailing coefficients c(2k+1)
0 and c(2k+2)

0 are different from zero,
and we can take γk = a2k+1 = −c(2k+1)

0 /c
(2k+2)
0 , so that Ek(z; a2k+1) ∈ Λ−k,k. Therefore

we can use the expansion

(3.10) Ek(z; a2k+1) = R2k+2(z)−R2k+1(z) + a2k+1z
−1R2k+1(z) =

2k∑
ν=0

e(k)
ν Rν(z),

with some coefficients e(k)
ν , ν = 0, 1, . . . , 2k. As before, from (3.10), we have

〈R2k+2, Rj〉−〈R2k+1, Rj〉+a2k+1〈R2k+1, z
−1Rj〉 =

2k∑
ν=0

e(k)
ν 〈Rν , Rj〉, 0 ≤ j ≤ 2k+1.

For j = 0, 1, . . . , 2k − 1 in the last equality, we conclude that e(k)
j = 0, while for

j = 2k + 1 and j = 2k, we get

−〈R2k+1, R2k+1〉+ a2k+1〈R2k+1, z
−1R2k+1〉 = 0

and

a2k+1〈R2k+1, z
−1R2k〉 = e

(k)
2k 〈R2k, R2k〉,

respectively. This proves the second recurrence relation (3.7), including the parameters

(3.11) a2k+1 =
〈R2k+1, R2k+1〉
〈R2k+1, z−1R2k+1〉

and b2k+1 = a2k+1
〈R2k+1, z

−1R2k〉
〈R2k, R2k〉

,

where we put e(k)
2k = b2k+1.

REMARK 3.3. Similar approaches for certain formal Laurent polynomials were used
in [4], [10], [11], [12], and [13].
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3.3. Numerators of the Laurent orthogonal polynomials. According to the explicit
expression (3.2), i.e.,

(3.12) Rm(z) =
1

z[m/2]

m∑
ν=0

c(m)
ν zν , m ∈ N0,

we can consider the sequence of the numerators {Qm(z)}, given by Qm(z) = z[m/2]Rm(z),
as a monic polynomial sequence, because c(m)

m = 1. Note that Q2k(z) = zkR2k(z) and
Q2k+1(z) = zkR2k+1(z) for each k ∈ N0.

The following proposition is an immediate consequence of recurrence relations (3.6)
and (3.7).

PROPOSITION 3.4. We have

(3.13) Qk+1(z) = (z − ak)Qk(z) + bkz Qk−1(z), k = 0, 1, . . . ,

with Q0(z) = 1 and Q−1(z) = 0, where the recurrence coefficients are given in (3.9)
and (3.11).

REMARK 3.5. The coefficient b0 which is multiplied by Q−1(z) = 0 in the three-term
recurrence relation (3.13) may be arbitrary, but it is sometimes convenient to define it as
b0 =

∫ π
0
w(eiθ)dθ.

The three-term recurrence relation (3.13) appears in several papers (e.g., [12], [11], [31]),
where the polynomials Qm(z) are defined by the determinantal formula

(3.14) Qm(z) =
1

∆m

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µm
µ−1 µ0 µ1 · · · µm−1

...
...

...
...

...
µ1−m µ2−m µ3−m · · · µ1

1 z z2 · · · zm

∣∣∣∣∣∣∣∣∣∣∣
(m ≥ 1),

where

(3.15) ∆0 = 1, ∆m =

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µm−1

µ−1 µ0 · · · µm−2

...
...

. . .
...

µ1−m µ2−m · · · µ0

∣∣∣∣∣∣∣∣∣ (m ≥ 1)

and µk = L[zk], k = 0,±1,±2, . . . (in general, the µk may be arbitrary complex numbers).
According to (3.12) and (3.14) we can conclude that for the existence of the polynomials

Qm(z), and also Rm(z), we need ∆m 6= 0 for each m ∈ N, as well as

(3.16) ∆
(1)
0 = 1, ∆(1)

m =

∣∣∣∣∣∣∣∣∣
µ1 µ2 · · · µm
µ0 µ1 · · · µm−1

...
...

. . .
...

µ2−m µ3−m · · · µ1

∣∣∣∣∣∣∣∣∣ 6= 0 (m ≥ 1),

because the trailing coefficient of Rm(z) is exactly c(m)
0 = ∆

(1)
m /∆m. Then the coefficients

in the recurrence relation (3.13) are given by (cf. [31, Proposition 1.1])

(3.17) ak = −Qk+1(0)

Qk(0)
=

∆k

∆k+1
·

∆
(1)
k+1

∆
(1)
k

(k ∈ N0)
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and

(3.18) bk =
∆k−1

∆k
·

∆
(1)
k+1

∆
(1)
k

(k ∈ N).

Since

L[Qm(z)z−k] =
1

∆m

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µm
µ−1 µ0 µ1 · · · µm−1

...
...

...
...

...
µ1−m µ2−m µ3−m · · · µ1

µ−k µ1−k µ2−k · · · µn−k

∣∣∣∣∣∣∣∣∣∣∣
= 0

for each k = 0, 1, . . . ,m− 1, it is clear that the following result holds.
PROPOSITION 3.6. The polynomials Qm(z) are characterized by the following orthogo-

nality relations ∫ π

0

e−ikθQm
(
eiθ
)
w
(
eiθ
)

dθ = 0, k = 0, 1, . . . ,m− 1.

4. Special cases of Laurent orthogonal polynomials on the semicircle. In this section
we consider three interesting weight functions:

• Legendre weight w(z) = 1;
• Chebyshev weight of the first kind w(z) = (1− z2)−1/2;
• Chebyshev weight of the second kind w(z) = (1− z2)1/2.

In all cases we start with analytic expressions for the moments µk (k ∈ Z). In Chebyshev’s
cases we are able to find analytic expressions for the determinants ∆m and ∆

(1)
m , analytic

expressions for the coefficients ak and bk in the recurrence relation (3.13), as well as for the
corresponding polynomials Qm(z), in notations QTm(z) and QUm(z). Also, the zeros of QTm(z)
can be found in analytic form.

4.1. Legendre weight. In this simplest case for the weight function w(z) = 1, the
moment functional (3.1) is given by

L[zk] = µk =

∫ π

0

eikθdθ =


π, k = 0,

2i/k, k odd,
0, k even, k 6= 0.

Expanding the determinants (3.15) and (3.16) we see that they are values of algebraic
polynomials with integer coefficients at π, i.e.,

∆1 = π, ∆2 = π2 − 4, ∆3 = π3 − 8π, ∆4 =
1

9

(
256− 112π2 + 9π4

)
,

∆5 =
1

81

(
5632π − 1368π3 + 81π5

)
,

∆6 =
1

18225

(
−4194304 + 2515968π2 − 391716π4 + 18225π6

)
, etc.
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and

∆
(1)
1 = 2i, ∆

(1)
2 = −4, ∆

(1)
3 =

2i

3

(
−16 + π2

)
, ∆

(1)
4 =

8

9

(
32− 3π2

)
,

∆
(1)
5 =

2i

405

(
16384− 2448π2 + 81π4

)
,

∆
(1)
6 = − 4

18225

(
1048576− 198144π2 + 9315π4

)
, etc.,

so that we can conclude that ∆m and ∆
(1)
m are different from zero for all m ∈ N, because the

transcendental number π cannot be a zero of any polynomial with integer coefficients (all its
zeros must be algebraic numbers!). Notice that the determinants ∆

(1)
k of odd order have pure

imaginary values, while the values of other determinants are real.
According to (3.17) and (3.18) the corresponding coefficients ak and bk in the recurrence

relation (3.13) have pure imaginary values and they are represented as rational functions of π:

a0 =
2i

π
, a1 =

2iπ

π2 − 4
, a2 =

i
(
16− π2

) (
π2 − 4

)
6π (π2 − 8)

,

a3 =
12iπ

(
π2 − 8

) (
32− 3π2

)
4096− 2048π2 + 256π4 − 9π6

,

a4 =
i
(
256− 112π2 + 9π4

) (
16384− 2448π2 + 81π4

)
20π (180224− 60672π2 + 6696π4 − 243π6)

, . . .

and

b1 =
2i

π
, b2 =

iπ
(
16− π2

)
6 (π2 − 4)

, b3 =
4i
(
π2 − 4

) (
3π2 − 32

)
3π (π2 − 16) (π2 − 8)

,

b4 =
iπ
(
π2 − 8

) (
16384− 2448π2 + 81π4

)
20 (32− 3π2) (256− 112π2 + 9π4)

, . . .

This case has been recently considered in [19], including some applications in numerical
integration.

4.2. Chebyshev weight of the first kind. In this case the weight function is given by
w(z) = (1− z2)−1/2, and the corresponding moments are

µk =

∫ π

0

eikθ

√
1− e2iθ

dθ =


2kπ

( −k
−k/2

)
, k (even) ≤ 0,

i (k+1)π
2k+1k

(
k+1

(k+1)/2

)
, k (odd) ≥ 1,

0, k (odd) ≤ −1 or k (even) ≥ 2.

For the determinants (3.15) and (3.16) we obtain explicit expressions

∆n =
πn

2
1
2 (n−2)(n−1)

> 0, ∆(1)
n =

inπn

2
1
2 (n−2)(n−1)

6= 0, n ∈ N,

so that, using (3.17) and (3.18), we have

ak = i (k ≥ 0), b1 = i, bk =
i

2
(k ≥ 2),
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and b0 = π (by definition). In this way, for the recurrence relation (3.13), we have

QT1 (z) = (z − i)QT0 (z),

QT2 (z) = (z − i)QT1 (z) + i z QT0 (z),

QTk+1(z) = (z − i)QTk (z) +
i

2
z QT0 (z) (k ≥ 2),

with QT0 (z) = 1. Solving the last (difference) equation (for a fixed z), with starting poly-
nomials QT0 (z) = 1 and QT1 (z) = z − i, we get an explicit formula for the polynomials
QTk (z).

PROPOSITION 4.1. We have

QTk (z) =
1

2k

[(
z +

√
z2 − 1− i

)k
+
(
z −

√
z2 − 1− i

)k]
(k ≥ 0).

Here, |z +
√
z2 − 1| = r > 1, whenever z ∈ C \ [−1, 1].

A few of the first polynomials are

QT0 (z) = 1, QT1 (z) = z − i, QT2 (z) = z2 − iz − 1, QT3 (z) = z3 − 3i

2
z2 − 3

2
z + i,

QT4 (z) = z4 − 2iz3 − 5

2
z2 + 2iz + 1, QT5 (z) = z5 − 5i

2
z4 − 15

4
z3 +

15i

4
z2 +

5

2
z − i,

QT6 (z) = z6 − 3iz5 − 21

4
z4 +

25i

4
z3 +

21

4
z2 − 3iz − 1,

QT7 (z) = z7 − 7i

2
z6 − 7z5 +

77i

8
z4 +

77

8
z3 − 7iz2 − 7

2
z + i, etc.

The corresponding Laurent-Chebyshev polynomials (exact rational functions) of the first
kind are RTm(z) = QTm(z)/z[m/2] (m ≥ 0).

PROPOSITION 4.2. The (quasi)norms of the Laurent-Chebyshev polynomials of the first
kind are given by

‖RTm‖2 =

∫ π

0

RTm(eiθ)2

√
1− e2iθ

dθ =

 π, m = 0,

(−1)[m/2] π

2m−1
, m ≥ 1.

An explicit formula for zeros of the polynomial QTn (z) is given in the following theorem.
THEOREM 4.3. For a given n ∈ N let

ϕk =
(2k − 1)π

2n
, k = 1, 2, . . . , n,

and

(4.1) θk =

{
arcsin

(
sin2 ϕk

)
, k = 1, 2, . . . ,

[
n+1

2

]
,

π − arcsin
(
sin2 ϕk

)
, k =

[
n+3

2

]
, . . . , n.

For each n ∈ N the zeros of the polynomial QTn (z) are given by

ζk = cosϕk

√
1 + sin2 ϕk + i sin2 ϕk = eiθk , k = 1, 2, . . . , n.

All zeros are mutually different and symmetrically distributed on the upper semicircle, i.e.,
θn−k+1 = π − θk, k = 1, 2, . . . , [(n+ 1)/2].
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Proof. Using the explicit form of the polynomial QTn (z) (see Proposition 4.1) we should
solve the equations

z − i−
√
z2 − 1

z − i +
√
z2 − 1

= ei(2k−1)π/n = e2iϕk = qk, k = 1, . . . , n,

i.e.,

z2 + i
(1− qk)2

2qk
z − 1 = 0, k = 1, . . . , n,

where ϕk = (2k − 1)/π/(2n). Since (1− qk)2/(2qk) = −2 sin2 ϕk we get the solutions of
the last quadratic equations in the form

ζk = i sin2 ϕk + cosϕk

√
1 + sin2 ϕk = eiθk , k = 1, . . . , n,

where

tan θk =
sin2 ϕk

cosϕk
√

1 + sin2 ϕk
, sin θk = sin2 ϕk, k = 1, . . . , n.

Note that |ζk| = 1 and Im ζk > 0 for each k = 1, 2, . . . , n, as well as that θn−k+1 = π − θk,
k = 1, 2, . . . , [(n+ 1)/2].

In the sequel we use the notation θ(n)
k instead of θk.

REMARK 4.4. According to (4.1) the sequences of angles Θ(n) = {θ(n)
k }

[(n+1)/2]
k=1 in (4.1),

for n = 1, . . . , 6 are

Θ(1) =
{π

2

}
; Θ(2) =

{π
6

}
; Θ(3) =

{
arcsin

1

4
,
π

2

}
;

Θ(4) =

{
arcsin

2−
√

2

4
, arcsin

2 +
√

2

4

}
;

Θ(5) =

{
arcsin

3−
√

5

8
, arcsin

3 +
√

5

8
,
π

2

}
,

Θ(6) =

{
arcsin

2−
√

3

4
,
π

6
, arcsin

2 +
√

3

4

}
,

respectively.
Zeros of polynomials QTn (z) are presented in Figure 4.1 for n = 5 and n = 50.
According to (4.1) it is easy to see that 0 < θ

(n)
1 < θ

(n)
2 < · · · < θ

(n)
n < π. The

following result represents an analogue of the well-know theorem on interlacing property of
real orthogonal polynomials on the real line; cf. et al. [14, p. 99].

THEOREM 4.5. The zeros of QTn (z) and QTn+1(z) interlace on the upper semicircle, i.e.,
for their arguments the following inequalities

(4.2) 0 < θ
(n+1)
1 < θ

(n)
1 < θ

(n+1)
2 < θ

(n)
2 < · · · < θ(n)

n < θ
(n+1)
n+1 < π

hold.
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FIG. 4.1. Zeros of the polynomials QTn (z) for n = 5 (left) and n = 50 (right).

Proof. It is enough to prove (4.2) for arguments ≤ π/2, because the sinus function is
increasing in that domain. Then

sin θ
(n)
k − sin θ

(n+1)
k = sin2 (2k − 1)π

2n
− sin2 (2k − 1)π

2(n+ 1)
> 0

and

sin θ
(n+1)
k+1 − sin θ

(n)
k = sin2 (2k + 1)π

2(n+ 1)
− sin2 (2k − 1)π

2n
> 0,

i.e., θ(n+1)
k < θ

(n)
k < θ

(n+1)
k+1 .

An interesting illustration of the interlacing property of zeros of polynomials on the
semicircle is presented in Figure 4.2.
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FIG. 4.2. Zeros of the polynomials QTn (z) for n = 5 and n = 6 (left) and for n = 6 and n = 7 (right).

4.3. Chebyshev weight of the second kind. In this case the weight function is given by
w(z) = (1− z2)1/2, and the corresponding moments are

µk =

∫ π

0

eikθ
√

1− e2iθ dθ =



2kπ
k+1

( −k
−k/2

)
, k (even) ≤ 0,

i π
2kk

(
k

(k−1)/2

)
, k (odd) ≥ 1,

−iπ, k = −1,

0, k (odd) ≤ −3 or k (even) ≥ 2,
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For the determinants (3.15) and (3.16), in this case, we also obtain explicit expressions

∆n =
πn

2
1
2 (n−1)n

> 0, ∆(1)
n =

inπn

2
1
2 (n2−n+2)

6= 0, n ∈ N.

Using (3.17) and (3.18), we get

a0 =
i

2
, ak = i (k ≥ 1), bk =

i

2
(k ≥ 1),

and b0 = π (by definition).
PROPOSITION 4.6. We have

QUk (z) =
1

2k+1
√
z2 − 1

[(
z +

√
z2 − 1

)(
z +

√
z2 − 1− i

)k
−
(
z −

√
z2 − 1

)(
z −

√
z2 − 1− i

)k]
.

Here, |z +
√
z2 − 1| = r > 1, whenever z ∈ C \ [−1, 1].

PROPOSITION 4.7. The (quasi)norms of the Laurent-Chebyshev polynomials of the
second kind are given by

‖RUm‖2 =

∫ π

0

RUm(eiθ)2
√

1− e2iθ dθ =


π, m = 0,

3π

4
, m = 1,

π

2m+1

(
cos mπ2 + sin mπ

2

)
, m ≥ 2.

5. Zero distribution. As we have seen all the zeros of the polynomials QTn (z), in the
case of Chebyshev weight of the first kind, are on the upper (unit) semicircle, including the
interlacing property (Theorem 4.5).

Zeros of the polynomials QUn (z)
(
w(z) =

√
1− z2

)
for n = 5, n = 20, n = 50 and

n = 100 are displayed in Figure 5.1. As n increases, the zeros of the polynomials QUn (z)
tend to reach the upper semicircle. A very similar behaviour is shown by the zeros of the
polynomials QPn (z) (Legendre’s case).

Finally, based on a large number of numerical experiments, we can state a conjecture
about zero distribution of the polynomials Qn(z) (some kind of the “interlacing property”) for
the Legendre weightw(z) = 1 and the Chebyshev weight of the second kindw(z) =

√
1− z2.

Thus, let Sn = {ζ1, ζ2, . . . , ζn} be the set of all zeros of the polynomial Qn(z). With Cn we
denote the convex hull of the set Sn ∪

{
−1, 1

}
, i.e.,

Cn = Co
(
Sn ∪

{
−1, 1

})
= Co

({
−1, ζ1, ζ2, . . . , ζn, 1

})
.

CONJECTURE 5.1. All zeros of the polynomial Qn(z) are contained in the domain

{z ∈ C : |z| < 1, Im z > 0} \ Cn−1,

i.e., Sn ⊂ D+ \ Cn−1.
In Figure 5.2 we present the cases with the Legendre weight (w(z) = 1) and the Cheby-

shev weight of the second kind (w(z) =
√

1− z2 ). Zeros of the polynomial of degree
n = 7 are contained in S7 ⊂ D+ \ C6, where the convex hull C6 = Co

(
S6 ∪

{
−1, 1

})
=

Co
({
−1, ζ1, ζ2, . . . , ζ6, 1

})
.
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FIG. 5.1. Zeros of the polynomials QUn (z) for n = 5, 20, 50, 100.
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FIG. 5.2. Zeros of the polynomials QPn (z) (left) and QUn (z) (right) for n = 6 and n = 7.
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[22] G. V. MILOVANOVIĆ, M. P. STANIĆ, Multiple orthogonal polynomials on the semicircle and corresponding

quadratures of Gaussian type, Math. Balkanica (N.S.), 18 (2004), pp. 373–387.
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