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Abstract. This paper is concerned with the distance of a symmetric tridiagonal Toeplitz matrix T to the
manifold of similarly structured singular matrices, and with determining the closest matrix to T in this manifold.
Explicit formulas are presented, exploiting the analysis of the sensitivity of the spectrum of T with respect to
structure-preserving perturbations of its entries.
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1. Introduction. The sensitivity of the solution of a linear algebra problem with respect
to perturbations in the data has received considerable attention in the literature. This interest
can be traced back to the work of Golub and Wilkinson [11], Wilkinson [36,37], Demmel [4,5],
and numerous other authors; see, e.g., [10, 33] and references therein. The effect of structure-
preserving perturbations of the matrix entries has been analyzed in the context of linear systems
(see, e.g., [14, 29, 30, 35]) as well as for structured eigenproblems. Measures of structured
eigenvalue sensitivity include both structured pseudospectra (see, e.g., [2, 6, 12, 16, 24, 31])
and structured condition numbers, introduced by Tisseur [34]. The latter measures have been
investigated, e.g., in [17, 21, 23] and, recently, applied to network analysis [9, 26].

Symmetric tridiagonal Toeplitz matrices arise in several applications, including the nu-
merical solution of ordinary and partial differential equations [1, 32], and as regularization
matrices in Tikhonov regularization for the solution of discrete ill-posed problems [13, 15, 28].
It is therefore important to understand properties of such structured matrices relevant for
computation.

By leveraging structured eigensensitivity analysis, this paper is concerned with the dis-
tance of symmetric tridiagonal Toeplitz matrices to the manifold of similarly structured singular
matrices, and with determining the closest matrix in this manifold. The structured measures
we deal with can be computed by endowing the considered subspace of matrices with the
Frobenius norm. We remark that estimates on the distance to singularity in the spectral norm
of symmetric tridiagonal Toeplitz matrices, with respect to normwise structured perturbations,
can be found in the work of Rump [29]. The present paper develops a novel approach based on
the structured eigensensitivity analysis that gives rise to an explicit formula for the structured
distance to singularity in the Frobenius norm of such matrices, and to upper bounds for their
structured distance to singularity in the spectral norm. In the case of either a positive or a
negative definite matrix, one has an explicit formula also for the latter distance.
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We denote symmetric tridiagonal Toeplitz matrices in Rn×n by

(1.1) T = (n; δ, σ) =



δ σ O
σ δ σ

σ · ·
· · ·
· · ·
· · σ

O σ δ


.

It is well known that the eigenvalues of ( 1.1) are given by

(1.2) λh = δ + 2σ cos
hπ

n+ 1
, h = 1, . . . , n;

see, e.g., [32]. Throughout this paper we refer to λh in (1.2) as the hth eigenvalue of T =
(n; δ, σ). Assume σ 6= 0. Then T has n simple real eigenvalues allocated symmetrically with
respect to δ. The components of the eigenvector xh = [xh,1, xh,2, . . . , xh,n]T associated with
the eigenvalue λh and normalized to have unit Euclidean norm, are the following,

(1.3) xh,k =

√
2

n+ 1
sin

hkπ

n+ 1
, k = 1, . . . , n, h = 1, . . . , n;

see, e.g., [23]. Let Λ and X denote the diagonal matrix with λh as hth diagonal entry and the
orthogonal matrix with xh as hth column, respectively.

Let S denote the manifold of singular matrices in Rn×n. The distance of T to S in the
Frobenius norm is given by

dF (T ) = min
S∈S
‖T − S‖F ,

where ‖ · ‖F stands for the Frobenius norm. As it is well known, if λk is an eigenvalue
of T such that |λk| < |λh|, with h = 1, . . . , n, h 6= k, then, thanks to the Eckart–Young
theorem [7], one has that

(1.4) S∗ :=

n∑
h=1
h6=k

λhxhx
T
h

is the unique matrix in S such that

(1.5) dF (T ) = ‖T − S∗‖F =
∥∥λkxkxTk ∥∥F = |λk|.

Throughout this paper the superscript (·)T stands for transposition and (·)H for transposition
and complex conjugation. We explicitly observe that equation (1.5) holds true if λk is such
that |λk| ≤ |λh|, for h 6= k. However, if not all the above inequalities are strict, then S∗
in (1.4) is not the unique matrix that attains the minimum minS∈S ‖T − S‖F .

Let T denote the subspace of Rn×n formed by symmetric tridiagonal Toeplitz matrices.
The structured distance to singularity of T in the Frobenius norm is given by

dTF (T ) = min
S∈S∩T

‖T − S‖F .

Notice that the singular matrix closest to T , i.e., the matrix S∗ defined in (1.4), is not a
tridiagonal Toeplitz matrix, that is to say, S∗ /∈ T . Hence, by (1.5), one has

dTF (T ) > min
h=1,...,n

|λh| .
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The property of any T = (n; δ, σ) of fixed order n, with σ 6= 0, to have the same
eigenvectors (1.3), as well as the knowledge of the worst-case structured perturbation for the
eigenvalue λk (see, e.g., [25]) are the tools used in this paper to shed light on the structured
distance to singularity of a symmetric tridiagonal Toeplitz matrix.

For any matrix A ∈ Rn×n let A|T denote the matrix in the subspace T closest to A
with respect to the Frobenius norm. It is straightforward to verify that, in order to have
such projection of A in T , one takes the symmetric part of the tridiagonal Toeplitz matrix
obtained in turn by replacing in each of the three central diagonals all the entries of A with
their arithmetic mean. Notice that the projection S∗|T /∈ S ∩ T . In the present paper, we give
an explicit formula for the structured distance to singularity of T ∈ T , based on the ratios

|λh|∥∥(xhxTh )|T
∥∥
F

, h = 1, . . . , n,

and we illustrate how to find the closest matrix ST∗ ∈ S ∩ T to T . Additionally, if T ∈ T is
positive or negative definite, we show that

dF (T )

dTF (T )
≈
√

3

n
.

This paper is organized as follows. Section 2 is concerned with the sensitivity analysis of
the spectrum of a symmetric tridiagonal Toeplitz matrix T with respect to structure-preserving
perturbations and Section 3 exploits such analysis to discuss an upper bound for the structured
distance to singularity of T in the Frobenius norm. Section 4 is concerned with determining ST∗ ,
i.e., the unique closest singular symmetric tridiagonal Toeplitz matrix to T in the Frobenius
norm, as well as its distance dTF (T ) to T . Section 5 discusses the structured distance to
singularity of a symmetric positive definite tridiagonal Toeplitz matrix both in the Frobenius
norm and in the spectral norm and shows monotonicity properties of the entries of its Cholesky
factor. In Section 6 the cases relevant to indefinite matrices in T are investigated. Numerical
examples are presented in Section 7 and concluding remarks can be found in Section 8.

2. Eigenvalue structured sensitivity. Let C be any subspace of Cn×n formed by matri-
ces with a given symmetry-structure, that is to say a structure that exhibits a kind of symmetry,
like reflection or translation. Examples of structured matrices of such kind are complex sym-
metric, skew-symmetric, persymmetric, skew-persymmetric matrices, or, more specifically,
Toeplitz and Hankel matrices; see, e.g., [22, Section 5]. Let λ ∈ C be a simple eigenvalue of a
given matrix C ∈ C, with corresponding right and left eigenvectors x and y of unit Euclidean
norm. A well-known indicator of the sensitivity of λ to perturbations of the entries of C is
given by analyzing the coefficient of the first term in the expansion of powers of ε of λ(ε),
where λ(ε) is the eigenvalue of C + εE, with ‖E‖F = 1, that tends toward λ when ε goes to
zero:

λ(ε) = λ+
yHEx

yHx
ε+O(ε2).

In fact, the traditional condition number κ(λ) is the first-order measure of the worst-case effect
on λ to perturbations in C, i.e.,

κ(λ) = max
E∈Cn×n, ‖E‖F =1

∣∣∣∣yHEx

yHx

∣∣∣∣ =
1

yHx
,

and the worst-case perturbation is proven to be E = yxH ; see [37, Section 2].
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We are interested in the sensitivity of the eigenvalues of C ∈ C with respect to structure-
preserving perturbations. Let (yxH)|C denotes the matrix in the subspace C closest to yxH

with respect to the Frobenius norm. Following the approach above, and admitting only unit-
norm perturbation matrices E that belong to C, leads to the structured condition number κC(λ)
as the first-order measure of the worst-case effect on λ of perturbations of the same structure
as C, that is to say,

κC(λ) = max
E∈C, ‖E‖F =1

∣∣∣∣yHEx

yHx

∣∣∣∣ =
‖(yxH)|C‖F

yHx
;

see [17, 22]. Thus

κC(λ)

κ(λ)
= ‖(yxH)|C‖F ≤ 1.

Moreover, thanks to [22, Lemma 3.2], which claims that

(2.1) yH(yxH)|C x = ‖(yxH)|C‖2F ,

one has that the worst-case structured perturbation is given by

E =
yxH |C
‖yxH |C‖F

.

Consider now the symmetry-structured subspace T of Rn×n. Since T ∈ T is symmetric,
then for any (real) eigenvalue λh in (1.2), one has xh = yh ∈ Rn and

(2.2) κT (λh) = ‖(xhxTh )|T ‖F .

Explicit formulas for the structured condition numbers κT (λh) for the eigenvalues λh, with
h = 1, . . . , n, of T = (n; δ, σ), with σ 6= 0, are the following,

(2.3) κT (λh) =

√
1

n
+

2

n− 1
cos2

hπ

n+ 1
, h = 1, . . . , n;

see [25, Proposition 4.11]. As the eigenvectors (1.3), the structured condition numbers (2.3) do
not depend on δ and σ. Figure 2.1 shows the structured condition numbers of the eigenvalues
of a 100× 100 symmetric tridiagonal Toeplitz matrix; see [25, Figure 2].

The minimum value in (2.3) is attained at h = (n+ 1)/2, if n is odd:

κT (λ(n+1)/2) =

√
1

n
.

If n is even, the smallest structured condition numbers are associated with the two most central
eigenvalues in the spectrum of T , having

κT (λn/2) = κT (λ(n+2)/2) =

√
1

n
+

2

n− 1
cos2

nπ

2(n+ 1)
≥
√

1

n
,

and, for large dimension n,

(2.4) κT (λn/2) = κT (λ(n+2)/2) ≈
√

1

n
.
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FIG. 2.1. Structured eigenvalue condition numbers for the matrix T = (100; δ, σ), where σ and δ are
arbitrarily chosen real parameters. The horizontal axis shows the index of the eigenvalue λh, h = 1, . . . , 100, and
the vertical axis the structured condition numbers κT (λh) in (2.3).

Conversely, the two extremal eigenvalues in the spectrum of T have the largest structured
condition numbers, and for large n one has the following estimate

(2.5) κT (λ1) = κT (λn) ≈
√

1

n
+

2

n− 1
=

√
3n− 1

n2 − n
≈
√

3

n
.

Figure 2.2 provides an illustration of the unit norm matrices x1x
T
1 and x50x

T
50 for a 100× 100

symmetric tridiagonal Toeplitz matrix. It is apparent that the weight of the three central
diagonals of the worst-case perturbation x1x

T
1 for the extremal eigenvalue λ1, shown in the

left picture, is larger than the weight of the relevant diagonals of the worst-case perturbation
x50x

T
50 for the central eigenvalue λ50, depicted in the right picture. In fact, for n ≥ 10, the

arithmetic means of the three central diagonals of the worst-case perturbation matrices for
the two extremal eigenvalues of T give rise to structured condition numbers more than 70%
larger than the ones produced by the arithmetic means of the relevant diagonals of the worst-
case perturbation matrices for the two most central eigenvalues. Figure 2.3 shows the ratios
κT (λn)/κT (λn/2), for even n, and κT (λn)/κT (λ(n+1)/2), for odd n, with n = 2, . . . , 100.

3. An upper bound for the structured distance to singularity. The structured con-
ditioning analysis in Section 2 can be exploited to obtain an upper bound for the structured
distance to singularity of T ∈ T in the Frobenius norm.

THEOREM 3.1. Consider T = (n; δ, σ). Then,

(3.1) T − λh
(xhx

T
h )|T

‖(xhxTh )|T ‖2F
is a symmetric tridiagonal Toeplitz matrix with null hth eigenvalue, where xh is the unit-norm
eigenvector corresponding to λh. Its distance to T in the Frobenius norm is given by the ratio
|λh|/κT (λh), where κT (λh) is the structured condition number of λh.
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FIG. 2.2. Images of the worst-case perturbations x1xT1 and x50xT50 for the matrix T = (100; δ, σ), where σ
and δ are arbitrarily chosen real parameters. The images are obtained by using the MATLAB imagesc function, with
colorbar.

Proof. By (2.1), one has

xTh

(
T − λh

(xhx
T
h )|T

‖(xhxTh )|T ‖2F

)
xh = xTh T xh −

λh
‖(xhxTh )|T ‖2F

xTh (xhx
T
h )|T xh

= λh −
λh

‖(xhxTh )|T ‖2F
‖(xhxTh )|T ‖2F = 0.

Thus, counting eigenvalues as in (1.2), the hth eigenvalue of the symmetric tridiagonal Toeplitz
matrix in (3.1) is zero. By (2.2), one has∥∥∥∥λh (xhx

T
h )|T

‖(xhxTh )|T ‖2F

∥∥∥∥
F

=
|λh|

‖(xhxTh )|T ‖F
=
|λh|

κT (λh)
,

which concludes the proof.
We observe that Theorem 3.1 implies an upper bound for the structured distance to

singularity of T in the Frobenius norm, that is to say,

min
h=1,...,n

|λh| = dF (T ) ≤ dTF (T ) ≤ min
h=1,...,n

|λh|
κT (λh)

.

4. Structured distance to singularity. According to Theorem 3.1, the matrix (3.1)
belongs to S ∩ T . Is (3.1) the matrix in T with null hth eigenvalue closest to T in the
Frobenius norm? The following results address this issue.

THEOREM 4.1. Consider T = (n; δ, σ). The unique symmetric tridiagonal Toeplitz
matrix with null hth eigenvalue closest to T in the Frobenius norm is ST∗ = (n; δ∗, σ∗), where

(4.1) δ∗ =
2(nc2δ − (n− 1)cσ)

n− 1 + 2nc2
, σ∗ =

(n− 1)σ − ncδ
n− 1 + 2nc2

, with c = cos
hπ

n+ 1
.

One has

(4.2) ‖T − ST∗ ‖F =
|δ + 2cσ|√

1
n + 2c2

n−1

.
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FIG. 2.3. Ratios between the largest and the smallest structured condition numbers for the matrix T =
(n; δ, σ), where σ and δ are arbitrarily chosen real parameters and n = 2, . . . , 100. The horizontal axis shows
the dimension n of T and the vertical axis the relevant ratios κT (λn)/κT (λn/2) in red, when n is even, and
κT (λn)/κT (λ(n+1)/2) in blue, when n is odd.

Proof. We seek to determine a matrix S = (n; d, s) ∈ T such that its hth eigenvalue is
0. By (1.2), one has d = −2s cos hπ

n+1 . Thus, S = (n;−2cs, s), with c = cos hπ
n+1 , and the

squared distance to T can be expressed as

(4.3) ‖T − S‖2F = 2(2nc2 + n− 1)s2 + 4(ncδ + (1− n)σ)s+ nδ2 + 2(n− 1)σ2.

Differentiating (4.3) with respect to s and equating to zero straightforwardly yields the quantity
σ∗ in (4.1). Computing −2cσ∗ gives δ∗ in (4.1). Finally, replacing s in (4.3) by σ∗ in (4.1),
dividing both numerator and denominator by n(n− 1), and taking the square root, gives (4.2)
and concludes the proof.

COROLLARY 4.2. Consider T = (n; δ, σ). The symmetric tridiagonal Toeplitz ma-
trix (3.1) is the unique matrix in T with null hth eigenvalue closest to T in the Frobenius
norm.

Proof. One observes that the distance in (4.2) coincides with the ratio between the
absolute value of the eigenvalue λh and its structured condition number κT (λh). Since
Theorem 3.1 claims that the matrix in (3.1) is a symmetric tridiagonal Toeplitz matrix with
null hth eigenvalue at such distance to T whereas Theorem 4.1 claims that ST∗ = (n; δ∗, σ∗)
is the unique matrix in T with null hth eigenvalue closest to T in the Frobenius norm, the
proof is concluded.

We are now in a position to determine ST∗ = arg minS∈S∩T ‖T − S‖F and its distance
to T , i.e., dTF (T ) = ‖T − ST∗ ‖F .

THEOREM 4.3. Consider T = (n; δ, σ) and let h ∈ {1, . . . , n} be such that

|λh|
κT (λh)

≤ |λk|
κT (λk)

, k = 1, . . . , n.
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Then the symmetric tridiagonal matrix ST∗ = (n; δ∗, σ∗) built as in Theorem 4.1 attains the
minimum minS∈S∩T ‖T − S‖F . Hence, the structured distance to singularity of T is

dTF (T ) = ‖T − ST∗ ‖F =
|λh|

κT (λh)
.

Moreover, if

(4.4)
|λh|

κT (λh)
<
|λk|

κT (λk)
, k = 1, . . . , n, k 6= h,

then ST∗ = (n; δ∗, σ∗) is the unique closest matrix in S ∩ T to T .
REMARK 4.4. Let d2(T ) denote the distance to singularity of T = (n; δ, σ) in the spectral

norm. If λk is such that |λk| < |λj |, with j = 1, . . . , n, j 6= k, i.e., if |λk| is the unique
smallest singular value of T , then the matrix S∗ defined in (1.4) is the unique matrix in S such
that

d2(T ) = min
S∈S
‖T − S‖2 = ‖T − S∗‖2 =

∥∥λkxkxTk ∥∥2
= |λk|,

where ‖ · ‖2 stands for the spectral norm. Hence d2(T ) = dF (T ). It is now interesting to
observe that Theorem 4.3 gives an upper bound for the structured distance to singularity of T
in the spectral norm dT2 (T ) = minS∈S∩T ‖T − S‖2 . In fact, if

|λh|
κT (λh)

≤ |λj |
κT (λj)

, j = 1, . . . , n,

then ST∗ = (n; δ∗, σ∗) ∈ S ∩ T , with δ∗, σ∗, and c in (4.1), is such that

dT2 (T ) ≤ ‖T − ST∗ ‖2 = ‖X(Λ− Λ∗)X
T ‖2 = ‖Λ− Λ∗‖2,

where we denote by Λ∗ the diagonal matrix having as jth diagonal entry the jth eigenvalue of
ST∗ , for j = 1, . . . , n. Then, since

‖Λ− Λ∗‖2 =
|λh|

n− 1 + 2nc2

(
n− 1 + 2n|c| cos

π

n+ 1

)
,

one has the following lower and upper bounds for dT2 (T ):
(4.5)

|λk| = d2(T ) ≤ dT2 (T ) ≤ |λh|
n− 1 + 2n cos2 hπ

n+1

(
n− 1 + 2n

∣∣∣∣cos
hπ

n+ 1

∣∣∣∣ cos
π

n+ 1

)
.

5. The definite case. If T = (n; δ, σ) is positive or negative definite, then the smallest
eigenvalue in magnitude is either λn or λ1, according to the sign of σ. Following our analysis
of the eigenvalue structured sensitivity, cf. Section 2, the two extremal eigenvalues in the
spectrum of T have the largest structured condition numbers. Therefore, since there exists
k ∈ {1, n} such that |λk| < |λh|, for h = 1, . . . , n, h 6= k, then the same eigenvalue λk
satisfies the inequalities in (4.4). Hence, by Corollary 4.2, the structured distance to singularity
is given by the ratio between the absolute value of the smallest eigenvalue in magnitude and
its structured condition number.

REMARK 5.1. Note that the approach here is the opposite of the one in [27, Example
4.6], where the authors were concerned with the structured distance to symmetric positive
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semidefiniteness ∆TF (T ) of (indefinite) matrices T ∈ T . In more detail, by [27, Theorem 4.5],
one has

∆TF (T ) ≤ min

{√
2(n− 1)|σ|,

√
nmax

{
0, 2|σ| cos

π

n+ 1
− δ
}}

, if δ > 0,

∆TF (T ) ≤ min

{√
2(n− 1)σ2 + nδ2,

√
n

(
2|σ| cos

π

n+ 1
− δ
)}

, if δ ≤ 0.

5.1. About the structured distance to singularity in the spectral norm. Remark 4.4
shows lower and upper bounds for the structured distance to singularity in the spectral norm,
dT2 (T ), of any symmetric tridiagonal Toeplitz matrix T = (n; δ, σ). In the definite case, such
structured distance equals the (unstructured) distance to singularity d2(T ). Indeed, since the
kth eigenvalue of T , with either k = 1 or k = n, is such that

|λk| < |λh| and
|λk|

κT (λk)
<
|λh|

κT (λh)
, with h = 1, . . . , n, h 6= k,

then by (4.5) one has

|λk| = d2(T ) ≤ dT2 (T ) ≤ |λk|
n− 1 + 2n cos2 π

n+1

(
n− 1 + 2n cos2 π

n+ 1

)
= |λk|,

so that

d2(T ) = dT2 (T ) = |λk| = dF (T ) < dTF (T ) =
|λk|

κT (λk)
.

We emphasize that we have shown that the equality

dT2 (T ) =
1

‖T−1‖2

holds true if and only if T = (n; δ, σ) is positive or negative definite. Thus, following the
analysis in the work of Rump [29], in such a case one has that the reciprocal of the spectral
condition number of T is equal to its relative structured distance to the closest singular matrix
with respect to the the spectral norm:

1

κ2(T )
= min

∆T∈T

{
‖∆T‖2
‖T‖2

: T + ∆T ∈ S
}
.

5.2. The discrete Laplacian. Equation (2.5) gives the following estimate for the ratio
between the unstructured and the structured distances to singularity of a large definite matrix
T ∈ T ,

dF (T )

dTF (T )
≈
√

3

n
.

Consider as an example the discrete Laplacian T (n) = (n; 2,−1). One observes that
λ1(n) is the smallest eigenvalue of T (n) and, in an asymptotical perspective, one has

λ1(n) = 2− 2 cos
π

n+ 1
= π2 · 1

n2

(
1 +O

(
1

n

))
,
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whereas

λ1(n)

κT (λ1(n))
=

λ1(n)√
1
n + 2

n−1 cos2 π
n+1

=
π2

√
3
· 1

n
3
2

(
1 +O

(
1

n

))
.

Thus, as it is clear by measuring its structured (or unstructured) distance to singularity either
in the spectral norm or in the Frobenius norm, T (n) is asymptotically singular. In more detail,
since in Theorem 4.3 one has h = 1, the closest matrix in S ∩ T to T (n) in the Frobenius
norm is ST∗ (n) = (n; δ∗(n), σ∗(n)), with δ∗(n), σ∗(n) as in (4.1) and c(n) = cos π

n+1 , so
that

lim
n→∞

c(n) = lim
n→∞

cos
π

n+ 1
= 1.

Thus, the entries of ST∗ (n) satisfy

lim
n→∞

δ∗(n) = lim
n→∞

2(2nc(n)2 + (n− 1)c(n))

2nc(n)2 + n− 1
= 2,

lim
n→∞

σ∗(n) = − lim
n→∞

(n− 1) + 2nc(n)

n− 1 + 2nc(n)2
= −1.

For the sake of completeness, we remark that an explicit formula for the inverse of T (n) is
given in [20, Theorem 2.8]:

[T−1(n)]i,j = i
n− j + 1

n+ 1
.

5.3. About the pattern of the Cholesky factor. In [18, Lemma 1], Laudadio et al.
showed that the diagonal entries of the upper triangular factor R of the Cholesky factorization
of a symmetric positive definite Toeplitz matrix A = RTR decrease monotonically with
increasing row number. We are interested in further monotonicity properties of the entries
of the Cholesky factor R of a symmetric positive definite tridiagonal Toeplitz matrix, which
can be easily obtained and will be useful to illustrate the numerical tests regarding positive
definite matrices in T , cf. Example 1 in Section 7. We collect such results in the following
proposition.

PROPOSITION 5.2. Let T = (n; δ, σ), σ 6= 0, be positive definite and let R = (ri,j),
i, j = 1, . . . , n be its Cholesky factor so that T = RTR. Then, R is upper bidiagonal with
the entries of the diagonal satisfy

(5.1) ri−1,i−1 ≥ ri,i > 0, i = 2, . . . , n ,

and the entries of the upper diagonal having the same sign of σ and satisfy

(5.2) |ri−1,i| ≤ |ri,i+1|, i = 2, . . . , n− 1 .

Moreover, if δ ≥ 2|σ|, one has

(5.3) ri−1,i−1 > |ri−1,i| and ri,i > |ri−1,i|, i = 2, . . . , n .

Proof. It is well known that the Cholesky factor of a symmetric positive definite tridiagonal
matrix is upper bidiagonal. The inequalities in (5.1) are proved in [18, Lemma 1]. The entries
of T satisfy

(5.4) δ = r2
i,i + r2

i−1,i and σ = ri−1,iri−1,i−1, i = 2, . . . , n .
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The equalities satisfied by σ in (5.4) imply that all the entries of the upper diagonal of R have
the same sign as σ and that

|ri−1,i| = |ri,i+1|
ri,i

ri−1,i−1
≤ |ri,i+1|, i = 2, . . . , n− 1 ,

where the inequality is due to (5.1). This concludes the first part of the proof.
Let δ and σ satisfy δ ≥ 2|σ| > 0. Firstly, we prove that

(5.5) ri−1,i−1 > |ri−1,i| ⇐⇒ ri,i > |ri−1,i|, i = 2, . . . , n .

Assume that ri−1,i−1 > |ri−1,i|. Thanks to (5.4), one has

r2
i,i = δ − r2

i−1,i ≥ 2|σ| − r2
i−1,i = 2|ri−1,i|ri−1,i−1 − r2

i−1,i > 2r2
i−1,i − r2

i−1,i = r2
i−1,i,

where in the last inequality we have used that ri−1,i−1 > |ri−1,i|. This gives ri,i > |ri−1,i|.
The converse is assured by (5.1). Then, we prove

(5.6) ri,i > |ri−1,i| ⇐⇒ ri,i > |ri,i+1|, i = 2, . . . , n− 1 .

Assume that ri,i > |ri−1,i|. By (5.4), one has

r2
i,i =

r2
i,i + r2

i,i

2
>
r2
i,i + r2

i−1,i

2
=
δ

2
≥ |σ| = |ri,i+1|ri,i.

This gives ri,i > |ri,i+1|. The converse is assured by (5.2). In order to prove (5.3), we observe
that r1,1 ≥ 2 |r1,2|. Indeed, r2

1,1 = δ, by construction, so that, by (5.4), one has r2
1,1 ≥ 2|σ| =

2 |r1,2|r1,1, which implies that r1,1 ≥ 2|r1,2|. Now, the proof follows by recursively applying
the =⇒ implications in equations (5.5) and (5.6), from r1,1 > |r1,2| =⇒ r2,2 > |r1,2| till
rn−1,n−1 > |rn−1,n| =⇒ rn,n > |rn−1,n|. This concludes the proof.

6. The indefinite case. We are interested in analyzing the cases when the closest matrix
in S ∩ T to T in the Frobenius norm is not unique. As we commented above, this can happen
only in the indefinite case.

6.1. The case δ = 0. We have to distinguish two cases. If δ = 0 and n is odd, then T is
singular (dF (T ) = dTF (T ) = 0), whereas if δ = 0 and n is even, then the eigenvalues λn/2
and λ(n+2)/2 have opposite signs and the same smallest absolute value, because cos nπ

2(n+1) =

− cos (n+2)π
2(n+1) . In the latter case,

dF (T ) = |λn/2| = |λ(n+2)/2|

and, by the analysis in Section 2, one proves that

dTF (T ) =
|λn/2|

κT (λn/2)
=
|λ(n+2)/2|

κT (λ(n+2)/2)
.

Indeed, if δ = 0, then |λk| ≤ |λh| implies |λk|/κT (λk) ≤ |λh|/κT (λh), and the equalities
hold only for λn/2 and λ(n+2)/2 = −λn/2. Thus, there are two closest matrices in S to T in
the Frobenius norm, i.e.,

T ± λn/2(xn/2x
T
n/2),
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and two closest matrices in S ∩ T to T in the Frobenius norm, i.e.,

T ± λn/2
(xn/2x

T
n/2)|T

‖(xn/2xTn/2)|T ‖2F
.

Equation (2.4) gives, when n is large, the following estimate for the ratio between the unstruc-
tured and the structured distances to singularity of T

dF (T )

dTF (T )
≈
√

1

n
.

Consider as an example T (n) = (n; 0, σ) ∈ T , with σ > 0. One observes that, setting
c(n) = cos nπ

2(n+1) for the smallest eigenvalue of T (n), in an asymptotical perspective, one
has

λn
2

= −λn+2
2

= 2σc(n) = O
(

1

n

)
,

whereas

|λn
2
|

κT (λn
2

)
=

λn
2

κT (λn
2

)
= −

λn+2
2

κT (λn+2
2

)
=

2σc(n)√
1
n + 2

n−1c(n)2
= O

(
1√
n

)
.

On the contrary, if one has σ < 0, then the signs of λn
2

and λn+2
2

are the opposite, however
the conclusion is the same: T (n) is asymptotically singular. Its (unstructured) distance to
singularity is infinitesimal of order 1

n whereas its structured distance to singularity is an
infinitesimal of order 1√

n
. Moreover, since lim

n→∞
±c(n) = 0, the entries of both the closest

matrices in S ∩ T to T in the Frobenius norm, satisfy

lim
n→∞

δ∗(n)± = ∓ lim
n→∞

2(n− 1)c(n)σ

n− 1 + 2nc(n)2
= 0,

lim
n→∞

σ∗(n)± = lim
n→∞

(n− 1)σ

n− 1 + 2nc(n)2
= σ.

6.2. The case δ 6= 0. If the diagonal entry of T in not trivial and there is not a unique
eigenvalue with the smallest magnitude (i.e., if the property required by Eckart–Young theorem
is not satisfied), then on the contrary there exists a unique closest matrix in S ∩ T to T in the
Frobenius norm. This is good news. However, we are interested in analyzing the opposite case
where there exists a unique closest matrix in S to T in the Frobenius norm but (4.4) is not
satisfied.

It is straightforward that if λk1 and λk2 are two eigenvalues with the smallest magnitude,
then they are of opposite sign and k1 = k2 ± 1. Moreover, one can observe that the same
happens also for the eigenvalues λk1 and λk2 , with |λk1 | 6= |λk2 |, satisfying

(6.1)
|λk1 |

κT (λk1)
=
|λk2 |

κT (λk2)
<
|λh|

κT (λh)
, with h = 1, . . . , n, and h /∈ {k1, k2}.

In more detail, since the sequence {|λh|}h=1,...n first decreases and then increases, then:
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• if n is odd, there can exist only two eigenvalues λk1 and λk2 of opposite sign, with
consecutive indices both belonging either to {1, . . . n2} or to {n2, . . . n}, where n2

denotes the smallest integer greater than n/2, that satisfy (6.1), because the sequence
{1/κTF (λh)} increases for h = 1, . . . n2 and decreases for h = n2, . . . n;

• if n is even, there can exist only two eigenvalues λk1 and λk2 of opposite sign, with
consecutive indices both belonging either to {1, . . . n/2} or to {n/2 + 1, . . . n}, that
satisfy (6.1), because the sequence {1/κTF (λh)} increases for h = 1, . . . n/2 and
decreases for h = n/2 + 1, . . . n.

Finally, it can happen that both the closest matrices in S and in S ∩ T are unique whereas
the eigenvalue of smallest magnitude is not the same as the eigenvalue satisfying (4.4).

7. Numerical examples. This section provides four representative examples of the
cases that have been analyzed throughout the paper. We also remark on the monotonicity
properties of the entries of the Cholesky factor of positive definite matrices in T investigated
in Subsection 5.3 (cf. Remark 7.1) and show a quantitative test designed to illustrate the
cases relevant to indefinite matrices in T studied in Subsection 6.2 (cf. Remark 7.2). The four
examples mentioned above address the case of positive definite test matrices (Example 1),
the case where there is neither a unique closest matrix in S nor in S ∩ T to the test matrix
(Example 2), the case where the smallest eigenvalue in magnitude is not unique but there is an
eigenvalue that satisfies (4.4) (Example 3), and the case where the unique smallest eigenvalue
in magnitude is not the same as the unique eigenvalue that satisfies (4.4) (Example 4). Since
the eigenvalues and eigenvectors of symmetric tridiagonal Toeplitz matrices are known in
closed form, and all ingredients of our analysis are easily computable, assessing the theoretical
results is straightforward. All computations were carried out in MATLAB R2022b with about
16 significant decimal digits on an iMac with a 3,2 GHz Intel Core i7 6 core and equipped
with 16 GB of RAM.

Example 1. Consider T = (1000; 2,−1). This test matrix is, as it is well known, symmetric
positive definite. The smallest eigenvalue is λ1, hence dF (T ) = λ1 = 9.8499 · 10−6. Since
κT (λ1) results to be equal to 5.4790 · 10−2 (close to

√
3/1000 = 5.4772 · 10−2), one has

dTF (T ) = λ1/κ
T (λ1) = 1.7977 · 10−4. As for the structured distance of T to singularity in

the spectral norm, one has d2(T ) = dT2 (T ) = λ1 = 9.8499 · 10−6. The left plot of Figure 7.1
shows the inverse of R, where R is the Cholesky factor of T , whereas the right plot shows the
image of the (centro-symmetric) inverse of T , i.e., T−1 = R−1R−T . The observed pattern of
R−1 may be considered an inheritance of the monotonicity properties satisfied by the entries
of R, as illustrated in Proposition 5.2, which in turn determine monotonicity properties for the
entries of R−1. Indeed, as shown in the left plot of Figure 7.1, in the upper triangular matrix
R−1, all the structure entries are positive and, in each row, monotonically decreasing with
increasing column number. Moreover the entries of each structure diagonal are seen to be
monotonically increasing with increasing row number.

REMARK 7.1. We report that in all tests with symmetric positive definite tridiagonal
Toeplitz matrices with σ < 0, the entries of the extra-diagonals of the inverse of the Cholesky
factor are positive and with the same monotonicity properties as in Example 1, whereas, in
case of σ > 0, such monotonicity properties apply to the absolute values of the entries. Finally,
in line with the results about the well known issue of the exponential off-diagonal decay
behavior occurring for the entries of the inverse of a symmetric positive definite tridiagonal
Toeplitz matrix T (see, e.g., [3, 8, 20]), we report that in all tests one has that the larger the
(un)structured distance to singularity of T is, the more the large entries of the inverse matrix
T−1 - or, in case of σ > 0, the large entries in magnitude of the latter - tend to squeeze towards
the diagonal.
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FIG. 7.1. Example 1. Images of R−1 and T−1 obtained by using the MATLAB imagesc function with colorbar.

Example 2. Consider the symmetric tridiagonal Toeplitz matrix T = (1000; 0, 1). The
eigenvalues λ500 and λ501 are both the smallest in magnitude, and the distance to singularity is
given by dF (T ) = λ500 = −λ501 = 3.1385·10−3. Thus, there are two closest matrices in S to
T . As for the structured condition numbers, one has κT (λ500) = κT (λ501) = 3.16229 · 10−2

(which is approximatively equal to
√

1/1000 = 3.16228 ·10−2) so that the structured distance
to singularity is given by dTF (T ) = λ500/κ

T (λ500) = −λ501/κ
T (λ501) = 9.9246 · 10−2.

Also, there are two closest singular symmetric tridiagonal Toeplitz matrices, as commented in
Subsection 6.1.

Example 3. Consider T = (9; cos π
20 ,−

√
2/2). In this example, n, σ and δ are chosen in

a way that T has two eigenvalues equally distant to the origin. In detail, the eigenvalues
λ2 = −1.5643 · 10−1 and λ3 = 1.5643 · 10−1 are the smallest in magnitude (and opposite
in sign). Thus, dF (T ) = 1.5643 · 10−1. Table 7.1 displays the eigenvalues and their
structured condition numbers in the second and third columns. The smallest structured
condition number is relevant to the central eigenvalue λ5 = cos π

20 = 9.8769 · 10−1, with
κT (λ5) =

√
1/9 = 3.3333 · 10−1. The farther from λ5, the larger the structured condition

numbers. Also, Table 7.1 displays the eigenvalues of both structured and unstructured closest
singular matrices. In detail, the fourth column shows the eigenvalues of ST∗ and the fifth
column displays the corresponding eigenvalues of

S∗ =

n∑
h=1
h6=2

λhxhx
T
h

(we choose k = 2 because λ2 is the unique eigenvalue to satisfy also (4.4)). The latter
eigenvalues are seen to coincide with the eigenvalues λh in the second column, for any
h = 1, . . . , 9, h 6= 2. In both the fourth and fifth columns the “zeroed” eigenvalue (i.e., the
second one) is shown in bold face.

Example 4. Consider the symmetric tridiagonal Toeplitz matrix T = (10; 1.8,−1). The
unique eigenvalue smallest in magnitude is λ2 = 1.1749 ·10−1 while the unique eigenvalue for
which is smallest the ratio in (4.4) is λ1 = −1.1899 · 10−1. Table 7.2 displays the eigenvalues
λh of T and the relevant ratios |λh|/κT (λh). The projections of T in S and S ∩ T are at
distance dF (T ) = 1.1749 · 10−1 and dTF (T ) = 2.1560 · 10−1, respectively.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

THE DISTANCE TO SINGULARITY OF A SYMMETRIC TRIDIAGONAL TOEPLITZ MATRIX 57

TABLE 7.1
Example 3. Eigenvalues λh and their structured condition numbers κT (λh) for the matrix T = (9; δ, σ),

where σ = −
√
2

2
and δ = cos π

20
. Eigenvalues λh(ST∗ ) and λh(S∗), where ST∗ ∈ T and S∗ are the projections

of T in S and S ∩ T , respectively. The eigenvalues λh(S∗) have been computed by using the MATLAB eig function
and numbered in increasing order to be compared both with λh and λh(ST∗ ), i = 1, . . . , 9.

h λh κT (λh) λh(ST∗ ) λh(S∗)
1 −3.5731 · 10−1 5.8072 · 10−1 −1.8452 · 10−1 −3.5731 · 10−1

2 −1.5643 · 10−1 5.2415 · 10−1 2.2204 · 10−16 −5.4879 · 10−17
3 1.5643 · 10−1 4.4439 · 10−1 2.8739 · 10−1 1.5643 · 10−1

4 5.5067 · 10−1 3.6740 · 10−1 6.4953 · 10−1 5.5067 · 10−1

5 9.8769 · 10−1 3.3333 · 10−1 1.0510 · 10−1 9.8769 · 10−1

6 1.4247 · 100 3.6740 · 10−1 1.4524 · 100 1.4247 · 100

7 1.8189 · 100 4.4439 · 10−1 1.8145 · 100 1.8189 · 100

8 2.1318 · 100 5.2415 · 10−1 2.1019 · 100 2.1318 · 100

9 2.3327 · 100 5.8072 · 10−1 2.2864 · 100 2.3327 · 100

TABLE 7.2
Example 4. Eigenvalues λh and ratios |λh|/κT (λh).

h λh |λh|/κT (λh)
1 −1.1899 · 10−1 2.1560 · 10−1

2 1.1749 · 10−1 2.3164 · 10−1

3 4.9028 · 10−1 1.1094 · 100

4 9.6917 · 10−1 2.6056 · 100

5 1.5154 · 100 4.6877 · 100

6 2.0846 · 100 6.4487 · 100

7 2.6308 · 100 7.0730 · 100

8 3.1097 · 100 7.0368 · 100

9 3.4825 · 100 6.8659 · 100

10 3.7190 · 100 6.7386 · 100

REMARK 7.2. In order to have a quantitative idea of the incidence of cases where
both the closest matrices in S and in S ∩ T are unique whereas the eigenvalue of smallest
magnitude is not the same as the eigenvalue satisfying (4.4), we tested 106 indefinite matrices
T = (n; δ, σ), with δσ 6= 0, for each dimension n = 2, . . . , 250. Thus, the number of
tested matrices is almost 2.5 · 108. In the investigation, σ and δ are random scalars drawn
from the standard normal distribution at the condition that the cases where either δσ = 0
or |δ| > 2|σ| cos(π/(n + 1)) are discarded. For any dimension n, not taking into account
the cases where there exist two eigenvalues having smallest magnitude or satisfying (6.1),
we count the cases where the unique eigenvalue of smallest magnitude is not the same as
the eigenvalue that satisfies (4.4). The percentage of the such cases is 0.4% out of the total
matrices tested. In Figure 7.2, we illustrate the trend of their incidence, with respect to the
growing matrix dimension, by plotting the relevant counter.

8. Conclusions and future work. Given a real symmetric tridiagonal Toeplitz matrix T ,
this paper discusses the determination of its projection in the manifold of similarly structured
singular matrices. An unstructured analysis states both the same sensitivity to perturbations
for each eigenvalue and the same distance to singularity of T if any of its eigenvalues is the
closest one to the origin. On the contrary, a structured analysis reveals that the more extreme
the eigenvalue closest to the origin, the smaller the structured distance to singularity, in line
with the relevant structured eigenvalue sensitivity. Future work concerns the analysis of the
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FIG. 7.2. Quantitative test (cf. Remark 7.2). In y-axis (in logarithmic-scale) the number of symmetric tridiagonal
Toeplitz matrices of dimension n where the unique eigenvalue of smallest magnitude is not the same as the eigenvalue
that satisfies (4.4). In the x-axis (in logarithmic-scale) the matrix dimension n.

structured distance to singularity of symmetric tridiagonal Toeplitz-type matrices that are
obtained by suitably modifying the first and last diagonal entries of a symmetric tridiagonal
Toeplitz matrix, which have eigenpairs known in closed form [19] and share with T the
property of having eigenvectors that do not depend on the matrix entries; see [25, Proposition
4.15].
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