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Abstract. Image scaling methods allow us to obtain a given image at a different, higher (upscaling) or lower
(downscaling), resolution to preserve as much as possible the original content and the quality of the image. In this
paper, we focus on interpolation methods for scaling three-dimensional grayscale images. Within a unified framework,
we introduce two different scaling methods, respectively based on the Lagrange and filtered de la Vallée Poussin type
interpolation at the zeros of Chebyshev polynomials of the first kind. In both cases, using a non-standard sampling
model, we take (via tensor product) the associated trivariate polynomial interpolating the input image. It represents
a continuous approximate 3D image to resample at the desired resolution. Using discrete `∞ and `2 norms, we
theoretically estimate the error achieved in output, showing how it depends on the error in the input and on the
smoothness of the specific image we are processing. Finally, taking the special case of medical images as a case study,
we experimentally compare the performances of the proposed methods and with the classical multivariate cubic and
Lanczos interpolation methods.
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1. Introduction. In many applications, a fundamental task is to reduce a couple of
images at the same resolution by upscaling the LR (Low Resolution) or downscaling the
HR (High Resolution) image given in input. The resizing can be either the final goal or
used as an intermediate step of more complex procedures in many fields such as medicine,
communication, remote sensing, agriculture, etc. For instance, it is widely employed in
medical diagnostics through image analysis, in particular, for Image Fusion of multimodal
medical imaging, or for determining the exact position of an implant in the pre-surgery phase;
see, e.g., [1, 5, 6, 20, 26, 27].

Due to the relevance of the problem, numerous scaling methods have been proposed in
the literature; see, e.g., [2, 4, 8, 10, 11, 17, 19]. Here we focus on interpolation methods. They
have been employed since the early years of computer graphics and image processing; see,
e.g., [8].

The various interpolation methods for scaling images are united by two basic steps:
first, obtaining an approximate continuous image from the discrete data, then sampling that
approximation at the desired scale. In this context, the choices of the sampling system and the
approximation tool are both decisive for the success of the scaling interpolation method.

Typically, equidistant nodes in each spatial coordinate are taken to form the sampling
grids, and local, rather than global, interpolation is employed to get the approximate image.
Here, following the ideas introduced in [12, 13], we propose a novel approach to resizing 3D
images by interpolation methods.

More specifically, as a sampling system of nodes, we consider the non-uniform 3D grids
generated by Chebyshev zeros of 1st kind of any degree, taken along each spatial coordinate.
Moreover, as an approximation tool, we take the global, rather than local, approximation
provided by the trivariate interpolation polynomials deduced, via tensor product, from the 1D
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Lagrange or de la Vallée Poussin (briefly VP) filtered interpolation polynomials at Chebyshev
zeros of 1st kind.

We recall that generalizing the trigonometric VP means, VP approximation polynomials
are discrete versions of certain delayed arithmetic means of the Fourier–Chebyshev partial
sums, which can be equivalently obtained by applying a VP filter to Fourier sums of higher
degree. Such an approximation has been introduced as an alternative to classical Lagrange
interpolation to ensure uniform convergence for any continuous function at a near-best ap-
proximation rate. One of the main peculiarities of VP interpolation is the dependence on two
positive integer parameters: one, say n, determining the number of nodes, and the other, saym,
determining the action ray of the VP filter. It is known that, by keeping fixed the former and
suitably modulating the latter, we do not loose the interpolation property but may improve the
local approximation and strongly attenuate the Gibbs phenomenon, occurring in the presence
of isolated singularities. In addition, we have uniformly bounded Lebesgue constants with a
calculable upper bound. For more details on VP approximation, we refer the interested reader
to [14, 23, 24] and the references therein.

In the following, we briefly denote by LCI3 and VPI3 the scaling interpolation methods,
respectively, employing the previous trivariate Lagrange and VP interpolating polynomials.

In the paper, we give a unified treatment of the two proposed methods that will be studied
from both theoretical and experimental points.

Through some numerical experiments on medical images, we analyze and compare the
performances of LCI3 and VPI3, also to the classic multivariate cubic [7] and Lanczos [9]
interpolation methods. It turns out that, on average, VPI3 provides better performance than
the other methods, generally with small differences in upscaling and a much larger gap in
downscaling, especially if the image does not have higher frequency details. These numerical
results confirm the trend already observed in [12, 13] dealing with scaling of 2D color images.
As a novelty, in this paper, we include the comparison with the Lanczos scaling method.
Moreover, we also focus on the case of resizing along only one of the three dimensions, which
is a task often required in medical imaging.

From the theoretical side, we have to take into account that for increasing degrees N < n,
the sets of zeros of the Chebyshev polynomials of the first kind are one included in the other
one in all cases that the ratio n/N is odd. Consequently, as in [12, 13], in all downscaling
with odd scale factors, LCI3 and VPI3 coincide and are a simple subsampling of the input
image. In this case, the theoretical estimates of the MSE (Mean Squared Error) stated in [12,
Proposition 1] and [13, Proposition 1] can be easily extended to LCI3 and VPI3 for all couple
of input/output 3D images whose resolution satisfies the ideal limit of Nyquist–Shannon
sampling theorem. In addition, we prove new error estimates in both the discrete `∞ and `2
norms, valid for any scale factor in downscaling as well as in upscaling.

In conclusion, we remark that our discussion is limited to 3D gray-scale images, but the
generalization to resizing 3D color images can be easily obtained by applying the proposed
LCI3 and VPI3 methods to each component of the RGB color space.

The outline of the paper is the following. In Section 2, we recall some basics on Lagrange
and VP filtered interpolation in the univariate and trivariate cases. In Section 3, we expose the
proposed resizing methods, providing computational details. In Section 4, the theoretical error
estimates are given, and, finally, Section 5 deals with the numerical tests and comparison with
other methods.

2. Lagrange and VP filtered interpolation. This section is divided into two subsections
concerning the Lagrange and VP polynomials interpolating at Chebyshev nodes in [−1, 1],
and their 3D extension to [−1, 1]3 via tensors.
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Throughout the paper, the notation k = 1 : m will shortly denote k ∈ {1, 2, . . . ,m}, for
any m ∈ N = {1, 2, 3, . . . }.

2.1. The univariate case. As usual, Pn denotes the set of all algebraic polynomials
of degree at most n, for all n ∈ N0 = {0, 1, 2, . . . }. Denoting by w(x) = (1 − x2)−1/2

the Chebyshev weight of first kind, let {pn(x)}n∈N0
be the system of the corresponding

orthonormal polynomials given by

pn(x) =


√

2

π
cos[nt], n ≥ 1,

1√
π
, n = 0,

|x| ≤ 1, t = arccosx.

Setting Kn(x, y) :=

n∑
j=0

pj(x)pj(y) the n-th Darboux kernel, and denoted by

(2.1) ξnk := cos tnk , with tnk :=
(2k − 1)π

2n
, k = 1 : n

the zeros of pn(x), the Christoffel numbers of order n related to w are

λnk =
1

Kn(ξnk , ξ
n
k )

=
π

n
.

Letting Lnf ∈ Pn−1 the Lagrange polynomial interpolating a given function f at the nodes
in (2.1), i.e.,

Lnf(ξnk ) = f(ξnk ), k = 1 : n,

with

Lnf(x) =

n∑
k=1

f(ξnk )`n,k(x), `n,k(x) =
pn(x)

p′n(ξnk )(x− ξnk )
,

we recall that the fundamental Lagrange polynomials {`n,k(x)}nk=1 can be represented in
terms of the Darboux kernel as

(2.2) `n,k(x) = λnkKn(x, ξnk ), k = 1 : n.

For any pair of positive integers m < n, the VP approximation polynomial of f , V mn f(x), is
defined similarly to Lnf(x) but using different fundamental polynomials. More precisely, we
have [23]

V mn f(x) :=

n∑
k=1

f(ξnk )Φmn,k(x),

where the fundamental VP polynomials Φmn,k are given by the following delayed arithmetic
mean of Darboux kernels

Φmn,k(x) =
λnk
2m

n+m−1∑
r=n−m

Kr(ξ
n
k , x), k = 1 : n,
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i.e., more explicitly

Φmn,k(x) := λnk

n+m−1∑
j=0

µmn,jpj(ξ
n
k )pj(x), k = 1 : n,

where µmn,j are the VP filtering coefficients defined as

µmn,j :=

 1, if 0 ≤ j ≤ n−m,
n+m− j

2m
, if n−m < j < n+m.

Moreover, we recall the following useful representation of the fundamental VP polynomials [3,
23]

(2.3) Φmn,k(x) = λnk

n−1∑
r=0

pr(ξ
n
k )qnm,r(x), k = 1 : n,

where

(2.4) qmn,j(x) :=

{
pj(x), if 0 ≤ j ≤ n−m,
γmn,jpj(x)− γmn,2n−jp2n−j(x), if n−m < j < n,

with γmn,j := m+n−j
2m . Comparing Lagrange and VP polynomials, we recall that both of them

need only the n function values {f(ξnk )}nk=1 for their computation. Moreover, they both are
interpolating polynomials at the same set of nodes, being (see [23] for the VP case)

(2.5) V mn f(ξnk ) = f(ξnk ) = Lnf(ξnk ), k = 1 : n, 0 < m < n.

However, the polynomial V mn f depends on the free parameter m = 1 : n − 1 which can
arbitrarily vary without losing the interpolation property (2.5); see [23].

As shown in Figure 2.1, the additional parameter m modulates the localization degree of
the fundamental VP polynomials.

Moreover, note that in the limiting case m = 0 we get the fundamental Lagrange
polynomials, i.e.,

Φ0
n,k(x) = `n,k(x), ∀|x| ≤ 1, k = 1 : n,

while, at the opposite limiting case m = n, we get the following Fejer means

Φnn,k(x) = λnk

[
1

2n

2n−1∑
r=0

Kr(ξ
n
k , x)

]
, ∀|x| ≤ 1, k = 1 : n.

Finally, as regards Lagrange and VP operators, i.e., Ln : f → Lnf and V mn : f → V mn f , we
recall that the former is a projection on Pn−1 while the latter is a projection on the polynomial
space [23]

Snm := span{Φmn,k : k = 1 : n} = span{qmn,j : j = 0 : (n− 1)},

which is nested between Pn−m and Pn+m−1 and has the same dimension of Pn−1.
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FIG. 2.1. Fundamental Φm
n,k , for n = 20, k = 11 and different values of m.

2.2. Trivariate Lagrange and VP interpolation polynomials. Let D := [−1, 1]3,
and use the notation ξ := (x, y, z) to denote an arbitrary point of D. For any multi-index
n := (n1, n2, n3) ∈ N3, let Pn denote the space of trivariate polynomials of degree ni in the
i-th variable, for i = 1, 2, 3. Moreover, indicate by

Xn1
:= {ξn1

k }k=1:n1
, Xn2

= {ξn2

k }k=1:n2
, Xn3

= {ξn3

k }k=1:n3

the set of zeros of Chebyshev polynomials of the 1st kind of degree n1, n2, n3, respectively
(see (2.1)) . These zeros generate the 3D grid Xn := Xn1 ×Xn2 ×Xn3 , and we denote an
arbitrary node of such a grid by

(2.6) ξnijk = (ξn1
i , ξn2

j , ξn3

k ), i = 1 : n1, j = 1 : n2, k = 1 : n3.

For any function g defined on the cube D, we recall that the trivariate Lagrange polynomial
Lng ∈ Pn−1 interpolating g at the grid Xn, i.e.,

Lng(ξnijk) = g(ξnijk), ∀ξnijk ∈ Xn,

has the following form

Lng(ξ) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

g(ξnijk)`n1,i(x)`n2,j(y)`n3,k(z), ξ = (x, y, z) ∈ D.

Similarly, introducing the additional multi-index m = (m1,m2,m3) ∈ N3 s.t. mi < ni,
i = 1 : 3 (briefly m < n), the trivariate VP polynomial of g based on the nodes Xn and the
parameter m can be written as follows

Vm
n g(ξ) :=

n1∑
i=1

n2∑
j=1

n3∑
k=1

g(ξni,j,k)Φm1
n1,i

(x)Φm2
n2,j

(y)Φm3

n3,k
(z), ξ = (x, y, z) ∈ D.
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For any choice of m < n, Vm
n g ∈ Pn+m−1 and it coincides with g at the grid Xn, i.e.,

Vm
n g(ξnijk) = g(ξnijk), ∀ξnijk ∈ Xn.

3. Resampling by interpolation. For all n = (n1, n2, n3) ∈ N3, let In be any 3D
gray-scale digital image of size n1×n2×n3. From the mathematical point of view, In is a 3D
array whose entries are nonnegative integers giving the gray levels at each voxel. According
to the sampling model introduced in [12], such values can be regarded as the values attained
at the Chebyshev grid Xn (cf. (2.6)) by a function f : D → R representing the image at a
continuous scale, namely

(3.1) In(i, j, k) = f(ξnijk), i = 1 : n1, j = 1 : n2, k = 1 : n3.

Moreover, denoting by Pnf the Lagrange or VP polynomial interpolating f at Xn, by (2.5)
we have

In(i, j, k) := Pnf(ξnijk), i = 1 : n1, j = 1 : n2, k = 1 : n3.

Now, the scaling problem consists in resizing the image In to a different resolution, say
N1 ×N2 ×N3, being N = (N1, N2, N3) and N 6= n. Let XN = XN1 ×XN2 ×XN3 the
associated Chebyshev grid (denser or coarser than Xn), this problem can be formulated as the
construction of a new digital image IN such that

(3.2) IN(i, j, k) = f(ξNijk), i = 1 : N1, j = 1 : N2, k = 1 : N3.

Since IN is unknown, the idea of the method is to recover the image ĨN by evaluating, instead
of f , Pnf at the grid XN to obtain

ĨN(i, j, k) = Pnf(ξNijk), i = 1 : N1, j = 1 : N2, k = 1 : N3.

This formula provides the output resized image of the method that we denote by LCI3 and
VPI3 depending on whether it is Pn = Ln or Pn = Vm

n . More explicitly, providing In as
input image, for i = 1 : N1, j = 1 : N2, k = 1 : N3, we have

• LCI3 output image:

ĨN(i, j, k) = Lnf(ξNijk)

=

n1∑
h=1

n2∑
r=1

n3∑
s=1

In(h, r, s)`n1,h(ξN1
i )`n2,r(ξ

N2
j )`n3,s(ξ

N3

k ),

• VPI3 output image:

ĨN(i, j, k) = Vm
n f(ξNijk)

=

n1∑
h=1

n2∑
r=1

n3∑
s=1

In(h, r, s)Φm1

n1,h
(ξN1
i )Φm2

n2,r(ξ
N2
j )Φm3

n3,s(ξ
N3

k ).

By these formulae, different numerical procedures can be performed. In particular, introducing
the Vandermonde-like matrices

Lk :=
[
`nk,i(ξ

Nk
j )
]
i,j
∈ Rnk×Nk and Vk :=

[
Φmk
nk,i

(ξNk
j )
]
i,j
∈ Rnk×Nk k = 1 : 3,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

POLYNOMIAL INTERPOLATION FOR RESAMPLING 301

the output 3D array ĨN can be computed from the input array In by one of the following
formulae

(3.3) ĨN =

{
LT3 ΥL, LCI3

VT
3 ΥV, V PI3

with

ΥV = [V1I
(1)V2

T , . . . ,V1I
(n3)V2

T ]T ΥL = [L1I
(1)L2

T , . . . ,L1I
(n3)L2

T ]T

block vectors of length n3, where {I(k)}n3

k=1 are the slices of the input image of dimensions
n1 × n2.

Note that in case a lot of images of initial equal dimension have to be resized to the same
final size, formula (3.3) allows to pre-compute once the matrices Lk or Vk, with the possibility
of using a parallel algorithm.

We also observe that fast computation of the matrices Lk and Vk can be achieved
by using the more convenient trigonometric forms of the fundamental Lagrange and VP
univariate polynomials, that yield both such polynomials in terms of the Inverse Discrete
Cosine Transform (IDCT) of the respective orthogonal basis polynomials. More precisely,
denote by n,N,m the generic components of the vectors n,N,m, respectively. About the
fundamental Lagrange polynomials, by (2.2), we have
(3.4)

`n,i(ξ
N
k ) =

√
π

n

[
p0(ξNk ) +

√
2

n−1∑
r=1

cos

[
(2i− 1)rπ

2n

]
pr(ξ

N
k )

]
, k = 1 : N, i = 1 : n.

Similarly, for the fundamental VP polynomials, by (2.3)–(2.4) we get for k = 1 : N and
i = 1 : n

(3.5) Φmn,i(ξ
N
k ) =

√
π

n

[
qnm,0(ξNk ) +

√
2

n−1∑
r=1

cos

[
(2i− 1)rπ

2n

]
qnm,r(ξ

N
k )

]
,

where the orthogonal basis polynomials qnm,r take the following trigonometric form

qnm,r(ξ
N
k ) =



cos

[
(2k − 1)rπ

2N

]
, if 0 ≤ r ≤ n−m,

n+m− r
2m

cos

[
(2k − 1)rπ

2N

]

+
n−m− r

2m
cos

[
(2k − 1)(2N − r)π

2N

]
,

if n−m < r < n.

On the other hand, recall that the IDCT of any data set

A = {ar,k r = 0 : (n− 1), k = 1 : N}

is defined as (see e.g. [16])

IDCT (A) =

{
bh,k =

n−1∑
r=0

wrar,k cos

[
(2h− 1)rπ

2n

]
: h = 1 : n, k = 1 : N

}

where wr =
√

1/n if r = 0, and wr =
√

2/n otherwise.
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Hence, the matrices L =
[
`n,h(ξNk )

]
h,k

and V =
[
qmn,h(ξNk )

]
h,k

can be computed by

L =

√
π

n
IDCT [pr(ξ

N
k )], V =

√
π

n
IDCT [qnm,r(ξ

N
k )].

In conclusion, let us examine two particular cases where the computation of the output image
ĨN can be achieved by simpler formulas.

3.1. Downscaling with odd scale factors. We point out that when downscaling with
odd scale factors, the implemented algorithm is based on the decimation (subsampling) of the
original image. This comes from the fact that if n = sN with s odd then the zeros of the first
kind Chebyshev polynomial of degree N are also zeros of the 1st kind Chebyshev polynomial
of degree n , i.e., by (2.1) we get

(3.6) ξNj = cos
(2j − 1)π

2N
= cos

s(2j − 1)π

2n
= ξns(2j−1)+1

2

, j = 1 : N,

where we remark that s odd implies that s(2j − 1) + 1 is even for all j ∈ N.
Hence, in the case that, for i = 1 : 3, the ratio si := ni/Ni is an odd integer, as regards

the associated 3D Chebyshev grids of dimension N = (N1, N2, N3) and n = (n1, n2, n3),
we get XN ⊆ Xn. Consequently, by the interpolation property (2.5), LCI3 and VPI3 coincide
and their output LR image is achieved by the following reassignment of the input voxels values

ĨN(i, j, k) = In
(
s1(2i− 1) + 1

2
,
s2(2j − 1) + 1

2
,
s3(2k − 1) + 1

2

)
,

with i = 1 : N1, j = 1 : N2, and k = 1 : N3.

3.2. Downsampling along only one direction. In the special case that N1 = n1,
N2 = n2, and N3 6= n3, we are resizing along only the third dimension of the input image. In
this case the output resized image is given by (3.3) but we simply have

ΥV = [I(1), . . . I(n3)]T ΥL = [I(1), . . . , I(n3)]T ,

where, for k = 1 : n3, I(k) are the following 2D slices of the input image

I(k) = [In(i, j, k)]i=1:n1,j=1:n2 , k = 1 : n3.

An analogous formula also holds for resizing along only the 1st or the 2nd direction (Ni 6= ni
only for i = 1 or i = 2, respectively) .

4. Error analysis. In this section, we provide several theoretical estimates for the error
when we have in resampling by LCI3 and VPI3 methods.

Let us first focus on the univariate case that corresponds to resizing along only one
dimension. Maintaining the previous notations, in the univariate setting, we suppose that

In(j) = f(ξnj ), j = 1 : n, and IN (j) = f(ξNj ), j = 1 : N,

are the vectors representing the target function f : [−1, 1]→ R at two different sizes n 6= N ,
and we aim to approximate IN starting from In. To consider also the case of corrupted input
data, we suppose our starting data are the following

Ĩn(j) = f̃(ξnj ), j = 1 : n,
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where f̃ : [−1, 1]→ R represents a more or less corrupted version of f .
Hence, we compute the following approximation of IN

(4.1) ĨN (j) = Lnf̃(ξNj ) or ĨN (j) = V mn f̃(ξNj )

depending on whether we are using Lagrange or VP interpolation.
In both cases, as it is well-known, the conditioning is measured by the associated Lebesgue

function Λn(x) and Lebesgue constant Λn, defined as

Λn = sup
|x|≤1

Λn(x), with Λn(x) =

n∑
k=1

{
|`n,k(x)|, Lagrange interpolation,
|Φmn,k(x)|, VP interpolation.

In fact, setting

‖f‖`∞(Xn) = max
1≤k≤n

|f(ξnk )|, n ∈ N

it is well known that

(4.2) ‖Pnf‖`∞(XN ) ≤ Λn‖f‖`∞(Xn), Pn ∈ {Ln, V mn }

and
(4.3)
|Pnf(ξNj )− Pnf̃(ξNj )| ≤ Λn(ξNj )‖f − f̃‖`∞(Xn), Pn ∈ {Ln, V mn } j = 1 : N.

Note that, starting from (3.4) and (3.5), by means of well-known trigonometric identities, we
get that the values Λn(ξNj ), j = 1 : N can be explicitly computed by the following formulas
(see [15] for VP case)

Λn(ξNj ) =

1

2n

n∑
k=1

∣∣∣∣∣ sin[(2n− 1)(tNj − tnk )/2]

sin[(tNj − tnk )/2]
+

sin[(2n− 1)(tNj + tnk )/2]

sin[(tNj + tnk )/2]

∣∣∣∣∣ , Pn = Ln,

1

4nm

n∑
k=1

∣∣∣∣∣ sin[m(tNj − tnk )] sin[n(tNj − tnk )]

sin2[(tNj − tnk )/2]

+
sin[m(tNj + tnk )] sin[n(tNj + tnk )]

sin2[(tNj + tnk )/2]

∣∣∣∣∣,
Pn = V mn .

Moreover, we recall that (see, e.g., [15, 25])

Λn ≤


2

π
log n+ 0.52125 . . . , Pn = Ln,

2

√
n

m

[
1 +

2π(n+m)

n

]
, Pn = V mn .

These bounds can be applied to the next theorem where we estimate the maximum error

‖IN − ĨN‖`∞ = max
1≤j≤N

|IN (j)− ĨN (j)|,
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in terms of the input error

‖In − Ĩn‖`∞ = max
1≤j≤n

|In(j)− Ĩn(j)|,

and in terms of the smoothness of the target function f . As an indicator of such smoothness,
we introduce the following error of the best polynomial discrete approximation of f

εr(f)`∞(Xk) = inf
Qr∈Pr

‖f −Qr‖`∞(Xk), r =

{
n− 1, Pn = Ln,

n−m, Pn = V mn .

THEOREM 4.1. Under the previous setting, we have

(4.4) ‖IN − ĨN‖`∞ ≤ εr(f)`∞(XN ) + Λn

[
εr(f)`∞(Xn) + ‖In − Ĩn‖`∞

]
.

Proof. Let Pnf denote Lnf or V mn f . For any j = 1 : N , by (4.3) we get

|IN (j)− ĨN (j)| = |f(ξNj )− Pnf̃(ξNj )| ≤ |f(ξNj )− Pnf(ξNj )|+ |Pnf(ξNj )− Pnf̃(ξNj )|

≤ |f(ξNj )− Pnf(ξNj )|+ Λn(ξNj ) ‖f − f̃‖l∞(Xn).

Moreover, recalling the invariance property (see [23] for the VP case)

(4.5) PnQ(x) = Q(x), ∀x ∈ [−1, 1], ∀Q ∈

{
Pn−1, Pn = Ln,

Pn−m, Pn = V mn ,

by (4.3) we also get

f(ξNj )− Pnf(ξNj )| ≤ |f(ξNj )−Q(ξNj )|+ |Pn(f −Q)(ξNj )|
≤ |f(ξNj )−Q(ξNj )|+ Λn(ξNj ) ‖f −Q‖l∞(Xn).

Collecting the previous estimates, for any polynomial Q as in (4.5), and for j = 1 : N , we
have

|IN (j)− ĨN (j)| ≤ |f(ξNj )−Q(ξNj )|+ Λn(ξNj )
[
‖f −Q‖l∞(Xn) + ‖f − f̃‖l∞(Xn)

]
and the statement follows by taking the maximum w.r.t j = 1 : N and the infimum with
respect to the polynomials Q as in (4.5) at both sides.

REMARK 4.2. Regarding possible estimates of the discrete errors εr(f) in (4.4), we note
that

‖f −Q‖`∞(Xk) ≤ ‖f −Q‖∞ = max
|x|≤1

|f(x)−Qr(x)|, ∀Q ∈ Pr, ∀k ∈ N

and taking the infimum on Q ∈ Pr on both sides, we get

εr(f)`∞(Xk) ≤ Er(f)∞ = inf
Q∈Pr

‖f −Q‖∞, ∀k ∈ N.

Hence, to estimate the discrete errors in (4.4), we can theoretically apply all the results of
approximation theory bounding the error of best uniform polynomial approximation Er(f)∞
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in term of the smoothness of f ; see [21] and the references therein. For instance, by the
classical Jackson inequalities, ∀k ∈ N, we get

εr(f)`∞(Xk) ≤ Cω
(
f,

1

r

)
, ∀f ∈ C0[−1, 1],

εr(f)`∞(Xk) ≤
C
rs
ω

(
f (s),

1

r

)
, ∀f ∈ Cs[−1, 1],

where C > 0 is independent of f, r, k, and

ω(f, δ) = max
|t1−t2|<δ

|f(t1)− f(t2)|.

In particular, if we know that for some s ∈ N0 the underlying function f ∈ Cs[−1, 1] and
f (s) is Hölder continuous with exponent 0 < α ≤ 1, we have

εr(f)`∞(Xk) = O
(

1

ns+α

)
.

Now, note that in image analysis, commonly used quality measures (see, e.g., the PSNR and
SSIM quality measures defined in the next section) are based on the Root Mean Squared Error
(RMSE), that in our setting is defined as follows

‖IN − ĨN‖`2 =

 1

N

N∑
j=1

|IN (j)− ĨN (j)|2
 1

2

.

Taking into account that ‖IN − ĨN‖`2 ≤ ‖IN − ĨN‖`∞ , we can certainly apply the previous
estimates with the `∞-norm.

However, setting

‖f‖`2(Xk) =

1

k

k∑
j=1

|f(ξkj )|2
 1

2

, k ∈ N,

and

εr(f)`2(Xk) = inf
Q∈Pr

‖f −Q‖`2(Xk), r =

{
n− 1, Pn = Ln,

n−m, Pn = V mn ,

the next two theorems state the analogues of (4.2) and (4.4) with the `2-norm at both sides.
THEOREM 4.3. Under the previous setting, there exists a constant C > 0 depending on

the ratio n/N but independent of n,N and f such that

(4.6) ‖Pnf‖`2(XN ) ≤ C‖f‖`2(Xn), Pn ∈ {Ln, V mn }.

Proof. By virtue of [15, Lemma 6.2], we know that ifQ(t) is an even or odd trigonometric
polynomial of degree at most ν, then we have

(4.7)
1

N

N∑
j=1

|Q(tNj )| ≤
(

1

π
+

2ν

N

)∫ π

0

|Q(τ)|dτ.
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On the other hand, for all k = 1 : n, it is easy to check that `n,k(cos t) and Φmn,k(cos t) are
even trigonometric polynomials of degree (n− 1) and (n+m− 1), respectively. Hence, we
can apply (4.7) to the trigonometric polynomial

Q(t) = [Pnf(cos t)]
2
, ν = deg(Q) =

{
2(n− 1), Pn = Ln,

2(n+m− 1), Pn = V mn ,

obtaining

‖Pnf‖`2(XN ) =

 1

N

N∑
j=1

|Pnf(cos tNj )|2
 1

2

≤
√

1

π
+

2ν

N

(∫ π

0

|Pnf(cos τ)|2dτ
) 1

2

=

√
1

π
+

2ν

N

(∫ 1

−1
|Pnf(x)|2 dx√

1− x2

) 1
2

.

However, in the case Pn = Ln, it is known that (see, e.g., [25])

(∫ 1

−1
|Lnf(x)|2 dx√

1− x2

) 1
2

=
√
π‖f‖`2(Xn),

and, similarly, in the case Pn = V mn , it has been proved that [3, Theorem 2.4]

(∫ 1

−1
|V mn f(x)|2 dx√

1− x2

) 1
2

∼ ‖f‖`2(Xn),

where a ∼ b means that C−1a ≤ b ≤ C a holds with C > 0, independent of n,m and f .
Hence, continuing the previous estimate for Pn ∈ {Ln, V mn }, we can state that there

exists a constant C > 0, independent of n,m and f such that

‖Pnf‖`2(XN ) ≤
√

1

π
+

2ν

N

(∫ 1

−1
|Pnf(x)|2 dx√

1− x2

) 1
2

≤ C‖f‖`2(Xn)

√
1

π
+

2ν

N
.

Then, the statement follows by taking into account that ν/N ≤ 4n/N implies that
√

1
π + 2ν

N

depends on the (fixed) scale factor n/N but is independent of n and N .
THEOREM 4.4. Under the previous setting, we have

(4.8) ‖IN − ĨN‖`2 ≤ εr(f)`2(XN ) + C
[
εr(f)`2(Xn) + ‖In − Ĩn‖`2

]
,

where C > 0 is a constant depending on n/N but independent of n,N and f, f̃ .
Proof. Similarly to the proof of Theorem 4.1, for any polynomial Q as in (4.5), and for

j = 1 : N , we have

|IN (j)− ĨN (j)| = |f(ξNj )− Pnf̃(ξNj )|

≤ |f(ξNj )−Q(ξNj )|+ |Pn(Q− f)(ξNj )|+ |Pn(f − f̃)(ξNj )|.

Hence, applying (4.6), we obtain
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‖IN − ĨN‖`2 ≤ ‖f −Q‖`e(XN ) + C‖f −Q‖`e(Xn) + C‖f − f̃‖`e(Xn)

that yields the statement by taking the infimum on Q at both sides.
So far we have considered arbitrary input and output sizes, but we point out that in the

special case

(4.9) n = sN, with s ∈ N odd

both the Lagrange and VP interpolation yield, by (4.1), the same output ĨN . Moreover, in such
a special case the error estimates (4.4) and (4.8) are simplified as follows.

THEOREM 4.5. If the input and output sizes, n and N respectively, satisfy (4.9), then we
have

‖IN − ĨN‖`∞ ≤ ‖In − Ĩn‖`∞ ,(4.10)

and

‖IN − ĨN‖`2 ≤
√
s‖In − Ĩn‖`2 .(4.11)

Proof. The proof easily follows from the fact that, if (4.9) holds then (3.6) holds. Conse-
quently, we have

IN (j) = f
(
ξns(2j−1)+1

2

)
= In

(
s(2j − 1) + 1

2

)
, j = 1 : N,

and, due to the interpolation property, we also have

ĨN (j) = f̃
(
ξns(2j−1)+1

2

)
= Ĩn

(
s(2j − 1) + 1

2

)
, j = 1 : N.

By these identities (4.10) becomes trivial, and we also deduce (4.11) as follows

‖IN− ĨN‖2`2 =
s

n

N∑
j=1

∣∣∣∣In(s(2j − 1) + 1

2

)
− Ĩn

(
s(2j − 1) + 1

2

)∣∣∣∣2 ≤ s‖In− Ĩn‖2`2 .
In conclusion, let us extend the previous results to the general case of 3D rescaling from

the size n = (n1, n2, n3) to N = (N1, N2, N3). To this end, henceforth, let us assume that
the functions f, f̃ : [−1, 1]3 → R represent the image and its "corrupted" version, respectively.
Moreover, let In, IN be defined by sampling f as in (3.1), (3.2), and let

Ĩn(i, j, k)) = f̃(ξnijk), i = 1 : n1, j = 1 : n2, k = 1 : n3,

be the input image that yields the following output

ĨN(i, j, k)) = Pnf̃(ξNijk), i = 1 : N1, j = 1 : N2, k = 1 : N3,

where, as usual, we assume Pn = Ln for LCI3 method and Pn = Vm
n for VPI3 method.

For simplicity, we continue to use the same notation of the univariate case also for the
norm

‖IN‖`p =


max
i,j,k
|IN (i, j, k)|, p =∞, 1

N1N2N3

N1∑
i=1

N2∑
j=1

N3∑
k=1

|IN (i, j, k)|2
 1

2

, p = 2.
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Moreover, for any 3D-grid Xk = Xk1 ×Xk2 ×Xk3 , k = (k1, k2, k3) ∈ N3, we set

‖f‖`p(Xk) =


max

ξijk∈Xk

|f(ξijk)|, p =∞, 1

k1k2k3

∑
ξijk∈Xk

|f(ξijk)|2
 1

2

, p = 2,

and

Er(f)`p(Xk) = inf
Q∈Pr

‖f −Q‖`p(Xk) r =

{
n− 1, Pn = Ln,

n−m, Pn = Vm
n .

The following theorem can be proved using the same arguments as for the univariate case.
THEOREM 4.6. Under the previous setting, for all input and output sizes, n = (n1, n2, n3)

and N = (N1, N2, N3), respectively, we have

‖IN − ĨN‖`∞ ≤ Er(f)`∞(XN) + Λn1
Λn2

Λn3

[
Er(f)`∞(Xn) + ‖In − Ĩn‖`∞

]
,

and

‖IN − ĨN‖`2 ≤ Er(f)`2(XN) + C
[
Er(f)`2(Xn) + ‖In − Ĩn‖`2

]
where C > 0 is a constant independent of n,N and f, f̃ .

Moreover, if n and N are such that

ni = siNi, with si ∈ N odd i = 1 : 3,

then we get

‖IN − ĨN‖`∞ ≤ ‖In − Ĩn‖`∞

and

‖IN − ĨN‖`2 ≤
√
s1s2s3 ‖In − Ĩn‖`2 .

Finally, we remark that in the 3D case the error can be also estimated by using the results of
the 1D case applied to the following univariate functions

f (1)y,z (x) = f(x, y, z), f (2)x,z(y) = f(x, y, z), f (3)x,y(z) = f(x, y, z).

More precisely, we observe that the trivariate VP interpolation error can be, for instance,
decomposed as follows

f(x, y, z)− Vm
n f(x, y, z) = f (1)y,z (x)− V m1

n1
f (1)y,z (x)

+

n1∑
i=1

[
f
(2)

ξ
n1
i ,z

(y)− V m2
n2

f
(2)

ξ
n1
i ,z

(y)
]

Φm1
n1,i

(x)

+

n2∑
j=1

n1∑
i=1

[
f
(3)

ξ
n1
i ,ξ

n2
j

(z)− V m3
n3

f
(3)

ξ
n1
i ,ξ

n2
j

(z)
]

Φm1
n1,i

(x)Φm2
n2,j

(y),

and a similar decomposition holds for the trivariate Lagrange interpolation error too.
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Consequently, setting Pni
= Lni

for LCI3 and Pni
= V mi

ni
for VPI3, i = 1 : 3, we easily

get

‖IN − ĨN‖`∞ ≤Λn1
Λn2

Λn3
‖In − Ĩn‖`∞ + max

y∈XN2
, z∈XN3

‖f (1)y,z − Pn1
f (1)y,z‖`∞(Xn1

)

+ Λn1 max
x∈Xn1 , z∈XN3

‖f (2)x,z − Pn2f
(2)
x,z‖`∞(Xn2 )

+ Λn1
Λn2

max
x∈Xn1

, y∈Xn3

‖f (3)x,y − Pn3
f (3)x,y‖`∞(Xn3

)

and

‖IN − ĨN‖`2 ≤ C‖In − Ĩn‖`2 + max
y∈XN2

, z∈XN3

‖f (1)y,z − Pn1f
(1)
y,z‖`2(Xn1 )

+ C max
x∈Xn1

, z∈XN3

‖f (2)x,z − Pn2
f (2)x,z‖`2(Xn2

)

+ C max
x∈Xn1

, y∈Xn2

‖f (3)x,y − Pn3
f (3)x,y‖`2(Xn3

)

with C > 0 independent of n, N and f, f̃ .

5. Quality measures and tests. In this section, we describe some experiments to show
the performance of LCI3 compared with VPI3. We also comparewith the multivariate cubic
interpolation method (shortly BIC) and the Lanczos interpolation method, implemented by the
Matlab built-in function IMRESIZE3, with the option ’cubic’ and ’lanczos3’, respectively.

For the quantitative analysis of the performance, we use the standard quality measures
PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index Measure) computed
by Matlab (see, e.g., [18, 28]). Denoted by IN the target image and ĨN the output resized
image, we recall that PSNR is defined as

PSNR(IN, ĨN) = 20 log10

Lmax√
MSE(IN, ĨN)

,

where

MSE(IN, ĨN) = ‖IN − ĨN‖`2 =
1

N1N2N3

N1∑
i=1

N2∑
j=1

N3∑
k=1

[
IN(i, j, k)− ĨN(i, j, k)

]2
,

and Lmax is the maximum possible value of the image, that in our experiments can be

Lmax =

{
255, 8− bits
65535, 16− bits

images representation.

PSNR values vary in (0,+∞), being infinity the best possible value (corresponding to a null
MSE). Moreover, SSIM is defined as

SSIM(IN, ĨN) =

[
2µ(IN)µ(ĨN) + c1

] [
2cov(IN, ĨN) + c2

]
[
µ2(IN) + µ2(ĨN) + c1

] [
σ2(IN) + σ2(ĨN) + c2

] ,
where µ(A), σ(A) and cov (A,B) indicate the average, variance and covariance, respectively,
of the arraysA,B, and c1, c2 are constants usually fixed as c1 = (0.01×Lmax), c2 = (0.03×
Lmax). SSIM values vary in [0, 1], being SSIM = 1 the best result.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

310 D. OCCORSIO, G. RAMELLA, AND W. THEMISTOCLAKIS

In Tests 2,3, and 4 where the reference image (or Ground truth) is available we have
computed PSNR and SSIM values. We outline that we have implemented VPI3 method with
the additional parameter m := bnθc, with θ ∈ ζ := {0.1, 0.2, . . . , 0.9), and selected the best
PSNR and SSIM values attained on ζ.

Our numerical tests concern the following three types of images:

• an MRI of a human cranium available in the MatLab library (uint8 format) and
consisting of 27 Slices of dimensions 128× 128, shortly denoted ’BRAIN’;

• a DICOM (Digital Imaging and Communications in Medicine) format image [29],
which is a study in the abdomen about the arterielle system acquired in modality CT
(361 Slices of dimensions 512× 512, uint16 format), and shortly denoted ’DICOM-
Study1’;

• the synthetic 3D Shepp-Logan phantom image, widely used in the literature for testing
image reconstruction [22]. It is generated by the Matlab function PHANTOM3D and
shortly denoted ’PHANTOM’.

(a) VPI3, m = (115, 115, 24) (b) VPI3, m = (64, 64, 13)

(c) LPI3 (d) Initial image

FIG. 5.1. Test 1:BRAIN upscaling x2 by VPI3 (two choices of m) and by LCI3.

5.1. Test 1. This test aims to highlight the improvement achieved by filtered VP inter-
polation vs Lagrange interpolation, with the aid of the additional parameter m. The image
BRAIN has been taken as an input image to be upscaled, with a factor 2, by LCI3 and by VPI3
implemented with two different choices of m. The volume reconstructions in Figure 5 display
the respective output images (54 slices of dimensions 256 × 256) and the original cranium
data. We can note some artifacts produced along the contour of the image resized by LCI3,
while in both the images realized by VPI3 such effects are not visible. In particular, image (b)
upsampled by VPI3 with m = bn/2c appears a little bit fair.
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5.2. Test 2. In this second test, the image BRAIN has been taken as the target image,
namely as IN where the size N is taken according to our previous notation. We want to
examine how the performance results (either in upscaling or in downscaling) depend on
different methods used to get the input image from the target one. To be more precise, we first
generate the input image with size n, say it Ĩn, by applying one of the comparison methods
LCI3, VPI3, BIC, LANCZOS, and also the following methods

1. trilinear interpolation (’linear’),
2. nearest-neighbor interpolation (’nearest’),

implemented in Matlab by IMRESIZE3 with the option ’linear’ and ’nearest’, respectively.
Then, for each case, we apply BIC, LANCZOS, LCI3, and VPI3 (in upscaling and

downscaling, for the scale factors 2,3,4) to resize Ĩn at the resolution N, and, being available
the target image, we compute the respective PSNR and SSIM values. The results are given in
Table 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6, each one corresponding to the specific method used to
generate the input image. The best results, also in cases of ex-aequo, are evidenced in bold.

TABLE 5.1
Test 2: PSNR and SSIM values attained in upscaling (x) and downscaling (:) on MRI image, with input image

generated by BIC.

x2 x3 x4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 30.0587 0.8969 27.6775 0.8093 26.3989 0.7414
LANCZOS 30.4403 0.9057 27.9418 0.8197 26.5929 0.7507

LCI3 30.5884 0.8992 28.0777 0.8103 26.7148 0.7350
VPI3 30.6006 0.9058 28.0816 0.8194 26.7168 0.7486

:2 :3 :4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 38.3195 0.9862 38.6428 0.9873 38.5650 0.9871
LANCZOS 39.9393 0.9905 40.1922 0.9911 40.1292 0.9910

LCI3 53.5674 0.9993 Inf 1 56.1893 0.9996
VPI3 53.9381 0.9994 Inf 1 58.2314 0.9996

As a global evaluation of Tables 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6, VPI3 provides a small
improvement in upscaling w.r.t the other interpolation methods, while the gap is significantly
high in downscaling. In particular, note that in the case of downsampling with scale factor 3,
according to what is said in Section 3.1, VPI3 and LCI3 coincide and provide the best quality
measure, i.e., PSNR = Inf and SSIM = 1. However, we caution the reader that this excellent
result depends on the method used to generate the input image and is unlikely to be obtained
in real cases. For further details, we refer the reader to the bivariate case studied in [12, 13], as
similar observations can be replicated. Finally, concerning the other downscaling cases, as
well as in all upscaling with any scale factor, we observe that LCI3 appears less stable than
VPI3 which, even changing the input image generation method, always detects the highest
quality measure, except one case; see Table 5.2.

5.3. Test3. Upscaling along only one direction. In this test we consider a task often
required in Medical Imaging, namely the image upscaling along only in one of the three
directions (see Section 3.2), in the particular case of the scale factor 2. To this aim, we take
the DICOM-Study1 as target image IN, with size N = (N1, N2, N3), and we construct the
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TABLE 5.2
Test 2: PSNR and SSIM values attained in upscaling (x) and downscaling (:) on MRI image, with input image

generated by imresize3 with option ’linear’.

x2 x3 x4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 29.2248 0.8719 27.2332 0.7883 26.0561 0.7221
LANCZOS 29.5914 0.8826 27.4862 0.7997 26.2362 0.7323

LCI3 29.7131 0.8825 27.5951 0.7970 26.3339 0.7262
VPI3 29.7141 0.8850 27.5963 0.8011 26.3333 0.7335

:2 :3 :4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 35.0536 0.9696 36.2980 0.9778 35.5792 0.9735
LANCZOS 35.9314 0.9755 37.2817 0.9824 36.4741 0.9786

LCI3 39.3188 0.9893 Inf 1 44.4675 0.9967
VPI3 39.3200 0.9893 Inf 1 44.4794 0.9968

TABLE 5.3
Test 2: PSNR and SSIM values attained in upscaling (x) and downscaling (:) on MRI image, with input image

generated by imresize3 with option ’nearest’.

x2 x3 x4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 27.9837 0.8661 26.5746 0.8019 25.0829 0.7406
LANCZOS 27.7093 0.8611 26.2405 0.7909 24.7449 0.7252

LCI3 27.2964 0.7971 25.7339 0.6893 24.3418 0.5906
VPI3 27.9854 0.8640 26.6819 0.7974 25.2910 0.7285

:2 :3 :4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 41.0014 0.9929 40.1348 0.9913 39.8174 0.9905
LANCZOS 42.8631 0.9955 41.7072 0.9940 41.3504 0.9934

LCI3 31.0828 0.9613 Inf 1 37.6482 0.9783
VPI3 54.3092 0.9997 Inf 1 64.7407 1

input image In, with size n = (n1, n2, n3) such that two of the three components of n and N
remain unchanged while the third ones, say Ni, ni, are such that ni =

⌊
Ni+1

2

⌋
.

To be more precise, In is obtained from IN by eliminating all the voxel-values that
have an even index along the i-th dimension we want to change. For instance, in upscaling
along the third dimension, Figure 5.2 illustrates, in the case of 3 slices (Ni = 3), the idea
of the reconstruction by interpolation of the teal slice starting from the known values of the
purple and pink slices. In this case, the axis z represents the direction along which we need to
interpolate.

More generally, in Matlab code, the input image is given by

In := IN(1 : N1, 1 : N2, 1 : 2 : N3)

if we are upscaling along the third dimension, and similarly we proceed along the second and
third dimensions.

To upscale such an input image In at the original size N, we apply BIC, LANCZOS,
LCI3, VPI3, and, having available the target images, we compute the quality measures not only
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TABLE 5.4
Test 2: PSNR and SSIM values attained in upscaling (x) and downscaling (:) on MRI image, with input image

generated by LCI3.

x2 x3 x4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 29.6151 0.8736 26.7880 0.8079 25.4077 0.7287
LANCZOS 29.3398 0.8664 26.4753 0.7965 25.0565 0.7101

LCI3 28.6644 0.8004 25.9753 0.6971 24.6387 0.5871
VPI3 29.6244 0.8747 26.8521 0.8020 25.5946 0.7158

:2 :3 :4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 40.3143 0.9704 40.7449 0.9875 40.6215 0.9834
LANCZOS 43.0964 0.9775 43.4821 0.9906 43.3594 0.9875

LCI3 50.9347 0.9918 Inf 1 56.9852 0.9988
VPI3 50.9605 0.9910 Inf 1 58.2415 0.9991

TABLE 5.5
Test 2: PSNR and SSIM values attained in upscaling (x) and downscaling (:) on MRI image, with input image

generated by VPI3 with m = (90, 90, 19).

x2 x3 x4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 30.3954 0.9079 27.0742 0.8178 25.9585 0.7578
LANCZOS 30.5376 0.9103 26.8316 0.8099 25.7134 0.7461

LCI3 30.3439 0.8803 26.4077 0.7187 25.3867 0.6334
VPI3 30.5354 0.9088 27.0826 0.8147 26.0207 0.7542

:2 :3 :4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC3 37.5644 0.9833 37.7054 0.9842 37.6764 0.9840
LANCZOS 38.8275 0.9876 38.8799 0.9880 38.8651 0.9879

LCI3 57.4818 0.9997 Inf 1 60.3868 0.9998
VPI 57.8748 0.9997 Inf 1 62.8055 0.9999

TABLE 5.6
Test 2: PSNR and SSIM values attained in upscaling (x) and downscaling (:) on MRI image, with input image

generated by imresize3 with option ’lanczos3’.

x2 x3 x4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 30.3148 0.9035 27.8514 0.8154 26.5175 0.7441
LANCZOS 30.6713 0.9104 28.1089 0.8235 26.7151 0.7523

LCI3 30.8592 0.9026 28.2809 0.8127 26.8744 0.7351
VPI3 30.8331 0.9104 28.2794 0.8228 26.8725 0.7530

:2 :3 :4
PSNR SSIM PSNR SSIM PSNR SSIM

BIC3 39.7173 0.9901 39.9892 0.9908 39.9044 0.9906
LANCZOS 41.7136 0.9935 41.8582 0.9938 41.8012 0.9937

LCI3 52.1988 0.9992 Inf 1.0000 55.8549 0.9996
VPI3 52.7651 0.9992 Inf 1.0000 57.6055 0.9998
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FIG. 5.2. Test 3: The idea of the interpolation between slices: the teal slice unknown values are obtained by
interpolating purple and pink slices. The axis z represents the direction along which we interpolate.

TABLE 5.7
Test 3: Global 3D PSNR and SSIM values (top of the table), and the mean of 2D PSNR and SSIM values referred

to the neglected slices (bottom of the table) in upscaling ×2.

3D quality measures
1-st 2-nd 3-rd

PSNR SSIM PSNR SSIM PSNR SSIM
BIC 68.2220 0.9996 71.0322 0.9998 78.4908 1

LANCZOS 68.2047 0.9996 71.0087 0.9998 78.5010 1
LCI3 68.0357 0.9996 70.8964 0.9998 78.2296 1
VPI3 68.2205 0.9996 71.0259 0.9998 78.5067 1

Mean 2D quality measures
1-st 2-nd 3-rd

PSNR SSIM PSNR SSIM PSNR SSIM
BIC 73.5158 0.9993 76.6248 0.9998 77.5766 1

LANCZOS 73.8288 0.9994 76.5749 0.9998 77.8335 1
LCI3 73.3102 0.9994 76.3945 0.9998 77.5402 1
VPI3 73.8356 0.9994 76.5992 0.9998 77.8708 1

for the 3D images but also for the 2D slices representing the reconstruction of the neglected
ones. More precisely, we compute the usual PSNR and SSIM between the output 3D images
and the target one represented by DICOM-Study1 (named "3D quality measures"). Moreover,
we also compute the averages of the bivariate PSNR and SSIM values concerning all the
neglected 2D images along the direction to resize (named "mean 2D quality measures"). The
results of both 3D and 2D measurements are given in Table 5.7, where the 1st, 2nd, and 3rd
columns correspond to the choice of the size ni to upscale, with i = 1, 2, and 3, respectively.

Comparing the performance results in Table 5.7, we observe that all the values are almost
comparable among them, even though the mean of the PSNR values of the 2D images, shows
a better performance of VPI3 with respect to the other methods, confirming in some sense, the
better local approximation provided by VPI3 interpolation.

Figure 5.3 illustrates the pointwise qualitative results of the previous experiment focusing
on the reconstruction of slice 99z displayed in the central position of the first row upscaled
along the axial direction (parallel to the plane z = 0, "from top to down"), in our notation
N3 = 2n3 + 1, N1 = n1, N2 = n2.

By the quantitative results displayed in Table 5.8, which reports the pointwise 2D PSNR
and SSIM values taking as target 2D image 250x, 162y, and 99z, respectively, we do not
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(a) 98 (b) 99 (c) 100

(d) BIC reconstruction of slice 99z (e) Lanczos reconstruction of slice 99z

(f) LCI3 reconstruction of slice 99z (g) VPI3 reconstruction of slice 99z

FIG. 5.3. Test 3: Original slices along z direction 98z, 99z, 100z (first row), Reconstructed slice 99z by BIC,
LANCZOS, LCI3, VPI3, (second row).

detect differences among the methods, being all the quality measures very close among them.
However, at a visual level, the reconstructed slice 99z by VPI3 presents a little bit of major
contrasts with respect to the reconstructions realized by BIC, better evidencing the contours of
some tissues, appearing more flat in the BIC images.

5.4. Test 4. The synthetic image Shepp-Logan Phantom. This test is performed on the
synthetic image PHANTOM. Let us assume that the target image IN, with N = (µ, µ, µ) is
generated by the Matlab function PHANTOM3D with size parameter µ.

About the input image, let us first consider the case when it is also generated by PHAN-
TOM3D. Table 5.9 displays the PSNR values achieved by BIC, LANCZOS, LCI3, and VPI3
in both upscaling and downscaling with scale factor 2. According to the previous experiments,
VPI3 almost always provides slightly better quality measures in both up and down resizing.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

316 D. OCCORSIO, G. RAMELLA, AND W. THEMISTOCLAKIS

TABLE 5.8
Test 3: 2D PSNR and SSIM values for slice 250x (left), slice 162y (middle), slice 99z (right).

250x 156y 99z
PSNR SSIM PSNR SSIM PSNR SSIM

BIC 65.1103 0.9999 76.4455 0.9999 81.7798 1
LANCZOS 64.9646 0.9999 76.5420 0.9999 81.8273 1

LCI3 64.6527 0.9999 76.4781 0.9999 80.8667 1
VPI3 65.0356 0.9999 76.6517 0.9999 81.8585 1

However, for all downscaling cases, we note that the large gap displayed for the MRI image
(cf. Tables 5.1-5.6) is now much more attenuated.

TABLE 5.9
Test 4: PSNR for PHANTOM (used for both input/output) in upscaling and downscaling with scale factor 2.

PSNR in upscaling x2 PSNR in downscaling :2
µ BIC Lanczos LCI3 VPI3 BIC Lanczos LCI3 VPI3
50 62.9890 63.0275 63.1405 63.1405 66.5665 66.4048 65.9866 66.8365
51 63.1743 63.0526 63.0863 63.6257 66.7644 66.6604 66.4442 67.1229
90 64.8480 64.9271 65.0157 64.9591 69.1358 69.0202 68.8398 69.2855
91 65.4179 65.3064 65.1224 65.4420 69.1220 69.0459 68.9613 69.3494
130 66.5688 66.6704 66.6959 66.6885 70.7026 70.6444 70.5571 71.1462
131 67.1639 67.1205 66.9828 67.1834 70.8402 70.7747 70.6225 71.1289
170 67.9832 67.9921 68.0832 68.0255 71.9770 72.0270 71.6893 72.5645
171 68.5279 68.5127 68.3925 68.5344 72.1082 72.0526 71.6990 72.6223
200 68.7833 68.7594 68.7810 68.7929 72.6611 72.6737 72.3772 73.2203
201 69.2559 69.2147 69.0722 69.3393 72.6382 72.6735 72.3432 73.2663

Now, let us focus on upscaling x2 and consider the case that the input image is not
generated by PHANTOM3D but it is obtained by decimating the target image IN, with step 2,
simultaneously along all the three directions. Briefly, in Matlab code, we take the following
input image

(5.1) In := IN(1 : 2 : µ, 1 : 2 : µ, 1 : 2 : µ).

By BIC, LCI3, and VPI3 we resize In at the size N, and in Table 5.10 we show the respective
PSNR and SSIM values for increasing values of µ. In this case, we observe that the best
performance results are achieved by VPI3, followed in order by LCI3, Lanczos and BIC.
Moreover, we note that the gap between the PSNR values of Lanczos and BIC with respect to
VPI3 is larger for odd µ. To evidence such behavior, in Figure 5.4 we have plotted the PSNR
values for increasing odd values of µ varying from 51 to 201. Finally, comparing Table 5.10
and Table 5.9 we see that VPI3 maintains a stable performance even when changing the input
image, which is generated by decimation in the former table and by PHANTOM3D in the latter.
Moreover, VPI3 attains a superior performance in Table 5.10 with a greater gap over BIC and
Lanczos methods.
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TABLE 5.10
Test 4: PSNR and SSIM for PHANTOM with input image given by (5.1).

PSNR SSIM
µ BIC Lanczos LCI3 VPI3 BIC Lanczos LCI3 VPI3
50 62.6222 62.6222 62.5842 62.6634 0.9993 0.9993 0.9992 0.9993
51 62.3104 62.2457 62.9820 63.4528 0.9992 0.9993 0.9992 0.9994
90 64.4500 64.4500 64.6126 64.6651 0.9995 0.9995 0.9995 0.9995
91 63.3737 63.4163 64.8595 65.0094 0.9993 0.9995 0.9993 0.9996
130 65.8861 65.8861 66.2534 66.2736 0.9996 0.9996 0.9996 0.9996
131 64.7870 64.8017 66.8349 67.0706 0.9995 0.9995 0.9997 0.9997
170 67.0740 67.0740 67.5461 67.5504 0.9997 0.9997 0.9997 0.9997
171 65.9378 65.9378 68.2842 68.4395 0.9995 0.9995 0.9998 0.9998
200 67.7811 67.7811 68.2382 68.2520 0.9997 0.9997 0.9997 0.9997
201 66.6180 66.6180 69.0730 69.1504 0.9996 0.9996 0.9998 0.9998

50 100 150 200
62

63

64

65

66

67

68

69

70

BIC

LANCZOS,

LCI

VPI

FIG. 5.4. Test 4: PSNR values attained for odd values of µ = 51 : 2 : 201.

Code and supplementary materials The source code implementing LCI3 and VPI3
is openly available at the following link: https://github.com/ImgScaling/3D_
VPIscaling.
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