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A MATRIX-FREE PARALLEL SOLUTION METHOD FOR THE
THREE-DIMENSIONAL HETEROGENEOUS HELMHOLTZ EQUATION∗

J. CHEN†, V. DWARKA†, AND C. VUIK†

Abstract. The Helmholtz equation is related to seismic exploration, sonar, antennas, and medical imaging
applications. It is one of the most challenging problems to solve in terms of accuracy and convergence due to the
scalability issues of the numerical solvers. For 3D large-scale applications, high-performance parallel solvers are also
needed. In this paper, a matrix-free parallel iterative solver is presented for the three-dimensional (3D) heterogeneous
Helmholtz equation. We consider the preconditioned Krylov subspace methods for solving the linear system obtained
from finite-difference discretization. The Complex Shifted Laplace Preconditioner (CSLP) is employed since it
results in a linear increase in the number of iterations as a function of the wavenumber. The preconditioner is
approximately inverted using one parallel 3D multigrid cycle. For parallel computing, the global domain is partitioned
blockwise. The matrix-vector multiplication and preconditioning operator are implemented in a matrix-free way
instead of constructing large, memory-consuming coefficient matrices. Numerical experiments of 3D model problems
demonstrate the robustness and outstanding strong scaling of our matrix-free parallel solution method. Moreover, the
weak parallel scalability indicates our approach is suitable for realistic 3D heterogeneous Helmholtz problems with
minimized pollution error.
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1. Introduction. The Helmholtz equation, describing the phenomena of time-harmonic
wave scattering in the frequency domain, finds applications in many scientific fields, such as
seismic problems, advanced sonar devices, medical imaging, and many more. To solve the
Helmholtz equation numerically, we discretize it and obtain a linear system Ax = b. The
linear system matrix is sparse, symmetric, complex-valued, non-Hermitian, and indefinite.
Instead of a direct solver, iterative methods and parallel computing are commonly considered
for a large-scale linear system resulting from a 3D problem. However, the indefiniteness of
the linear system brings a great challenge to the numerical solution method, especially for
large wavenumbers. The convergence rate of many iterative solvers is affected significantly
by increasing wavenumber. An increase in the wavenumber leads to a dramatic increase in
iterations. Moreover, the general remedy for minimizing the so-called pollution error, driven by
numerical dispersion errors due to discrepancies between the exact and numerical wavenumber,
is to refine the grid such that the condition k3h2 < 1 is satisfied [2]. Therefore, the research
problem of how to solve the systems efficiently and economically while at the same time
maintaining a high accuracy by minimizing pollution error arises in this field. A wavenumber-
independent, convergent, and parallel scalable iterative method could significantly enhance
the corresponding research in electromagnetics, seismology, and acoustics.

Many efforts have been made to solve the problem in terms of accuracy and scalable
convergence behavior. One of the main concerns is the spectrum of the system matrix,
which is closely related to the convergence of Krylov subspace methods. The preferable
idea is to preprocess the system with a preconditioner. By applying a preconditioner to the
linear system, the solution remains the same, but the coefficient matrix has a more favorable
distribution of eigenvalues. Many preconditioners are proposed for the Helmholtz problem so
far, such as incomplete Cholesky (IC), incomplete LU (ILU) factorization, shifted Laplacian
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preconditioners [5, 19, 20], and so on. The industry standard, also known as the Complex
Shifted Laplace Preconditioner (CSLP) [19, 20] does show good properties for medium
wavenumbers. Nevertheless, the eigenvalues shift to the origin as the wavenumber increases.
These near-zero eigenvalues have an unfavorable effect on the convergence speed of the
Krylov-based iterative solvers. Therefore, Sheihk [42] further included deflation techniques to
accelerate the convergence. Recently, a higher-order approximation scheme to construct the
deflation vectors was proposed to reach close to wavenumber-independent convergence [16].

The development of scalable parallel Helmholtz solvers is also ongoing. One approach is
to parallelize existing advanced algorithms. Kononov and Riyanti [33, 38] first developed a
parallel version of Bi-CGSTAB preconditioned by multigrid-based CSLP. Knibbe et al. [30]
further introduced parallel versions of CSLP-preconditioned Bi-CGSTAB and IDR(s) which
run on GPU accelerators. Dan and Rachel [27] parallelized their so-called CARP-CG algo-
rithm (Conjugate Gradient acceleration of CARP) blockwise. The block-parallel CARP-CG
algorithm shows improved scalability as the wavenumber increases. Calandra et al. [7, 8]
proposed a geometric two-grid preconditioner for 3D Helmholtz problems, which shows the
strong scaling property in a massively parallel setup.

Another approach is the Domain Decomposition Method (DDM), which originates from
the early Schwarz Methods. DDM has been widely used to develop parallel solution methods
for Helmholtz problems. For comprehensive surveys, we refer the reader to [6, 9, 12, 14, 17,
24, 25, 35, 41, 44, 45, 46] and references therein.

This work is interested in parallelizing Krylov subspace methods, such as the General-
ized Minimal RESidual method (GMRES), Bi-CGSTAB, and IDR(s), preconditioned by the
multigrid-based CSLP for the Helmholtz equation. We consider the CSLP preconditioner
because it is the first and most popular method where the number of iterations scales lin-
early within medium wavenumbers. However, CSLP is not wavenumber-independent. The
standard configuration of CSLP+GMRES works less efficiently if we want to solve highly
heterogeneous problems with minimized pollution error. Finer grids and more iterations,
hence more memory, will be needed. Our contribution is the development and validation of
a matrix-free parallel framework of CSLP-preconditioned Krylov subspace methods in the
context of solving large-scale 3D Helmholtz problems with minimized pollution error. To
the best of our knowledge, this has not been previously reported in the literature. The earlier
variants proposed by Kononov and Riyanti et al. [33, 38] mainly parallelized the sequential
program based on the data-parallel concept. It results in a row-wise domain partition and a 3D
multigrid method with 2D semi-coarsening. In contrast, this work starts with a block-wise
domain partition and implements a standard 3D multigrid method in a matrix-free way. Our
method contributes to a robust and scalable parallel CSLP-preconditioned solver for realistic
3D applications. Numerical experiments on typical 3D model problems show that the matrix-
free parallel solution method can effectively save memory for storing global sparse matrices
and show good parallel performance.

The rest of this paper is organized as follows. Section 2 describes the mathematical model
and discretization technique that we will discuss. All numerical methods we use are described
in Section 3. Section 4 describes the parallel implementation. The numerical performance is
explored in Section 5. Finally, Section 6 contains our conclusions.

2. Mathematical models. The Helmholtz equation can model the wavefield in hetero-
geneous media in the frequency domain. Suppose a parallelepipedal domain Ω ⊂ R3 with
boundary Γ = ∂Ω. The Helmholtz equation reads

−∆u(x)− k(x)2u(x) = b(x), x = (x1, x2, x3) ∈ Ω,
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supplied with one of the following boundary conditions:

Dirichlet: u(x) = g(x), on ∂Ω,

First-order Sommerfeld:
∂u(x)

∂~n
− ik(x)u(x) = 0, on ∂Ω,(2.1)

where i is the imaginary unit. u represents the pressure wavefield. b is the source function, ~n
and g represent the outward unit normal vector and the given data on the boundary, respectively.
The wavenumber k(x) and the frequency f are related by

k(x) =
2πf

c(x)
,

where c(x) is the space-variant acoustic-wave velocity due to changes in the material of the
domain.

2.1. 3D closed-off problem. This problem is a constant wavenumber model with a
given solution to validate the numerical methods. A parallelepipedal homogeneous domain
Ω = [0, 1]

3 is considered. The source function is specified by

b(x1, x2, x3) =
(
21π2 − k2

)
sin (πx1) sin (2πx2) sin (4πx3)− k2.

It is supplied with the following Dirichlet conditions

u(x1, x2, x3) = 1, on ∂Ω.

The analytical solution is given by

u(x1, x2, x3) = sin (πx1) sin (2πx2) sin(4πx3) + 1.

2.2. 3D wedge problem. Most physical problems of geophysical seismic imaging de-
scribe a heterogeneous medium. The so-called wedge problem [37] is a typical problem
with a simple heterogeneity. It mimics three layers with different acoustic-wave veloci-
ties, hence different wavenumbers. As shown in Figure 2.1, the parallelepipedal domain
Ω = [0, 600] × [0, 600] × [−1000, 0] is split into three layers. Suppose the acoustic-wave
velocity c is constant within each layer but different from each other. A point source is located
at (x1, x2, x3) = (300, 300, 0).

The problem is given by{
−∆u(x1, x2, x3)− k(x1, x2, x3)2u(x1, x2, x3) = b(x1, x2, x3), on Ω,

b(x1, x2, x3) = δ(x1 − 300, x2 − 300, x3) x1, x2, x3 ∈ Ω,

where k(x1, x2, x3) = 2πf
c(x1,x2,x3)

and f is the frequency. The wave velocity c(x1, x2, x3) is
shown in Figure 2.1 and δ (x1, x2, x3) is a Dirac delta function. The first-order Sommerfeld
boundary conditions are imposed on all boundaries.

2.3. 3D SEG/EAGE salt model. The 3D SEG/EAGE salt model [1] is a velocity
field model containing salt domes, which mimics the typical Gulf Coast salt structure. As
shown in Figure 2.2, it is defined in a parallelepipedal physical domain of size 13 520 m ×
13 520 m× 4200 m. The acoustic-wave velocity varies from 1500 m s−1 to 4482 m s−1. The
model is considered challenging due to the inclusion of complex geometries (salt domes)
and a realistic large-size computational domain. We consider a computational domain
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FIG. 2.1. The velocity distribution of the 3D wedge problem.

Ω = (0, 12800)× (0, 12800)× (0, 3840) with grid size 641×641×193, allowing multi-level
geometric coarsening. A point source is located at (x1, x2, x3) = (3200, 3200, 0).

The problem is given by{
−∆u(x1, x2, x3)− k(x1, x2, x3)2u(x1, x2, x3) = b(x1, x2, x3), on Ω,

b(x1, x2, x3) = δ(x1 − 3200, x2 − 3200, x3) x1, x2, x3 ∈ Ω,

where k(x1, x2, x3) = 2πf
c(x1,x2,x3)

and f is the frequency. The wave velocity c(x1, x2, x3) is
shown in Figure 2.2. The first-order Sommerfeld boundary conditions are imposed on all
boundaries.

FIG. 2.2. The velocity distribution of the 3D SEG/EAGE Salt Model. The velocity varies from 1500m s−1 to
4482m s−1.
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2.4. Finite-difference discretization. Structural vertex-centered grids are used to dis-
cretize the computational domains. Suppose the grid widths in x1, x2, and x3 directions are
all equal to h. A second-order finite difference scheme for a 3D Laplacian operator has the
following stencil

(2.2) [−∆h] =
1

h2

 0 0 0
0 −1 0
0 0 0


x3−h

 0 −1 0
−1 6 −1
0 −1 0


x3

 0 0 0
0 −1 0
0 0 0


x3+h

 .
The discrete Helmholtz operator Ah can be obtained by adding the diagonal matrix −k2Ih to
the Laplacian operator −∆h, i.e.,

Ah = −∆h − k2Ih.

Therefore, the stencil of the discrete Helmholtz operator is
(2.3)

[Ah] =
1

h2

 0 0 0
0 −1 0
0 0 0


x3−h

 0 −1 0
−1 6− k2h2 −1
0 −1 0


x3

 0 0 0
0 −1 0
0 0 0


x3+h

 .
In case the Sommerfeld radiation condition (2.1) is used, the discrete schemes for the

boundary points need to be defined. We can introduce ghost points located outside the
boundary points. For instance, assume u0,i2,i3 is a ghost point on the left of u1,i2,i3 , the
normal derivative can be approximated by

∂u

∂~n
− iku =

u0,i2,i3 − u2,i2,i3
2h

− iku1,i2,i3 = 0.

We can rewrite it as

(2.4) u0,i2,i3 = u2,i2,i3 + 2hiku1,i2,i3 .

Then one can eliminate the ghost point in the stencil for the boundary points.
In addition, for the discretization of the Dirac function δ(x1 − x0, x2 − y0, x3 − z0), we

can set the right-hand side (RHS) as

bh (i1, i2, i3) =

{
1
h3 , x1i1 = x0, x2i2 = y0, x3i3 = z0,

0, x1i1 6= x0, x2i2 6= y0, x3i3 6= z0.

The finite-difference discretization of the partial differential equation on geometric grids
results in a system of linear equations

Ahuh = bh.

With Sommerfeld boundary conditions, the resulting matrix is sparse, symmetric, complex-
valued, indefinite, and non-Hermitian for a sufficiently large wavenumber k.

Note that kh is an important parameter that can indicate how many grid points per
wavelength are used. The grid width h can be determined by the rule of thumb of including at
least Npw (e.g., 10 or 30) grid points per wavelength. One has the following relationships

kh =
2πh

λ
=

2π

Npw
.

For example, if at least 10 grid points per wavelength are required, one has to satisfy the
condition kh ≤ 0.625.
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3. Preconditioned Krylov method. For a large, sparse system matrix A, Krylov sub-
space methods are popular. This section will specify every component of the preconditioned
Krylov subspace methods that we use to solve the linear system.

3.1. Krylov subspace methods. The Krylov subspace methods are established on a
collection of iterations in the subspace

Kk(A; r0) := span
{
r0, Ar0, . . . , Ak−1r0

}
,

whereKk is at most a k-dimensional Krylov space with respect to matrixA and initial residual
r0. For a basic iterative method, after k iterations, uk will be an element of u0 +Kk(A, r0).
Some representative Krylov methods, like Conjugate Gradient (CG) [28], CGNR [39], MIN-
RES [36], BICG [22], Bi-CGSTAB [47], GMRES [40], are developed so far. Among these,
the CG method is a basic one. The error is minimized in the A-norm, and it only needs
three vectors in memory during iterations. However, this algorithm is mainly designed for a
symmetric and positive definite system matrix. In contrast, Bi-CGSTAB and GMRES can be
used for consistent problems that are indefinite and non-symmetric. They are suitable choices
for the Helmholtz equation. Compared with full GMRES, Bi-CGSTAB has short recurrences
and better parallel properties.

Also, the IDR(s), which is developed by Sonneveld, Van Gijzen [43], is an efficient
alternative to Bi-CGSTAB for Helmholtz problems [30]. In IDR(s), s pre-defined vectors are
used to enhance the convergence. It was showed in [43] that IDR(1) has similar computational
complexity and memory requirements as Bi-CGSTAB. With higher values of s, IDR(s) exhibits
a performance close to GMRES, but with more storage requirements. For example, we need
to store 17 vectors for IDR(4), while Bi-CGSTAB needs to store 7 vectors. In general, IDR(4)
is sufficient for most of the problems. Thus, we employ IDR(4) as a representation of IDR(s)
in our parallel framework. For a detailed analysis of the influence of s on the algorithm
convergence properties, we refer the reader to the work of Sonneveld and Van Gijzen et
al. [11, 43]

We first focus on implementing the matrix-free parallelization of GMRES, then it can be
directly generalized to Bi-CGSTAB and IDR(s).

3.2. Preconditioning. The coefficient matrix of a non-Hermitian linear system is pre-
ferred to have a spectrum located in a bounded region that excludes the origin in the complex
plane, which results in fast convergence for iterative methods. We can incorporate a precondi-
tioner to enhance the convergence of Krylov subspace methods, that is, to pre-multiply the
linear system with a preconditioning matrix M−1

h . It can be implemented by left precondition-
ing

M−1
h Ahuh = M−1

h bh,

or right preconditioning,

AhM
−1
h ũh = bh,

where uh = Mhũh. It can be proved that there is no essential difference between both
preconditioning methods with respect to convergence behavior. Anyway, it is worth noting that
the residual vectors computed by left preconditioning and right preconditioning correspond to
the preconditioned and actual residuals, respectively. Thus, it may cause some difficulties for
left preconditioning if a stopping criterion needs to be based on the actual residual instead of
the preconditioned one.
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3.3. Complex Shifted Laplace Preconditioner. We focus on CSLP motivated by its
nice performance and easy setup. The CSLP is defined by

(3.1) Mh = −∆h − (β1 − β2i) k2Ih,

where β2 is the so-called complex shift. It is proved that a small magnitude of the complex shift
is necessary for convergence if the wavenumber k is large [23]. In practice, it is also expensive
to invert the preconditioner. Standard multigrid methods [19, 34] are usually employed to
invert a shifted Laplacian preconditioner. However, as the complex shift becomes small,
one cannot ensure that the standard multigrid methods will be effective [10]. Besides, the
computational burden to approximate the preconditioner will significantly increase. Thus, it
is necessary to choose a proper complex shift. In the numerical experiments of this paper,
unless noted otherwise, β1 = 1 and β2 = −0.5 will be used [48], and the inverse of the
preconditioner will be approximated by one geometric multigrid V-cycle.

3.4. 3D multigrid for the preconditioner solve. One needs to compute the inverse of
the preconditioner M in the preconditioned Krylov-based algorithms. A direct solver is a good
choice if the preconditioner is simple, such as the block-Jacobi preconditioner. However, it is
usually too costly to directly invert a preconditioner like CSLP. One idea is to approximately
solve the preconditioner by using the multigrid method [19].

A 3D multigrid method involves several components that need a careful design to achieve
excellent convergence. The first ingredient of multigrid methods is the smoothing property
of basic iterative methods. For example, the Gauss-Seidel and SOR(ω) methods can serve as
efficient smoothers. As coarser grids are involved, going back and forth between different
hierarchies of grids is required. Specifically, the inter-grid transfer operations include restric-
tion and prolongation operators. Besides, the construction of coarse grid operators also needs
careful attention.

3.4.1. Smoothers. Classical iteration methods such as the Gauss-Seidel or damped Jacobi
iterations can be used as smoothers. The impact on the convergence properties of varying
the relaxation parameter for the damped Jacobi smoother and using different smoothers, has
already been extensively investigated by [18] and [29]. It has been shown that, based on an
actual situation, the use of smoothers and the choice of relaxation parameters can be flexible
within a certain range. In this framework, we will mainly use the damped Jacobi smoother, as
it is easy to parallelize and has been shown to be effective in the before-mentioned papers. We
will fix the relaxation parameter at ω = 0.8, as this value was found to work well for our test
problems.

3.4.2. Restriction. Without loss of generality, the inter-grid operations will be presented
in a simple case of two grids, i.e., a fine, and a coarse grid. Two sets of uniform grids with size h
andH = 2h are used to discretize a regular computational domain Ω = (0, 1)×(0, 1)×(0, 1).
Figure 3.1 shows part of a 3D fine grid with a coarse grid obtained by standard coarsening.

The 3D full-weighting restriction operator has a stencil given by

IHh =
1

64


 1 2 1

2 4 2
1 2 1

H
h

 2 4 2
4 8 4
2 4 2

H
h

 1 2 1
2 4 2
1 2 1

H
h

 .
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: coarse grid point

FIG. 3.1. Vertex-centered 3D standard coarsening.

Let bH = IHh r
h, where bH is the right-hand side of the coarse grid and rh is the residual of

the fine grid. The restriction can be implemented in a matrix-free way as follows

bHi1,i2,i3 = IHh r
h
2i1,2i2,2i3 =

1

64

(
8rh2i1,2i2,2i3

+ 4rh2i1−1,2i2,2i3 + 4rh2i1+1,2i2,2i3 + 4rh2i1,2i2−1,2i3

+ 4rh2i1,2i2+1,2i3 + 4rh2i1,2i2,2i3−1 + 4rh2i1,2i2,2i3+1

+ 2rh2i1−1,2i2−1,2i3 + 2rh2i1+1,2i2−1,2i3 + 2rh2i1−1,2i2+1,2i3 + 2rh2i1+1,2i2+1,2i3

+ 2rh2i1−1,2i2,2i3−1 + 2rh2i1+1,2i2,2i3−1 + 2rh2i1−1,2i2,2i3+1 + 2rh2i1+1,2i2,2i3+1

+ 2rh2i1,2i2−1,2i3−1 + 2rh2i1,2i2+1,2i3−1 + 2rh2i1,2i2−1,2i3+1 + 2rh2i1,2i2+1,2i3+1

+ rh2i1−1,2i2−1,2i3−1 + rh2i1+1,2i2−1,2i3−1 + rh2i1−1,2i2+1,2i3−1 + rh2i1+1,2i2+1,2i3−1

+ rh2i1−1,2i2−1,2i3+1 + rh2i1+1,2i2−1,2i3+1 + rh2i1−1,2i2+1,2i3+1 + rh2i1+1,2i2+1,2i3+1

)
,

where (i1, i2, i3) ∈ ΩH .

3.4.3. Interpolation. The interpolation operator IhH transfers grid vectors from the coarse
to the fine grid. The 3D trilinear interpolation operator stencil can be written as

IhH =
1

8


 1 2 1

2 4 2
1 2 1

h
H

 2 4 2
4 8 4
2 4 2

h
H

 1 2 1
2 4 2
1 2 1

h
H

 .

Let uh = IhHu
H , where uH is the solution of the coarse grid and uh is the correction for
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FIG. 3.2. The allocation map of interpolation operator.

the fine grid. As shown in Figure 3.2, the interpolation can be implemented as follows

(3.2)

IhHu
H
i1,i2,i3 =

uHi1,i2,i3 , •
1

2

(
uHi1,i2,i3 + uHi1+1,i2,i3

)
, •

1

2

(
uHi1,i2,i3 + uHi1,i2+1,i3

)
, •

1

2

(
uHi1,i2,i3 + uHi1,i2,i3+1

)
, •

1

4

(
uHi1,i2,i3 + uHi1+1,i2,i3 + uHi1,i2+1,i3 + uHi1+1,i2+1,i3

)
, •

1

4

(
uHi1,i2,i3 + uHi1+1,i2,i3 + uHi1,i2,i3+1 + uHi1+1,i2,i3+1

)
, •

1

4

(
uHi1,i2,i3 + uHi1,i2+1,i3 + uHi1,i2,i3+1 + uHi1,i2+1,i3+1

)
, •

1

8

(
uHi1,i2,i3 + uHi1,i2+1,i3 + uHi1+1,i2,i3

+ uHi1+1,i2+1,i3 + uHi1,i2,i3+1 + uHi1,i2+1,i3+1

+ uHi1+1,i2,i3+1 + uHi1+1,i2+1,i3+1

)
, •

where (i1, i2, i3) ∈ ΩH .

3.4.4. Coarse grid operator. The coarse grid matrix AH can be built in two ways. The
first way is to obtainAH by re-discretizing on the coarse grid in the same way as the matrixAh
is obtained on the fine grid, which is known as the discretized coarse grid operator (DCG). The
second approach, AH = IHh AhI

h
H , is known as Galerkin Coarsening. Galerkin coarse-grid

operator GCG is more general in its range of applicability, but it has an associated expense
in terms of growing stencils. Considering the parallel implementation, we choose DCG as
our method. Boundary conditions of the preconditioner operator are set identically to the
corresponding model problems.

3.4.5. Multigrid cycles. Based on the ingredients above, a classical two-Grid cycle is
given in Algorithm 1, where Sh denotes the smoothing procedure, and υ1 and υ2 are the
numbers of pre- and post-smoothing steps, respectively.
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Algorithm 1: A two-grid cycle.

1 υ1 pre-smoothing sweeps: ui+1/3
h = Sυ1h (uih, Ah,bh);

2 Residual computation: rh = bh −Ahui+1/3
h ;

3 Restriction of the residual to GH : rH = IHh rh;
4 Determination of the error on GH : eH = (AH)

−1
rH ;

5 Prolongation of the error to Gh: eh = IhHeH ;
6 Correction of the last solution iterate: u2/3

h = u
1/3
h + eh;

7 υ2 post-smoothing sweeps: ui+1
h = Sυ2h (u

i+2/3
h , Ah,bh).

Two-grid methods are rarely practical because the coarse-grid problem may still be too
large to be solved with a direct method. The idea to apply the two-grid idea to AH recursively
and to continue until the coarse linear system can be solved with negligible computational
costs gives rise to a genuine multigrid method.

Different cycle types can be distinguished based on the sequence in which the grids
are traversed within a single multigrid iteration. The V-cycle and W-cycle are achieved by
calling the two-grid method once or twice, respectively, on each coarse grid. The V-cycle
method involves traversing from the finest grid to the coarsest grid, performing a single pre-
smoothing step at each level, and then moving back up to the finest grid, performing a single
post-smoothing step at each level. The F-cycle lies between the V-cycle and the W-cycle. It
begins with the restriction to the coarsest grid. During the prolongation process, after reaching
each level for the first time, an additional V-cycle to the coarsest grid is performed. In the
numerical experiments, both V-cycle and F-cycle methods will be involved.

For solving the coarse grid problems (i.e., step 4 in Algorithm 1), a direct solver is not
easy to be parallelized in a matrix-free way. Thus, we solve the final coarse-grid problem
iteratively by GMRES.

3.5. Matrix-free method. We can implement the Krylov subspace methods in a matrix-
free way instead of constructing the coefficient matrices explicitly. The matrix-vector multipli-
cation can be replaced by stencil computations. Likewise, the preconditioning matrix M and
its stencil can be obtained analytically by its definition (3.1). One does not need to construct
M explicitly since the result of Mx can be calculated by its corresponding stencil.

Considering any grid point (i1, i2, i3), define ap, aw, ae, as, an, ad, and au, as the
multipliers of u(i1, i2, i3), u(i1− 1, i2, i3), u(i1 + 1, i2, i3), u(i1, i2− 1, i3), u(i1, i2 + 1, i3),
u(i1, i2, i3 − 1), and u(i1, i2, i3 + 1), respectively. When physical boundary conditions are
encountered, it only needs to eliminate the ghost grid points as given in equation (2.4).

For the Helmholtz operator (2.3), we have

ap =
6− k2h2

h2
, aw = ae = as = an = au = ad = − 1

h2
.

As we invert the preconditioner M by the multigrid method, y = Mhx and y = MHx
need to be performed in the smoother and coarsest grid solver. For these CSLP operators,
according to equation (2.2) and (3.1), we will have

ap =
6− (β1 − β2i) k2h2

h2
aw = ae = as = an = au = ad = − 1

h2
.

The results of v = Ahu, y = Mhx and y = MHx can be computed in a matrix-free way
by Algorithm 2.

Besides, the matrix-free restriction and prolongation operators in the multigrid method
can be implemented according to equations (3.4.2) and (3.2), respectively.
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Algorithm 2: Matrix-free Matrix-Vector Multiplication.
Input: 3D Array u(1 : n1, 1 : n2, 1 : n3)

1 Initiate ap, aw, ae, as, an, ad, and au ;
2 Initiate 3D Array v(1 : n1, 1 : n2, 1 : n3);
3 Exchange the interface boundaries data of u;
4 for i3 := 1, 2, ..., n3 do
5 for i2 := 1, 2, ..., n2 do
6 for i1 := 1, 2, ..., n1 do
7 if physical boundary grid point then
8 Reset ap, aw, ae, as, an, ad, and au;
9 end

10 v(i1, i2, i3) = ap ∗ u(i1, i2, i3) + ae ∗ u(i1 + 1, i2, i3) + aw ∗ u(i1 −
1, i2, i3) + an ∗ u(i1, i2 + 1, i3) + as ∗ u(i1, i2 − 1, i3) + au ∗
u(i1, i2, i3 + 1) + ad ∗ u(i1, i2, i3 − 1);

11 end
12 end
13 end
14 Return v.

4. Parallel implementation. A parallel Fortran 90 code is developed to solve the 3D
heterogeneous Helmholtz problems. The MPI standard is employed for data communications
among the processes. Therefore, the design of an MPI topology will be the basis. Further, the
domain partition and the data structure within the processes will determine the implementation
of the matrix-vector multiplication and dot product. Finally, the parallelization of the Krylov
subspace methods and the multigrid cycle are carried out.

4.1. Parallel setup. For the MPI setup, the first step is to determine the total number
of processes (denotes as np) and the number of processes in each direction. In 3D cases,
the number of processes in the x-, y-, and z- direction is denoted as npx0, npy0, and npz0,
respectively. As shown in Figure 4.1, the entire computational domain is partitioned into
3 × 4 × 5 blocks. Each block is seen as an MPI process, each of which is assigned to a
CPU core. Due to the star-type computation stencil, the communication between processes
exists only between the adjacent blocks in each coordinate direction. After acquiring np
processes and creating a parallel computing environment using MPI, each process will own its
MPI rank (0 to np− 1). We assign each subdomain to each process according to the x-line
lexicographic order. Indicating to different processes whether their corresponding subdomains
contain physical boundaries or interface boundaries, we define npx, npy, and npz, to describe
the position in the x-, y-, and z- directions for every process. For example, npx is in the range
of [0, npx0 − 1]. When npx is equal to 0, the process needs to deal with the left physical
boundary. When npx equals npx0−1, the process needs to handle the right physical boundary.

In domain partitioning, we choose to partition the domain between two grid points, i.e.,
along the red dotted line shown in Figure 4.3. Therefore, the boundary points of adjacent
subdomains are adjacent grid points in the global grids. Note that the Helmholtz operator and
the CSLP have a similar stencil that only needs the data from the adjacent grid points. Thus,
for each block, we introduce one layer of overlapping grid points outward at each interface
boundary to represent the adjacent grid points, i.e., the blue grid in Figure 4.2.

In the program, the grid unknowns are stored as an array based on the grid ordering
(i1, i2, i3) instead of a column vector based on x-line lexicographic ordering. We store
the number of grid points in each dimension within each subdomain as nx, ny, and nz,
respectively. To store and use the data from adjacent processors, the local arrays are extended
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FIG. 4.1. The schematic diagram of the MPI topology for npx0 × npy0 × npz0 = 3× 4× 5.

based on the subdomain grid structure as shown in Figure 4.2. Thus, the indices range of the
array u becomes (1− lap : nx+ lap, 1− lap : ny + lap). For second-order finite-difference
discretization, the number of overlapping grid points lap is 1. Within a certain subdomain,
the operations and array updates are limited to the range (1 : nx, 1 : ny, 1 : nz). The data
u(i1, i2, i3) for i1 = 1 or nx, i2 = 1 or ny, and i3 = 1 or nz, are sent to adjacent processors.
The data received from adjacent processors are stored in the corresponding extended grid
points, which are called during the operations concerning interface grid points.

4.2. Parallel multigrid method based on global grid. We will consider the parallel
implementation of the multigrid iteration based on the original global grid, as shown in
Figure 4.3, where an arbitrary grid size is chosen for demonstration purposes.

According to the relationship between the fine grid and the coarse grid, the parameters
of the coarse grid are determined by the grid parameters of the fine one. For example, point
(i1c, i2c, i3c) in the coarse grid corresponds to point (2i1c−1, 2i2c−1, 2i3c−1) in the fine grid.
The restriction, as well as the interpolation of the grid variables, can be implemented according
to the stencils based on the index correspondence between the coarse and fine grid. The grid-
based matrix-free multigrid preconditioner starts at the finest grid, and recursively performs a
two-grid cycle until the bottom level is reached, where a certain number of pre-defined grid
points are left in one of the directions, denoted as the stopping criterion for coarsening, i.e.,
nxcoarsest×nycoarsest×nzcoarsest). The coarsest-grid problem is solved by parallel GMRES. On
the one hand, direct solvers are not easy to parallelize and an exact solution for the coarse grid
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FIG. 4.2. The schematic diagram of the local grid structure.

problem is not necessary for our preconditioner. On the other hand, we developed this work for
massively parallel computing of large-scale practical problems. Agglomerating to one process
and using a direct solver is not an economical option, as the all-gather communication would
be expensive and the rest of the processes are idle. Thus, our idea is to stop coarsening at a
certain level, on which the communication load is still much less than the computational load
and we can solve the coarse-grid problem in parallel with fairly good efficiency. In this way,
we can take advantage of the parallelism available in the system and achieve better overall
performance, because it allows for more accurate solutions at coarser levels, which can then
be used to inform the solutions at finer levels. This is particularly important for practical
applications where we need to balance both performance and accuracy. However, the optimal
selection of the coarsest grid size depends on both the number of iterations and processes. Due
to our limitations in computing resources and machine time, we set the stopping criterion for
coarsening as 17× 17× 17 to ensure that each process has at least 1–2 coarsest grid points.
It should be noted that if the computational domain is not a cube, this setting means that
coarsening will stop when the number of grid points in a certain direction is less than 17. This
setup allows a relatively practical lower bound for reference. The related topic of optimal
coarsest grid size will be further investigated in our future work.

5. Numerical experiments. The numerical experiments are primarily performed on
the Linux supercomputer DelftBlue [13]. DelftBlue runs on the Red Hat Enterprise Linux 8
operating system. Each compute node is equipped with two Intel Xeon E5-6248R processors
with 24 cores at 3.0 GHz, 192 GB of RAM, a memory bandwidth of 132 GByte/s per socket,
and a 100 Gbit/s InfiniBand card. In our experiments, the solver is developed in Fortran 90.
On DelftBlue, the code is compiled using GNU Fortran 8.5.0 with the compiler options -O3
for optimization purposes. Open MPI library (version 4.1.1) is employed for message passing.
HDF5 1.10.7 is used for massively parallel I/O.

For the iterative methods we use in this section, the number of matrix-vector multipli-
cations (denoted as #Matvec), which only includes matrix-vector products with the system
matrix Ah, will be the main amount of work. Unless mentioned, the following convergence
criterion of the preconditioned GMRES algorithm is used.

∥∥M−1
h bh −M−1

h Ahu
k
h

∥∥
2∥∥M−1

h bh
∥∥
2

≤ 10−6.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

MATRIX-FREE PARALLEL METHOD FOR 3D HELMHOLTZ EQUATION 283

𝒙

𝒛

𝒚

Fine grid

Coarse grid

𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧
= 13 × 17 × 21

𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧
= 7 × 9 × 11

Restriction Prolongation

for Coarsest grid (at least 2 grid points left in one of the directions within each block)

Multigrid-based preconditioner

Damped Jacobi 
smoother (1 step)

GMRES solver

FIG. 4.3. The schematic diagram of parallel multigrid based on global-grid coarsening. Grid size is chosen at
random for demonstration purposes.

The convergence criterion for the preconditioned Bi-CGSTAB and IDR(s) is

∥∥bh −Ahukh∥∥2
‖bh‖2

≤ 10−6.

The different stopping criteria for GMRES, Bi-CGSTAB, and IDR(4) are chosen in relation to
the left and right preconditioning strategies discussed in Section 3.2. It is intended to illustrate
the flexibility of our framework in handling various solvers, and preconditioning techniques.

For the coarsest-grid problem solver, according to our pre-experiments, the stopping
criterion should be 3 orders of magnitude smaller than the stopping criterion for the outer
iteration. This work employs full GMRES to reduce the relative residual to 10−11, ensuring
an accurate approximation for M−1

H . Since it is only performed on the coarsest grid, it will
not lead to a high computational cost.

The wall-clock time for the preconditioned Krylov solver to reach the stopping criterion
is denoted as t. The speedup Sp is defined by

Sp =
tr
tp
,
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where tr and tp are the wall-clock times for reference and parallel computations, respectively.
The parallel efficiency Ep is given by

Ep =
Sp
np

=
tr

tp · np
,

where np is the number of processors. It should be noted that when performing computations
within a single compute node, the reference time is the wall-clock time of sequential computa-
tion. When performing distributed computing across multiple compute nodes, the reference
time will be the wall-clock time of computation on a single fully utilized node.

In this section, we first validate the numerical accuracy and algorithmic flexibility of our
parallel framework for three test problems. To evaluate the performance of our solver, we
then focus on weak scaling, which examines the solver performance when the problem size
and the number of processing elements increase proportionally. This allows us to assess our
parallel solver ability to solve large-scale heterogeneous Helmholtz problems with minimized
pollution error. We next extensively investigate the strong scaling of our parallel solution
method, examining the speedup and parallel efficiency as the number of processing elements
increases while the problem size remains constant. Additional performance analysis for each
part of the parallel framework can be found in Appendix A.

5.1. Validation. We validate the numerical experiments by comparing results from both
serial and parallel computations with analytical solutions, as well as by observing the wave
propagation patterns of model problems with non-constant wavenumber. Additionally, we
conducted a preliminary exploration of the flexibility of various Krylov-based iterative methods
and multigrid cycle types in the parallel framework.

5.1.1. Sequential and parallel computing. For the accuracy validation, our parallel
solver is used to solve the so-called 3D closed-off problem, which has an analytical solution.
According to the analytical solution given by equation (2.2), we can estimate the magnitude of
the error between the numerical and analytical solutions. Figure 5.1 shows the logarithmic
error log10(|u− uanaly|) of numerical results obtained by CSLP-preconditioned IDR(4). The
left one is the result obtained by sequential computing, and the right one is obtained by parallel
computing. Within the error tolerance, the numerical results agree well with the analytical
solution, and the parallel computing setup does not introduce additional errors. It should be
noted that the small but visible differences arise due to the accumulation of the rounding error.
For example, the dot product [a1 a2 a3 a4] · [b1 b2 b3 b4]T calculated by (a1b1 +a2b2 +a3b3 +
a4b4) and (a1b1 +a3b3)+(a2b2 +a4b4) may yield small differences, especially for massively
parallel computing. Additionally, in the aspect of the matrix, blockwise domain partitioning
actually performs some elementary row and column transformations on the matrix compared
to sequential computing, leading to further differences in the results. Extensive numerical
experiments indicate that these differences are within an acceptable error range and do not
significantly affect the convergence and accuracy.

5.1.2. Model problems with non-constant wavenumber. The so-called wedge problem
is a typical model with non-constant wavenumbers. Figure 5.2 shows a reasonable wave
diffraction pattern of the wedge problem at f = 40 Hz and 80 Hz, which are obtained by the
parallel CSLP-preconditioned IDR(4) solver. Note that the wavefront is significantly curved at
the slow-to-fast interface. The wave is mainly reflected in that transition region. It illustrates
that the parallel framework also works for the case of non-constant wavenumbers.

For practical application, we further consider the challenging 3D SEG/EAGE Salt model
including complex geometries (salt domes) and a real large-size computational domain. To
allow multi-level geometric coarsening, we utilize a domain with grid size 641× 641× 193,
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FIG. 5.1. The logarithmic error log10(|u− uanaly|) of numerical results obtained by CSLP-preconditioned
IDR(4), with np = 1 (left) and np = 3× 3× 3 (right), for 3D closed-off problem grid size 65× 65× 65, k = 40.

FIG. 5.2. Real part of numerical solutions for 3D wedge problem with grid size 193×321×193 at f = 40Hz
(left), and 385× 641× 385 at 80Hz (right).

as it has a high degree of divisibility by powers of two in each dimension. In this case, with
the coarsest-grid criterion given by 17 × 17 × 17, the coarsest grid will have dimension
41× 41× 13. A point source is located at (x1, x2, x3) = (3200, 3200, 0). Figure 5.3 gives a
reasonable wave diffraction pattern of this model at f = 5Hz. It is obtained by our parallel
CSLP-preconditioned IDR(4) solver.

5.1.3. Krylov methods. Various Krylov-based iterative methods can be implemented in
our parallel framework; see Table 5.1. For the 3D closed-off problem with Dirichlet boundary
conditions, GMRES requires the least number of iterations, and IDR(4) is closer to GMRES
than Bi-CGSTAB. These relative relationships can be expected in the theoretical analysis
of these algorithms. One can find that the count of matrix-vector products is constant with
respect to the number of processors for GMRES, while it is not for Bi-CGSTAB and IDR(4).
It is because GMRES is a very robust and stable algorithm, whereas Bi-CGSTAB and IDR(s)
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FIG. 5.3. Real part of the solutions for 3D SEG/EAGE Salt Model with grid size 641× 641× 193, at f = 5Hz.

are sensitive to the accumulation of rounding errors and the re-ordering of the linear system.
Additionally, IDR(s) is initialized by random vectors and, therefore, one cannot obtain a totally
constant number of iterations if the seed is not manually chosen. As Bi-CGSTAB requires a
much larger number of matrix-vector multiplications, the parallel performance of GMRES
and IDR(4) will be mainly considered.

TABLE 5.1
The convergence behavior of different iterative methods for 3D closed-off problem, grid size 65 × 65 × 65,

k = 40.

np
#Matvec

GMRES Bi-CGSTAB IDR(4)
1 145 359 192

2×1×1 145 359 211
1×2×3 145 403 192
3×3×3 145 407 201

5.1.4. Multigrid cycle types. Our parallel framework can solve the CSLP preconditioner
not only using one multigrid V-cycle, but also F-cycle. Let us take the 3D wedge problem as
an example. We found that if β2 = −0.5, even for small frequency f = 10 Hz with grid size
73×193×73, the convergence result cannot be obtained by using the F-cycle, but it is possible
by using the V-cycle. However, the Krylov solvers using one multigrid F-cycle should converge
faster than those using one V-cycle, theoretically. Thus, the effect on convergence of the
complex shift β2 in CSLP is studied. As shown in Figure 5.4, when the grid is 193×321×193
and f = 40 Hz, if a larger complex shift (−1 ≤ β2 < −0.5) is used, Krylov solvers can
obtain better convergence results by using the F-cycle. Figure 5.4 confirms the introduction in
Section 3.3, namely, the choice of the complex shift parameter in the preconditioner indeed
has a significant impact on the performance of multigrid methods including F-cycle as well as
V-cycle. In the case of CSLP, a smaller complex shift generally leads to a better preconditioner,
but the complex shift has to be large enough for standard multigrid methods to converge;
see [10, 21, 23]. For a small complex shift, moving from a V-cycle to an F-cycle may not
improve the convergence. One potential explanation could be the damped Jacobi smoother,
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used in the multigrid method, in principle diverges for Helmholtz-type problems. Therefore,
using more smoothing steps, as in the F-cycle, may exacerbate the problems and lead to slower
convergence compared to V-cycle. There is also evidence of this in Chapter 9 of [15].

When the complex shift is −1, as shown in Figure 5.5, it can be seen that the convergence
of Krylov solvers using the F-cycle is faster than that using the V-cycle. For example, with
np = 8, utilizing the F-cycle yields a wall-clock time of 336.60 s for GMRES and 101.03 s for
IDR(4), while implementing the V-cycle results in a wall-clock time of 796.31 s for GMRES
and 149.16 s for IDR(4). In general, the F-cycle involves more computation than the V-cycle,
due to the additional levels of coarsening and interpolation, but the improved convergence can
still make it a viable option in certain cases.
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FIG. 5.4. Convergence behavior of the parallel CSLP-preconditioned Krylov solvers, GMRES (left) and
IDR(s) (right). One multigrid F-cycle is used for preconditioner solving. The 3D wedge problem with grid size
193× 321× 193 at f = 40Hz is solved. Different complex shifts of CSLP (β2) are compared.
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5.2. Weak scaling. The first parallel property that we are interested in is the weak
scalability of our parallel solver. In the experiments, we increase the problem size and the
number of processors proportionally, to maintain the same grid size for each processor.

The weak scaling results for the 3D closed-off problem are presented in Table 5.2. One
can find that parallel GMRES does not show satisfying parallel scalability and consumes
more CPU time than IDR(4), especially for large grid sizes. It is because GMRES needs
long recurrences and more dot-product operations, hence more global communications. As
the problem size increases, the sequential computation load which concerns the process of
calculating the Given rotation matrix in GMRES becomes the bottleneck.

For IDR(4), when the number of processors and grid size increases proportionally, that is
maintaining the same grid size for each processor, the wall-clock time remains relatively stable,
indicating that our parallel framework can effectively handle large-scale Helmholtz problems
with minimized pollution error. Since GMRES does not demonstrate weak scalability for
problems requiring a large number of iterations, we will primarily use IDR(4) to solve the
following increasingly complex model problems.

TABLE 5.2
Weak scaling analysis of parallel CSLP-preconditioned GMRES and IDR(4) for 3D closed-off problem, k = 40.

GMRES IDR(4)
grid size np #Matvec t(s) #Matvec t(s)

129×129×129 8 146 30.19 199 21.03
193×193×193 27 137 80.10 187 26.93
257×257×257 64 143 97.20 190 25.22

5.3. Strong scaling. In this section, we perform numerical experiments on a fixed
problem size while varying the number of processors. The speedup and parallel efficiency are
then calculated to assess the strong scaling of our parallel solver.

TABLE 5.3
Comparisons with PETSc implementation for one GMRES iteration. Parallel CSLP-preconditioned GMRES is

used to solve the 3D closed-off problem with grid size 129× 129× 129, k = 40.

PETSc Present
np t(s) Sp Ep t(s) Sp Ep

1 30.698 - - 1.310 - -
4 8.802 3.49 0.87 0.334 3.92 0.97
8 5.280 5.81 0.73 0.205 6.37 0.80

16 2.759 11.13 0.69 0.117 11.20 0.70

5.3.1. 3D closed-off problem. We initiate our analysis by comparing the strong scaling
performance of our parallel framework with a PETSc [3, 4] implementation, specifically
employing PETSc version 3.19.0 with complex support and optimized mode enabled. The
application is compiled and tested in the same environment as our program. We use the
CSLP-preconditioned GMRES algorithm to solve the 3D closed-off problem with a grid
size of 129× 129× 129 and wavenumber k = 40. In the PETSc implementation, matrices
are explicitly constructed, including the matrix defining the linear system and the matrix
employed for constructing the CSLP preconditioner. The CSLP is implemented in a so-
called Shell preconditioner of PETSc, where CSLP is inverted approximately by a default
preconditioned GMRES solver. Both methods exhibit similar convergence properties. The
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number of iterations required for the PETSc implementation is 155 for sequential computing
and that of our implementation is 146. Table 5.3 presents the average wall-clock time for
each outer GMRES iteration and the corresponding strong scaling. Our implementation
demonstrates less time consumption and better parallel performance.

5.3.2. 3D wedge problem. For the 3D wedge problem, the performance of the parallel
CSLP-preconditioned IDR(4) on one compute node and multiple compute nodes are shown in
Table 5.4 and Table 5.5, respectively. The results show that the parallel framework exhibits
good performance for non-constant wavenumbers and is scalable across multiple compute
nodes as well as within a single node. With a growing number of processors, we observe
a moderate decrease in parallel efficiency. This is mainly due to increased communication,
which leads to a decrease in the computation/communication ratio.

TABLE 5.4
Performance of the parallel CSLP-preconditioned IDR(4) for 3D wedge problem with grid size 193×321×193

at f = 40Hz.

npx× npy × npz #Matvec t(s) Sp Ep

1 × 1 × 1 395 1033.11
1 × 2 × 1 421 557.63 1.85 0.93
2 × 2 × 2 377 152.88 6.76 0.84

TABLE 5.5
Performance of the parallel CSLP-preconditioned IDR(4) for 3D wedge problem with grid size 385×641×385

at f = 80Hz.

npx× npy × npz Nodes #Matvec t(s) Sp Ep

4×4×3 1 835 1313.82
4×6×4 2 821 952.94 1.38 0.69
6×8×4 4 825 418.74 3.14 0.78
6×8×6 6 832 298.33 4.40 0.73

5.3.3. 3D SEG/EAGE salt model. We are interested in the scalability properties of our
parallel framework in realistic applications. Hence, we solve this model problem at a fixed
frequency on a growing number of compute nodes. Table 5.6 collects the number of matrix-
vector multiplications and the wall-clock time versus the number of compute nodes. The fact
that solving a linear system with approximately 79.3 million unknowns within hundreds of
seconds shows the capability of solving a realistic 3D high-frequency problem with limited
memory and time consumption. One can also find the nice property that the number of
matrix-vector multiplications keeps independent of the number of compute nodes. Taking the
wall-clock time on a single computing node as a reference, we can observe fairly good scaled
parallel efficiency (around 0.8) for such a large-scale complex model.

Without loss of generality, we also tried to obtain the parallel performance of our method
on a different platform as a complement to this study. In addition to DelftBlue (which includes
48 cores per compute node), we used a commercial supercomputer named Magic Cube 3*

(which includes 32 cores per compute node) to perform this numerical experiment. Magic
Cube 3 is a supercomputer managed by Shanghai Supercomputer Center. It runs on CentOS
Linux release 7.5. Each compute node is equipped with two Intel Xeon Gold 6142 processors

*Magic Cube 3: https://www.ssc.net.cn/en/resource-hardware.html
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with 16 cores at 2.6 GHz, and 12×16G DDR4 2666MHz ECC REG memory. The cluster is
equipped with an Intel Omni-Path high-speed network with a transmission bandwidth of 100
Gb/s for interconnectivity between compute nodes and storage systems. On Magic Cube 3,
Intel Fortran 17.0.4 and Intel MPI 17.4.239 will be used instead.

TABLE 5.6
Performance of the parallel CSLP-preconditioned IDR(4) on DelftBlue for 3D SEG/EAGE Salt Model with grid

size 641× 641× 193 at f = 5Hz.

npx× npy × npz Nodes #Matvec t(s) Sp Ep

6×4×2 1 413 897.25
6×8×2 2 423 510.56 1.76 0.88
6×8×4 4 423 298.86 3.00 0.75
9×8×4 6 404 203.31 4.41 0.74

TABLE 5.7
Performance of the parallel CSLP-preconditioned IDR(4) on Magic Cube 3 for 3D SEG/EAGE Salt Model with

grid size 641× 641× 193 at f = 5Hz.

npx× npy × npz Nodes #Matvec t(s) Sp Ep

4 × 4 × 2 1 405 505.14
4 × 4 × 4 2 418 287.60 1.76 0.88
8 × 8 × 2 4 390 155.64 3.25 0.81

As shown in Table 5.7, we can still achieve satisfactory parallel performance. A moderate
decrease in terms of the scaled parallel efficiency should be due to the different bandwidths
of the platforms. These results indicate that our parallel framework can be used on different
computational platforms. This adaptability is crucial for realistic applications.

In summary, our parallel solver exhibits good weak and strong scaling for a variety of test
problems, including large-scale, complex, and realistic applications. The results demonstrate
the solver potential for solving challenging 3D large-scale heterogeneous Helmholtz problems
with limited memory and time consumption.

6. Conclusions. In this paper, we developed a matrix-free parallel framework of CSLP-
preconditioned Krylov subspace methods, such as GMRES, Bi-CGSTAB, and IDR(s), for
3D large-scale Helmholtz problems in heterogeneous media. The preconditioning operator
is approximately inverted by a standard 3D multigrid method. We validate the numerical
accuracy by comparisons with an analytical solution, as well as observations of the wave
pattern. Both weak and strong scaling properties of our parallel framework for typical non-
constant wavenumber model problems are studied. Additionally, a POP performance analysis
has been provided in Appendix A to address the bottleneck of this framework.

To sum up, our research presents a novel matrix-free parallelization of the CSLP precondi-
tioner for the Helmholtz problems. Our parallel implementation maintains good convergence
properties without excessive memory consumption, making it an effective alternative to tra-
ditional matrix-based preconditioners. Moreover, our work provides a robust and scalable
matrix-free parallel-computing framework for solving the Helmholtz problem in increasingly
complex 3D scenarios, allowing for the use of various Krylov subspace methods and multi-
grid methods. Its weak scalability makes it possible to solve the Helmholtz problems with
minimized pollution error by using a very large grid size. It also provides an implementation
direction for researchers to further develop parallel scalable iterative solvers with wavenumber-
independent convergence. Finally, we demonstrate the effectiveness and scalability of our
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solver/preconditioner combinations in solving the Helmholtz equation on a large-scale par-
allel architecture, which may be beneficial to engineers to solve large-scale heterogeneous
Helmholtz problems.

Future work will focus on further improving the parallel efficiency of the solver and
exploring the use of advanced preconditioning techniques to enhance the convergence of
Krylov-based iterative methods.
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Appendix A. POP performance analysis.
With traditional performance metrics such as speed-up and efficiency, it is difficult to

understand the actual execution behavior of a parallel program and identify the cause of poor
performance and where it occurs. In order to explore the bottleneck of our parallel framework
and which part can be improved, this section will consider the performance assessment of
our code, using the methodology of the Performance Optimisation and Productivity (POP)
provided by the EU HPC Centre of Excellence (CoE)†. The POP methodology can help us
build a quantitative picture of application behavior by a set of POP performance metrics,
including parallel efficiency (PE), load balance (LB), communication efficiency (CommE),
serialization efficiency (SerE), transfer efficiency (TE), and so on. The metrics are computed
as efficiencies ranging from 0 to 1, where higher values are more desirable. In general,
efficiencies 0.8 are considered acceptable, while lower values signal performance concerns
that warrant further investigation. We use the following open-source tools: Score-P [32] for
profiling and tracing, Scalasca [26] for extended analyses, and CUBE [31] for presentation.

TABLE A.1
Execution efficiency of the parallel CSLP-preconditioned IDR(4) on different numbers of compute nodes of

DelftBlue for 3D wedge model problem with grid size 385× 641× 385 at 80Hz.

Compute nodes 1 2 6
np 48 96 288
Parallel Efficiency (PE)1 0.83 0.78 0.32
+ Load Balance (LB) 2 0.91 0.82 0.78
+ Communication Efficiency (CommE)3 0.92 0.96 0.41

++ Serialisation Efficiency (SerE) 4 0.92 0.96 0.42
++ Transfer Efficiency (TE) 5 0.99 1.00 0.97

1 Parallel efficiency is the ratio of mean computation time to total runtime of all processes
2 Load balance is the mean/maximum ratio of computation time outside of MPI
3 Communication efficiency is the ratio of maximum computation time to total runtime.
4 Serialisation efficiency is estimated from idle time within communications where no

data is transferred.
5 Transfer efficiency relates to essential time spent in data transfers.

Table A.1 summarizes the performance assessment of the parallel CSLP-preconditioned
IDR(4) on different numbers of compute nodes of DelftBlue for the 3D wedge model problem
with grid size 385× 641× 385 at 80 Hz. The parallel efficiency drops from 0.83 to 0.5 when
the number of processes reaches 288. We find that among the two factors contributing to
parallel efficiency, a high load balance is maintained, but communication efficiency decreases.

†POP CoE: https://www.pop-coe.eu
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Among the two aspects of communication efficiency, excellent transfer efficiency is maintained,
while the most significant inefficiency is serialization, which concerns processes waiting at
communication points due to temporal imbalance.

To determine which part contributes to the poor serialization efficiency, we further study
the performance of preconditioning, matrix-vector multiplication, and dot-product operations,
as shown in Tables A.2, A.3, and A.4, respectively. It can be seen that parallel matrix-
vector multiplications can maintain a fairly good efficiency. The preconditioning component,
exhibiting similar behavior to the whole framework in Table A.1, can be considered as the
main factor that affects the overall efficiency. The results in Table A.4 reveal that the dot
product operation is one of the main reasons for the low serialization efficiency. Thus, we can
conclude that the preconditioning step becomes the bottleneck, because it uses full GMRES
to solve coarse grid problems, which involve numerous inner product operations. Further
efficiency optimization in this direction will be implemented in future work.

TABLE A.2
Execution efficiency of preconditioning for parallel IDR(4) on different numbers of compute nodes of DelftBlue.

Compute nodes 1 2 6
np 48 96 288
Parallel Efficiency (PE) 0.80 0.79 0.25
+ Load Balance (LB) 0.90 0.86 0.79
+ Communication Efficiency (CommE) 0.89 0.92 0.31

++ Serialisation Efficiency (SerE) 0.90 0.92 0.32
++ Transfer Efficiency (TE) 0.99 0.99 0.97

TABLE A.3
Execution efficiency of matrix-vector multiplications of parallel IDR(4) on different numbers of compute nodes

of DelftBlue.

Compute nodes 1 2 6
np 48 96 288
Parallel Efficiency (PE) 0.70 0.62 0.55
+ Load Balance (LB) 0.90 0.77 0.82
+ Communication Efficiency (CommE) 0.77 0.81 0.67

++ Serialisation Efficiency (SerE) 0.78 0.82 0.67
++ Transfer Efficiency (TE) 0.99 0.99 0.99

TABLE A.4
Execution efficiency of dot-product operations of parallel IDR(4) on different numbers of compute nodes of

DelftBlue.

Compute nodes 1 2 6
np 48 96 288
Parallel Efficiency (PE) 0.53 0.21 0.18
+ Load Balance (LB) 0.70 0.55 0.65
+ Communication Efficiency (CommE) 0.75 0.38 0.28

++ Serialisation Efficiency (SerE) 0.76 0.38 0.29
++ Transfer Efficiency (TE) 1.00 0.99 1.00

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

MATRIX-FREE PARALLEL METHOD FOR 3D HELMHOLTZ EQUATION 293

REFERENCES

[1] F. AMINZADEH, J. BRAC, AND T. KUNZ, SEG/EAGE 3D salt and overthrust models, in SEG/EAGE 3-D
Modeling Series, No. 1: Distribution CD of Salt and Overthrust Models, SEG Book Series, 1997.

[2] I. M. BABUSKA AND S. A. SAUTER, Is the pollution effect of the FEM avoidable for the Helmholtz equation
considering high wave numbers?, SIAM J. Numer. Anal., 34 (1997), pp. 2392–2423.

[3] S. BALAY, S. ABHYANKAR, M. F. ADAMS, S. BENSON, J. BROWN, P. BRUNE, K. BUSCHELMAN,
E. CONSTANTINESCU, L. DALCIN, A. DENER, V. EIJKHOUT, J. FAIBUSSOWITSCH, W. D. GROPP,
V. HAPLA, T. ISAAC, P. JOLIVET, D. KARPEEV, D. KAUSHIK, M. G. KNEPLEY, F. KONG, S. KRUGER,
D. A. MAY, L. C. MCINNES, R. T. MILLS, L. MITCHELL, T. MUNSON, J. E. ROMAN, K. RUPP,
P. SANAN, J. SARICH, B. F. SMITH, S. ZAMPINI, H. ZHANG, H. ZHANG, AND J. ZHANG, PETSc/TAO
users manual, Tech. Report ANL-21/39 - Revision 3.19, Argonne National Laboratory, 2023.

[4] S. BALAY, W. D. GROPP, L. C. MCINNES, AND B. F. SMITH, Efficient management of parallelism in object
oriented numerical software libraries, in Modern Software Tools in Scientific Computing, E. Arge, A. M.
Bruaset, and H. P. Langtangen, eds., Birkhäuser, Basel, 1997, pp. 163–202.

[5] A. BAYLISS, C. I. GOLDSTEIN, AND E. TURKEL, An iterative method for the Helmholtz equation, J. Comput.
Phys., 49 (1983), pp. 443–457.

[6] Y. BOUBENDIR, X. ANTOINE, AND C. GEUZAINE, A quasi-optimal non-overlapping domain decomposition
algorithm for the Helmholtz equation, J. Comput. Phys., 231 (2012), pp. 262–280.

[7] H. CALANDRA, S. GRATTON, X. PINEL, AND X. VASSEUR, An improved two-grid preconditioner for the
solution of three-dimensional Helmholtz problems in heterogeneous media, Numer. Linear Algebra Appl.,
20 (2013), pp. 663–688.

[8] H. CALANDRA, S. GRATTON, AND X. VASSEUR, A geometric multigrid preconditioner for the solution of
the Helmholtz equation in three-dimensional heterogeneous media on massively parallel computers, in
Modern Solvers for Helmholtz Problems, D. Lahaye, J. Tang, and K. Vuik, eds., Springer, Cham, 2017,
pp. 141–155.

[9] Z. CHEN AND X. XIANG, A source transfer domain decomposition method for Helmholtz equations in
unbounded domain, SIAM J. Numer. Anal., 51 (2013), pp. 2331–2356.

[10] P. H. COCQUET AND M. J. GANDER, How large a shift is needed in the shifted Helmholtz preconditioner for
its effective inversion by multigrid?, SIAM J. Sci. Comput., 39 (2017), pp. A438–A478.

[11] T. P. COLLIGNON AND M. B. VAN GIJZEN, Minimizing synchronization in IDR(s), Numer. Linear Algebra
Appl., 18 (2011), pp. 805–825.

[12] F. COLLINO, S. GHANEMI, AND P. JOLY, Domain decomposition method for harmonic wave propagation: a
general presentation, Comput. Methods Appl. Mech. Engrg., 184 (2000), pp. 171–211.

[13] DELFT HIGH PERFORMANCE COMPUTING CENTRE (DHPC), DelftBlue Supercomputer (Phase 1). https:
//www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

[14] J. DOUGLAS JR AND D. B. MEADE, Second-order transmission conditions for the Helmholtz equation, in
Ninth International Conference on Domain Decomposition Methods, P. E. Bjørstad, M. S. Espedal and
D. Keyes, eds., DDM.org, 1998, pp. 434–440.

[15] V. DWARKA, Iterative methods for time-harmonic waves: towards accuracy and scalability, PhD. Thesis,
Delft University of Technology, Delft, 2022.

[16] V. N. S. R. DWARKA AND C. VUIK, Scalable convergence using two-level deflation preconditioning for the
Helmholtz equation, SIAM J. Sci. Comput., 42 (2020), pp. A901–A928.

[17] B. ENGQUIST AND L. YING, Sweeping preconditioner for the Helmholtz equation: moving perfectly matched
layers, Multiscale Model. Simul., 9 (2011), pp. 686–710.

[18] Y. A. ERLANGGA, A robust and efficient iterative method for the numerical solution of the Helmholtz equation,
PhD. Thesis, Delft University of Technology, Delft, 2005.

[19] Y. A. ERLANGGA, C. W. OOSTERLEE, AND C. VUIK, A novel multigrid based preconditioner for heteroge-
neous Helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471–1492.

[20] Y. A. ERLANGGA, C. VUIK, AND C. W. OOSTERLEE, On a class of preconditioners for solving the Helmholtz
equation, Appl. Numer. Math., 50 (2004), pp. 409–425.

[21] O. G. ERNST AND M. J. GANDER, Why it is difficult to solve Helmholtz problems with classical iterative
methods, in Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and
R. Scheichl, eds., Springer, Berlin, Heidelberg, 2012, pp. 325–363.

[22] R. FLETCHER, Conjugate gradient methods for indefinite systems, in Numerical Analysis, G. A. Watson, ed.,
Berlin, Heidelberg, 1976, Springer, pp. 73–89.

[23] M. J. GANDER, I. G. GRAHAM, AND E. A. SPENCE, Applying GMRES to the Helmholtz equation with shifted
laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is
guaranteed?, Numer. Math., 131 (2015), pp. 567–614.

[24] M. J. GANDER, F. MAGOULES, AND F. NATAF, Optimized Schwarz methods without overlap for the Helmholtz
equation, SIAM J. Sci. Comput., 24 (2002), pp. 38–60.

[25] M. J. GANDER AND H. ZHANG, A class of iterative solvers for the Helmholtz equation: Factorizations,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1


ETNA
Kent State University and

Johann Radon Institute (RICAM)

294 J. CHEN, V. DWARKA, AND C. VUIK

sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz
methods, SIAM Rev., 61 (2019), pp. 3–76.

[26] M. GEIMER, F. WOLF, B. J. N. WYLIE, E. ÁBRAHÁM, D. BECKER, AND B. MOHR, The Scalasca
performance toolset architecture, Concur. Comput.-Pract. Exp., 22 (2010), pp. 702–719.

[27] D. GORDON AND R. GORDON, Robust and highly scalable parallel solution of the Helmholtz equation with
large wave numbers, J. Comput. Appl. Math., 237 (2013), pp. 182–196.

[28] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res. Nat.
Bur. Stand., 49 (1952), pp. 409–436.

[29] L. R. HOCKING AND C. GREIF, Optimal complex relaxation parameters in multigrid for complex-shifted
linear systems, SIAM J. Matrix Anal. Appl., 42 (2021), pp. 475–502.

[30] H. KNIBBE, C. W. OOSTERLEE, AND C. VUIK, GPU implementation of a Helmholtz Krylov solver precondi-
tioned by a shifted Laplace multigrid method, J. Comput. Appl. Math., 236 (2011), pp. 281–293.

[31] M. KNOBLOCH, P. SAVIANKOU, M. SCHLÜTTER, A. VISSER, AND B. MOHR, A picture is worth a thousand
numbers—enhancing Cube’s analysis capabilities with plugins, in Tools for High Performance Computing
2018 / 2019, H. Mix, C. Niethammer, H. Zhou, W. E. Nagel, and M. M. Resch, eds., Springer, Cham,
2021, pp. 237–259.

[32] A. KNÜPFER, C. RÖSSEL, D. A. MEY, S. BIERSDORFF, K. DIETHELM, D. ESCHWEILER, M. GEIMER,
M. GERNDT, D. LORENZ, A. MALONY, W. E. NAGEL, Y. OLEYNIK, P. PHILIPPEN, P. SAVIANKOU,
D. SCHMIDL, S. SHENDE, R. TSCHÜTER, M. WAGNER, B. WESARG, AND F. WOLF, Score-P: A joint
performance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vampir, in Tools
for High Performance Computing 2011, H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch, eds.,
Springer, Berlin, Heidelberg, 2012, pp. 79–91.

[33] A. V. KONONOV, C. D. RIYANTI, S. W. DE LEEUW, C. W. OOSTERLEE, AND C. VUIK, Numerical
performance of a parallel solution method for a heterogeneous 2D Helmholtz equation, Comput. Vis. Sci.,
11 (2007), pp. 139–146.

[34] S. P. MACLACHLAN AND C. W. OOSTERLEE, Algebraic multigrid solvers for complex-valued matrices,
SIAM J. Sci. Comput., 30 (2008), pp. 1548–1571.

[35] L. C. MCINNES, R. F. SUSAN-RESIGA, D. E. KEYES, AND H. M. ATASSI, Additive Schwarz methods with
nonreflecting boundary conditions for the parallel computation of Helmholtz problems, Contemp. Math.,
218 (1998), pp. 325–333.

[36] C. C. PAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear equations, SIAM J. Numer.
Anal., 12 (1975), pp. 617–629.

[37] R. E. PLESSIX AND W. A. MULDER, Separation-of-variables as a preconditioner for an iterative Helmholtz
solver, Appl. Numer. Math., 44 (2003), pp. 385–400.

[38] C. RIYANTI, A. KONONOV, Y. ERLANGGA, C. VUIK, C. OOSTERLEE, R.-E. PLESSIX, AND W. MULDER,
A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation,
J. Comput. Phys., 224 (2007), pp. 431–448.

[39] Y. SAAD, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.
[40] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[41] A. SCHÄDLE AND L. ZSCHIEDRICH, Additive Schwarz method for scattering problems using the PML method

at interfaces, in Domain Decomposition Methods in Science and Engineering XVI, Springer, Berlin, 2007,
pp. 205–212.

[42] A. H. SHEIKH, D. LAHAYE, L. G. RAMOS, R. NABBEN, AND C. VUIK, Accelerating the shifted Laplace
preconditioner for the Helmholtz equation by multilevel deflation, J. Comput. Phys., 322 (2016), pp. 473–
490.

[43] P. SONNEVELD AND M. B. VAN GIJZEN, IDR(s): A family of simple and fast algorithms for solving large
nonsymmetric systems of linear equations, SIAM J. Sci. Comput., 31 (2009), pp. 1035–1062.

[44] C. C. STOLK, A rapidly converging domain decomposition method for the Helmholtz equation, J. Comput.
Phys., 241 (2013), pp. 240–252.

[45] M. TAUS, L. ZEPEDA-NÚÑEZ, R. J. HEWETT, AND L. DEMANET, L-sweeps: A scalable, parallel pre-
conditioner for the high-frequency Helmholtz equation, J. Comput. Phys., 420 (2020), Art. 109706 (32
pages).

[46] A. TOSELLI, Overlapping methods with perfectly matched layers for the solution of the Helmholtz equation, in
Eleventh International Conference on Domain Decomposition Methods, C. Lai, P. Bjorstad, M. Cross,
and O. Widlund, eds., DDM.org, 1999, pp. 551–558.

[47] H. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631–644.

[48] M. B. VAN GIJZEN, Y. A. ERLANGGA, AND C. VUIK, Spectral analysis of the discrete Helmholtz operator
preconditioned with a shifted laplacian, SIAM J. Sci. Comput., 29 (2007), pp. 1942–1958.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

