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COMPUTATION OF POTENTIAL FLOW IN MULTIPLY CONNECTED DOMAINS
USING CONFORMAL MAPPING∗
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Dedicated to Lothar Reichel on the occasion of his 70th birthday.

Abstract. This paper describes a method to calculate the potential flow in domains in the complex plane exterior
to a finite number of closed curves using conformal mapping. A series method is used to compute the potential flow
over multiply connected circle domains. The flow is then mapped from the circle domain to the target physical domain
by a method which approximates the Laurent series of the conformal map. The circulations around each boundary can
be specified. For flow over multi-element airfoils, the circulations are computed to satisfy the Kutta condition at the
trailing edges. The linear systems which are solved on the circle domain for both the potential flow and the conformal
maps are of the form identity plus a low-rank matrix, allowing for the efficient use of conjugate-gradient-like methods.
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1. Introduction. We compute the potential flow over multiply connected domains using
conformal mapping methods [5, 10] for mapping the exterior of m nonoverlapping disks to
the exterior of m given curves with smooth boundaries. The potential flow is computed in
the circle domain using a series method developed in [9]. The complex velocity potential
is analytic and transplants under conformal mapping. The flow is uniform at infinity with
specified circulations around the boundaries.

Similar calculations were performed in [11] for flow over multi-element airfoils using
a less efficient reflection method to compute the flows. The method requires reflections of
circles in circles and converges slowly, if at all, as the connectivity m increases. Another
more efficient approach uses the Schottky-Klein prime function [7] to compute the flow in the
circle domain. The prime function was recently combined in [8] with the conformal mapping
method [5] to compute flow over multi-element airfoils, such as those considered here. In [8],
comparisons were made to a modified version of the series method discussed here, with similar
accuracy and efficiency. For the reflection method, the method using the prime function, and
the modified series method, a separate m×m linear system must be solved for the circulations
to satisfy the Kutta conditions at the trailing edges of the m airfoils. The velocity potentials for
the streaming flow, ws(z), constant at∞, and the circulating flows, wi(z), for flows with unit
circulation around each of the m circles for i = 1, . . . ,m, must each be computed separately
by the three methods. The circulations Γi around each circle are then found by solving m
equations to satisfy the m Kutta conditions at the images zj of the trailing edges on the circles,

w′(zj) = w′s(zj) +

m∑
i=1

Γiw
′
i(zj) = 0;

see also [19].
The new aspect of the approach in the present paper is the inclusion of the Kutta conditions

for the circulations in a single linear system for the Laurent coefficients of w(z). The efficient
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solution of the resulting linear systems by conjugate-gradient-like methods was investigated
in [9] for circle domains. The purpose of the present paper is to apply that series method for
circle domains to compute potential flows in multiply-connected target domains, including
multi-element airfoils or smooth domains like those in Figure 1.1. A similar approach to
potential flow problems was developed in [18], where the systems are solved by a Gauss-Seidel
iteration; see also [21].

FIG. 1.1. Potential flow over m = 5 smooth boundaries with N = 128. The flow is uniform at∞ with U = 1
and the circulations are given around the circles. The (physical) target boundaries are given and the conformal
mapping method computes the Laurent series f(z) for the map and the centers and radii of the (unique) conformally
equivalent circles (right), where the exterior mapping function is normalized so that f(z) ∼ z as z →∞.

Numerical methods for computing conformal maps between domains in the complex
plane exterior to disks, and domains exterior to airfoils, were used in the past to compute
potential flow over single and multi-elements airfoils; see, e.g., Halsey [13] and references
in [11]. Here, we perform similar calculations using more recently developed methods for
conformal mapping of multiply connected domains [5] with smooth boundaries. We use an
extension [5] to exterior multiply connected domains of Fornberg’s original method [12], for
mapping the unit disk to a simply connected domain bounded by a smooth (continuously
turning tangent) curve; see also [10]. Computing the conformal map from the circle domain to
the target (physical) domain is a nonlinear problem. The method [12] is a Newton-like method
and converges more rapidly than the linearly convergent methods of successive approximation,
such as those of Theodorsen and Timman/James; see [15]. Halsey and others [13] used
the simply connected exterior method of Timman/James and applied Koebe’s method [15,
Section 17.7] to successively map domains to the exterior of a disk. More recently developed
conformal mapping methods for multiply connected domains [5, 18, 21] produce the map
directly to the domain. For airfoils, we successively apply explicit Karman-Trefftz maps to
smooth the corners, as described below.

Both the potential flow problem [9] and the conformal mapping method [5] solve linear
boundary value problems on the multiply connected circle domains using sums of Laurent
series centered on the disks. Discretization is based on N -point trigonometric interpolation
on each circle. The linear systems for the conformal maps are inner linear systems arising at
each Newton step. These linear systems are solved for the Laurent coefficients and auxiliary
parameters such as circulations or conformal moduli (circle centers and radii). An important
common feature of both linear systems is that their basic structure is of the form identity plus
a low-rank matrix. This means that conjugate gradient methods converge rapidly; see [4] for
some related observations.

For introductions to numerical conformal mapping, including methods which map from
the physical domain to the computational domain which we do not consider here, see [15, 21].
For introductions to fluid mechanics, see [2, 6], and for applications of complex variables to
flow in the plane, see, e.g., [17, 18].

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

252 T. DELILLO, J. MEARS, AND S. SAHRAEI

The paper is organized as follows: Section 2 describes the numerical conformal mapping
methods of multiply connected domains exterior to closed curves. Section 3 reviews the series
method from [9] for computing potential flow in domains bounded by circles. Linear systems
for the Laurent coefficients are solved where the circulations can either be specified, or solved
for to satisfy the Kutta condition. Section 4 reports numerical experiments combining the
mapping and potential flow methods to compute flow over domains with smooth boundaries
and over multi-element airfoils, including examples from [19] and [22]. Section 5 discusses
the accuracy of the method. Section 6 states some conclusions and plans for future work.

2. Conformal maps. We give a brief review of the conformal maps used in these
calculations following [3, 11].

2.1. Fornberg’s method for mapping the exterior of a single smooth closed curve.
For completeness, we briefly recall the exterior, simply-connected maps, m = 1, although
their application will not be discussed here. Details for the numerical method are given in [10]
following [12]. For flow over a single airfoil or disk, the series method here and the reflection
method in [11] for computing the flow are, of course, identical.

For m = 1, the function ζ = f(z) maps the exterior of the unit disk conformally to the
exterior of a smooth, closed curve, ∂Ω : γ(S) with γ′(S) continuous. The form of the map is

f(z) = a1z + a0 +

∞∑
j=1

a−jz
−j .

Existence and uniqueness of the mapping function is given by the Riemann Mapping Theorem.
The numerical method for approximating the (truncated) series for f(z) is a Newton-like
method for finding the boundary correspondence S = S(θ), such that

f(eiθ) = γ(S(θ)).

If S(k)(θ) is the approximation to S(θ) at the kth Newton step, a correction U (k)(θ) is
computed, such that the boundary values of the linearization,

γ(S(k)(θ) + U (k)(θ)) ≈ γ(S(k)(θ)) + γ′(S(k)(θ))U (k)(θ),

are boundary values of a function analytic in the exterior of the disk with a simple pole at∞.
The map is normalized by fixing a boundary point, f(1) = γ(S(0)) = γ0. The condition for
the analytic extension of a function defined on the disk to the exterior of the disk is that the
positive indexed Fourier coefficients, aj = 0, j = 2, 3, . . . . Truncating this condition using
N -point trigonometric interpolation, leads to a symmetric positive (semi)definite linear system
for U (k), which can be solved efficiently by the conjugate gradient method using the N -point
fast Fourier trasform (fft). The matrix-vector multiplications therefore cost O(N logN).
The Newton update is

S(k+1)(θ) = S(k)(θ) + U (k)(θ),

with U (k)(0) = 0 to ensure f(1) = γ0.
The extension of this approach to the case m > 1 [5] is outlined next, following [3, 11].

One difference is worth noting, since it affects the potential flow calculations: for the m > 1
case, the map below is normalized by f(z) = z +O(1/z), z →∞, and the centers and radii
of the conformally equivalent circle domain must be computed as part of the problem. The
map then satisfies f ′(∞) = 1. This condition could be imposed on the m = 1 case, and then
we would have a1 = 1, a0 = 0 and the center and radius of the mapped circle would have to
be computed, since it would no longer be fixed as the unit circle, in general.
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2.2. Extension of Fornberg’s method to exterior multiply connected domains. Ex-
istence and uniqueness for the conformal map ζ = f(z) from the complement, D, of m
nonintersecting disks, Dk, in the z-plane, onto a region Ω in the complex ζ-plane which
is exterior to m nonintersecting smooth Jordan curves, ∂Ωk, 1 ≤ k ≤ m, is given in [15,
Section 17.1b]. Given Ω and the normalization f(z) = z+O(1/z), z ≈ ∞, the circle domain
D and the map f are uniquely determined. Here we give a brief review of the extension [5]
of Fornberg’s method for computing an approximation to the Laurent series of this map.
Boundaries of disks Dk are the circles Ck : ck(θ) := ck + rke

iθ and C = C1 + · · · + Cm.
The target boundary of Ω is ∂Ω = ∂Ω1 + · · · + ∂Ωm, where the ∂Ωk are (smooth) curves
parametrized by S, e.g., arclength, ∂Ωk : γk(S). The function f extends smoothly to the
boundary f(Ck) = ∂Ωk. To compute the map, we must find the boundary correspondences
S = Sk(θ) and conformal moduli ck, rk, such that

f(ck + rke
iθ) = γk(Sk(θ)), 1 ≤ k ≤ m,

where f is analytic and f(z) = z +O(1/z), z ≈ ∞. Therefore,

f(z) = z +

m∑
k=1

∞∑
k=j

ak,j

(
rk

z − ck

)j
.

In place of the condition aj = 0, j = 2, 3, . . . , for the exterior simply connected map,
we use relations among the ak,j’s developed in [5] to ensure that a function defined on the
boundary extends analytically into the domain D. These conditions are given in the following
theorem.

THEOREM 2.1. Suppose f ∈ Lip(C) has the Fourier series representation

f(ck + rke
iθ) =

∞∑
j=−∞

ak,je
ijθ, 1 ≤ k ≤ m.

Then, f extends analytically into D with f(z) = z +O(1/z) for z ≈ ∞ if and only if

ak,j −
(

rk
cl − ck

)j∑
l 6=k

∞∑
ν=0

Bj+1,ν

(
rl

ck − cl

)ν+1

al,−ν−1 = rk,j , j ≥ 0,

where rk,0 = ck, rk,1 = rk, rk,j = 0, for j ≥ 2, and Bk,j denote the binomial coefficients.
Note that for m = 1 the conditions would reduce to aj := a1,j = 0, j ≥ 2. As in

the simply connected case, we will linearize the problem about the current guesses for the
boundary correspondences, centers and radii, and use a Newton-like iteration. For an initial
guess Sk(θ) and 2π periodic correction Uk(θ), we use the following linearization for Uk(θ)

γk(Sk(θ) + Uk(θ)) ≈ γk(Sk(θ)) + γ′k(Sk(θ))Uk(θ).

For an initial guess of ck and rk with corrections δck and δrk,

(f + δf)(ck + δck + (rk + δrk)eiθ) ≈ (f + δf)(ck + rke
iθ) +f ′(ck + rke

iθ)(δck + δrke
iθ).

Combining the above approximations gives

(f + δf)(ck + rke
iθ) = γk(Sk(θ)) + γ′k(Sk(θ))Uk(θ)− f ′(ck + rke

iθ)(δck + δrke
iθ).

We use the theorem above to force the functions to be boundary values of a function analytic
in D. The conditions on the ak,j’s are truncated and discretized at N Fourier points on each
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circle. This leads to a linear system for the unknown Newton updates Uk, δck, δrk, denoted
by U , of the form,

AU = b,

where A is a symmetric positive definite matrix of the form identity plus an effectively low-
rank matrix with geometrically decaying singular values. The details are given in [5]. The
eigenvalues of A are well-grouped around 1, as is the case for the potential flow equations,
below. The system can therefore be solved efficiently by the conjugate gradient method, as in
the simply connected case, except that the matrix-vector multiplication now costs O((mN)2)
operations instead of O(N logN) for the simply connected case. For very high connectivity
O(mN) fast multipole methods could be considered for solving the linear systems for both
the conformal maps and the potential flow calculations, below. Also, varying N adaptively for
close-to-touching boundaries, or boundaries of varying complexity, could be done, if necessary,
but such complications are not considered here for the test domains.

The i+ 1st Newton updates are, for k = 1, . . . ,m,

Si+1
k = Sik + U ik,

ci+1
k = cik + δcik,

ri+1
k = rik + δrik.

2.3. Parametrizing the boundary. The Karman-Trefftz maps are constructed by suc-
cessively conformally transforming a large, finite set of given points along the boundary.
The resulting curve must be parametrized by a smooth function with continuously turning
tangent (no corners) in order to apply Fornberg’s method. We fit the points by two peri-
odic cubic splines for the x and y coordinates parametrized by the chordal arclength, sk =√

(xk+1 − xk)2 + (yk+1 − yk)2, between two successive points (xk, yk), k = 1, . . . , Ns
along the boundary, with xNs+1 = x1, yNs+1 = y1, based on [16]. This parametrization
generally avoids introducing large oscillations into the interpolant, γ(S) = x(S) + iy(S),
since large changes in the xk’s or yk’s give large changes in the sk’s. For smooth boundaries,
such as ellipses in our examples, an analytic parametrization can be used. In such cases, the
map extends analytically across the boundary and the map coefficients decay geometrically
resulting in spectral accuracy of the truncated series. Fitting the analytic curves with cubic
splines reduces the accuracy somewhat, but not dramatically for well-separated, smooth do-
mains, so we use spline fits in all examples here. This approach is probably more realistic in
practice where analytic formulas for boundaries may not be available.

2.4. The Karman-Trefftz transformation for airfoils. A classical method for removing
a single corner at z1 on a closed boundary curve of a domain exterior to the curve is the
Karman-Trefftz transformation. This has often been used for computing potential flow over
the exterior of a multi-element airfoil [13]. The map for a single Joukowski airfoil is illustrated
in [11]. The exterior angle βπ at z1 is smoothed by the Karman-Trefftz transformation,
ζ = k(z), given by

ζ − ζ1
ζ − ζ2

=

(
z − z1

z − z2

)1/β

,

where z1, the corner, maps to ζ1 and z2, a point interior to the the curve, maps to ζ2. Then,

ζ = k(z) =

(
ζ1 − ζ2

(
z − z1

z − z2

)1/β
)/(

1−
(
z − z1

z − z2

)1/β
)
.
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If z2 is near the leading edge, the map results in a nearly circular set of points which we fit
with our periodic cubic spline routine described above. In general, as pointed out in [13], a
tracking procedure must be used to ensure that the arguments of the fractional powers vary
continuously around the boundary curves.

For the multiply connected case, the Karman-Trefftz transformations are applied succes-
sively to the images of the m airfoils to produce a map k = km ◦ · · · ◦ k2 ◦ k1 from the domain
Ω bounded by the airfoils to the domain bounded by nearly circular, smooth curves. Note that
each map ki for the simply connected domain exterior to ∂Ωi must be applied to all of the
curves at each step. Fornberg’s method for exterior multiply connected domains [5] can then
be used to compute a Laurent series map ζ = h(z) from a conformally equivalent domain
exterior to m disks to k(Ω), as described below. The Karman-Trefftz maps ki can be explicitly
inverted,

k−1(ζ) =

(
z1 − z2

(
ζ − ζ1
ζ − ζ2

)β)/(
1−

(
ζ − ζ1
ζ − ζ2

)β)
.

The final conformal map f from the circle domain to the domain exterior to the m airfoils can
be represented as a composition,

f = k−1 ◦ h = k−1
1 ◦ k−1

2 ◦ · · · ◦ k−1
m ◦ h.

3. Complex velocity potential for flow overm cylinders. We briefly review the material
in [9]. We want to find the complex velocity potential, w(z) = φ(x, y) + iψ(x, y), z = x+ iy,
for ideal, incompressible, irrotational flow in the exterior of m disks such that the velocity is
given by u = φx = ψy, v = φy = −ψx, or

u− iv = φx − iφy = φx + iψx = w′(z),

where w(z) is analytic and the circular boundaries Cj : z = cj + rje
iθ are streamlines, that is,

ψ = constant on the Cj’s.
The velocity potential can be used to calculate some fundamental quantities for flow

around a body with boundary given by a closed curve, C.

THEOREM 3.1. The circulation Γ of the flow around C and the flux F of the flow through
C are given by

Γ + iF =

∫
C

w′(z)dz.

Proof. See, e.g., [1, p. 77].

We will find the potential flow with circulation, w(z), around multiple disks. The
representation of the flow around multiple disks needs to satisfy the following conditions:

1. the Ck’s are streamlines, i.e., Im[w(z)] = constant for all z ∈ Ck, k = 1, . . . ,m;
2. lim

z→∞
w′(z)→ U , uniform flow at∞;

3. the circulations Γk around Ck are either (i) given for k = 1, . . . ,m or (ii) solved for
to satisfy the Kutta condition for airfoils.

We use a series representation of the complex velocity potential,

w(z) = Uz +

m∑
k=1

iΓk
2π

ln(z − ck) +

m∑
k=1

∞∑
j=1

(
rk

z − ck

)j
akj .
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The conditions 2 and 3 are satisfied by this expression. We express the condition 1 as
∂(Im w(ck + rke

iθ)/∂θ = 0 and use the complex velocities,

u− iv = w′(z) = U +

m∑
k=1

iΓk
2πrk

rk
z − ck

−
m∑
k=1

∞∑
j=1

(
rk

z − ck

)j+1

jakj/rk,

to form our linear systems.

3.1. Linear system for the complex velocity potential. We discretize at Fourier points,
z = ck + rke

θn , θn = 2πn/N, n = 0, . . . , N − 1, and solve a truncated linear system for the
akj’s and (in the case (ii)) for the circulations Γk’s using velocities

u− iv = w′(z) = U +

m∑
k=1

iΓk
2πrk

rk
z − ck

−
m∑
k=1

J∑
j=1

(
rk

z − ck

)j+1

jakj/rk,

(J ≈ N/2), satisfying boundary conditions above in the form,
1. ∂(Im w(ck + rke

iθ)/∂θ = 0 for all z ∈ Ck, k = 1, . . . ,m;
2. uniform flow at∞: lim

z→∞
w′(z)→ U ;

3. for the Kutta condition, the velocities u(zk) + iv(zk) = w′(zk) = 0 at images of the
trailing edges, zk, determine circulations Γk around Ck, k = 1, . . . ,m.

3.2. Block structure of the real system. Discretizing at the Fourier points, truncating
the series to J = N/2 terms, using |U |, Γk real, and taking real parts, we obtain systems in
block form.

For the case (i), we have, with bkj := jakj/rk,

Re

 m∑
k=1

J∑
j=1

e−iθn
(

rk
cl − ck + rle−iθn

)j+1

bkj


= Re

[
Ue−iθn

]
−

m∑
k=1

Im

[
e−iθn/2π

cl − ck + rle−iθn

]
Γk,

when the Γk’s are given. In block matrix form, this can be written as

Re {Ab} = r − Im{L}Γ,

where r is a vector containing the Re
[
Ue−iθn

]
’s, b is a vector containing the bkj’s, and

Γ = [Γ1, . . . ,Γm]T . Separating real and imaginary parts gives

Re {Ab} = [AR −AI ]
[
bR
bI

]
= r − LIΓ,

where LI = Im L,

L =

 L1

...
Lm


is an Nm×m matrix, and Ll is the N ×m submatrix for l fixed.
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For the case (ii), we add m equations for the Kutta condition. We want to solve for
the circulations, Γl, so that the velocities at the given stagnation points, zl = cl + rle

iφl ,
l = 1, . . . ,m, are zero,

w′(zl) = U +

m∑
k=1

iΓk
2π(zl − ck)

−
m∑
k=1

∞∑
j=1

(
rk

zl − ck

)j+1

bkj = 0.

Therefore, we add the following l = 1, . . . ,m (complex) equations for the bkj’s, Γk’s, to the
system,

−
m∑
k=1

J∑
j=1

(
rk

cl − ck + rleiφl

)j+1

bkj +

m∑
k=1

i

2π(cl − ck + rleiφl)
Γk = −U.

Using U = |U |e−iα, multiplying by eiα, and using real Γi’s, we take the imaginary part and
add the resulting equations to the other conditions. This leads to a block system,

ASbΓ =

[
AR −AI LI
BI BR CI

] bR
bI
Γ

 =

[
r
0

]
.

where AR, AI are mN × mJ matrices, BI , BR are m × mJ , LI is mN × m, Γ =
[Γ1, . . . ,Γm]T , bR, bI contain real and imaginary parts of the bkj’s, the vector of unknowns
bTΓ := [bTR bTI ΓT ], and rk = [Re[Ue−iθ0 ], . . . ,Re[Ue−iθN−1 ]]T .

We solve the system (ii) with cgls (conjugate gradient for least squares) from [14]. Since
the singular values of AS are well-grouped, cgls converges rapidly, as shown in Figure 3.1.
The solution for the case (i) where the Γk’s are given is similar.

3.3. Remark on the Kutta condition. The velocity V is represented as

V = Vstream + Γ1V1 + Γ2V2 + · · ·+ ΓmVm,

where Vi is the circulating velocity with circulation 1 around circle Ci and 0 on Cj , j 6= i,
and Vstream is the uniform streaming flow with velocity U at infinity and the circles Cj as
streamlines. The Kutta condition selects the unique physical solution by requiring that the
velocities at trailing edges are zero. This is achieved by finding the Γi’s such that

Vstream(zl) + Γ1V1(zl) + · · ·+ ΓmVm(zl) = 0

for l = 1, . . . ,m, where the zl’s are the images of the trailing edges on the circles; see [19,
eq. 13]. That is, we solve the complex linear system, V1(z1) · · · Vm(z1)

...
...

V1(zm) . . . Vm(zm)


 Γ1

...
Γm

 = −

 Vstream(z1)
...

Vstream(zm)


for real circulations, Γi. For our series solutions, above, the imaginary part of the system is
incorporated into the full system and solved. A similar approach is used in [18]. The following
theorem justifies the assumption that the Γi’s are real.

THEOREM 3.2. The complex system above for the circulations satisfying the Kutta
condition has a unique, real solution.

Proof. For a given image zl of a trailing edge the velocities Vstream(zl) and Vk(zl) all
have the same direction, since the circles are streamlines, i.e., Vk(zl) = rke

iθl . Therefore, the
complex system can be made real by multiplying each row l by e−iθl .
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FIG. 3.1. Flow overm = 8 disks using the new combined method solving for the Kutta condition usingN = 64,
J = 31 (top left) with singular values (top right), error (bottom left), and decay of coefficients (bottom right). The
circulations are computed so that the “o”s on the circles are stagnation points. The streamlines are plotted using the
MATLAB contour function.

4. Examples of flow calculations. We give a few examples to illustrate the combined
methods. First, we give examples of flow over smooth domains where the circulations are
given. Some sample timings for various m and N are given in order to compare the relative
costs of computing the map and the flow. Next we give some examples of flow over multi-
element airfoils, where the circulations Γi are computed to satisfy the Kutta condition. Some
sample pressure curves over the top and the bottom of the airfoils are also computed.

4.1. Flow over multiply connected smooth domains. In Figure 4.1, the map from the
circle domain to the exterior of smooth curves is computed. The circulations can be specified
arbitrarily. The level of accuracy is indicated by the decay of the log of the magnitude of the
Laurent coefficients: J = N/2 for the potential flow and the last N/2 coefficients for the
conformal map around each circle. The plots illustrate the spectral accuracy of the method for
smooth curves.

Some typical sample timings for the map and the flow over smooth regions in Figure 4.2
are given in Table 4.1 for connectivities m = 2, 4, 8, computed in MATLAB on a laptop.
For the conformal map the number of Newton iterations are fixed at 10 and the number of
conjugate gradient iterations are fixed at 30. For the potential flows (with circulations given)
we fix the number of cgls iterations at 20, resulting in an accuracy of about 10−14 in all cases.
The dominant operation count is the O((mN)2) matrix-vector multiplication for solving the
conjugate gradient solutions. For large values of N , the fill-in of large matrices begins to
dominate the calculations and demands for a more efficient implementation. Timings are
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FIG. 4.1. Potential flow over m = 4 smooth boundaries with N = 256. The circulations are given as 2 around
the three smaller circles and -2 around the large circle.

similar for airfoils, where the circulations and the preliminary Karman-Trefftz maps have to
be computed.

TABLE 4.1
Sample timings in seconds for domains in Figure 4.2.

m = 2 m = 4 m = 8
N map flow map flow map flow
64 0.07 0.54 0.20 0.82 0.58 1.95

128 0.15 0.82 0.49 1.86 1.98 6.55
256 0.50 1.44 2.05 4.60 7.96 20.09
512 2.54 4.67 9.69 19.98 79.23 101.97

1024 38.19 22.23 104.69 105.71 603.35 601.68

4.2. Flow over multi-element airfoils. In this setup, the classical Karman-Trefftz trans-
formation ki, described above, is used to smooth the trailing edge corners successively from
each of the m airfoils ∂Ωi, i = 1, . . . ,m, producing a multiply connected domain with nearly
circular, smooth boundaries. The Laurent series method is then used to compute the map
h from a domain exterior to non-overlapping disks to the exterior of a domain with smooth
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FIG. 4.2. Potential flow over m = 2, 4, 8 smooth boundaries with N = 64 for timings in Table 4.1. The
circulations are given.

boundaries. The Karman-Trefftz maps are then inverted to produce a composite map,

Z = f(z) = k−1
1 ◦ k−1

2 ◦ · · · ◦ k−1
m ◦ h(z),

from the circle domain to the airfoil domain. The flow is computed in the circle domain by a
series method described above, with the circulations calculated to satisfy the Kutta condition,
and mapped back to the airfoil domain.

The procedure is illustrated in Figure 4.3 for the map to the exterior of m = 3 airfoils
(left), where the boundary curves in the middle domain are the result of the application of four
successive Karman-Trefftz maps to smooth the trailing edges, and the method [5] is used to
compute the map from the exterior of the circles (right) to the exterior of the smooth domain.
The X’s in the top graph mark the images of the trailing edges, which are calculated on the
circles by interpolating the boundary correspondences, so that the Kutta condition can be
applied. For this example, we use m = 3 cosine curves to define the airfoils,

γ(σ) = − cos(Kσ)eiσ, − π

2K
≤ σ ≤ π

2K
,

with a trailing edge interior angle π
K and K = 4. Specifically, the exterior angle is then

βπ = 2π − π/K = 7π/4 and is removed by the Karman-Trefftz transformation, above, with
δ = 1/β = K/(2K − 1) = 4/7. The β’s might be varied for each airfoil, but we have not
done this in the examples here.

Since w′(z) = u− iv, the streamlines are plotted by numerically solving the system

dx

dt
= u = Re{w′(z)},

dy

dt
= v = −Im{w′(z)},
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by the MATLAB solver ode45. This allows us to display streamlines originating near the
stagnation points at the trailing edges. The streamlines in the circle domain are then mapped
to the airfoil domain.

4.3. Calculating pressures. We calculate the pressure p around the boundaries of the
airfoils using Bernoulli’s law,

p = 1− |V |2,

where V is the velocity. The complex velocity potentialW (Z) in the physical (airfoil) Z-plane
in terms of the velocity potential w(z) in the circle domain and the conformal map Z = f(z)
is given by

W (Z) = W (f(z)) = w(z) = w(f−1(Z)).

Therefore, V is given by

V =
dW

dZ
=

d

dZ
w(f−1(Z)) = w′(z)

dz

dZ
= w′(z)/f ′(z).

For uniform velocity UZ at∞ in the physical Z-plane, we need

UZ = w′(∞)/f ′(∞) = U/f ′(∞),

where U is the uniform velocity in the circle z-plane. Note that, since f(z) = k−1(h(z)),

f ′(z) = (k−1)′(h(z))h′(z).

The Fornberg map h(z) has h(∞) = ∞, h′(∞) = 1. For a single inverse Karman-Trefftz
map, k−1

i (ζ), a calculation gives

(k−1
i )′(∞) =

1

β

(
z2 − z1

ζ2 − ζ1

)
.

Therefore, we need

U = UZf
′(∞) = UZ

(
z2 − z1

ζ2 − ζ1

)
/β.

Pressure curves are displayed for the airfoil examples below.

4.4. A 2-airfoil example from Williams’s paper. Figure 4.4 displays flow for config-
uration A from [22, Table p. 7] with α = 0, solving the full combined system above for the
Laurent coefficients and the circulations with N = 128 and ksteps = 25 conjugate gradient
iterations. A function for tracking the roots continuously for the Karman-Trefftz maps is used
in our examples. Also, the Fornberg map iterations are smoothed by zeroing the 3 highest
order Fourier coefficients. Here, the computed circulations for N = 128 are 1.3889486... and
0.4773498.... The circulations listed in [22] are 1.3909 and 0.4784. They are calculated from
a reflection method for the flows, as in [11], which is generally less accurate than the series
method, unless many levels of reflection are used. Also, 2 to 4 digit accuracy is usually all one
can expect composing Fourier series conformal mapping methods with methods to smooth
corners; see [3]. In practice, airfoil shapes are not defined more accurately, so this is not a
serious limitation. The shape and range of the pressure curves obtained here are similar to [22].
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FIG. 4.3. Conformal map f = k−1 ◦ h, where composition of Karman-Trefftz maps k = k1 ◦ k2 ◦ k3
successively smooth corners (left), Laurent series map h maps from circle domain (right) to smooth domain (center),
and potential flow with Kutta condition at trailing edges (X) is computed in circle domain by Laurent series and
N = 128 Fourier points on each circle with U = eiπ/16,K = 4, Ns = 100. Pressures on the upper and lower
portion of each airfoil are plotted in the lower figure. The horizontal axis is the real part of the points on the airfoil.

4.5. A 3-airfoil example from Suddhoo and Hall’s paper. Figure 4.5 and Table 4.2
show flow results for configuration B from [19], solving the full combined linear system
above for the Laurent coefficients and the circulations with N = 128. The circulations are
1.46857660, 0.8840742, and 6.4221982. The corresponding circulations listed in [19] are
1.4747, 0.8849, and 6.4355. The increase in accuracy, shown in Table 4.2, of about one
decimal place for each doubling of N , illustrates the roughly third-order accuracy due to the
spline interpolation used to find the preimages of the trailing edges, as discussed in Section 5.
The accuracy ε of the boundary conditions, defined in Section 5, is roughly spectral. The
pressure curves (bottom graph) are similar to the Figure in [19].

TABLE 4.2
Sample timings (in seconds), circulations, Γi, and accuracy of the MATLAB code on a laptop for an airfoil

from [19] for m = 3, configuration B, with angle of attack α = 20o; see Figure 4.5 for the conformal map and the
full linear systems for the flow, using ksteps = 35 conjugate gradient (CG) iterations. Operation counts for the flow
and the map are O((mN)2 × ksteps).

N map flow Γ1 Γ2 Γ3 ε

32 0.12 0.30 1.46716332 0.8929293 6.4021316 1.4 · 10−04

64 0.23 0.34 1.46893074 0.8825023 6.4254065 1.8 · 10−07

128 0.77 0.55 1.46857660 0.8840742 6.4221982 9.9 · 10−13

256 3.37 1.08 1.46856840 0.8841090 6.4221244 1.2 · 10−14

4.6. A 4-airfoil example from Suddhoo and Hall’s paper. Flow for configuration
A from [19] is an exact test case generated by applying m = 4 inverse Karman-Trefftz
transformations successively to chosen circles. The exact map from the exterior of 4 disks is
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FIG. 4.4. Flow for configuration A from [22] using the full series with N = 128 and angle of attack α = 0,
and corresponding pressure curves (bottom).

produced by the sequence of maps shown in Figure 4.6. The map for the 3-airfoil case, above,
is produced similarly. A different sequence of Karmann-Trefftz maps, of course, is used to
smooth corners and compose with the Laurent series maps for these test cases. The flow for
in this case is shown in Figure 4.7. The flow is computed using the series and Fornberg map
with N = 128 Fourier points and angle of attack α = 0. The circulations are 0.521940...,
2.07956..., 0.72166..., and 4.71673.... The corresponding circulations listed in [19] are 0.5215,
2.0794, 0.7216, and 4.7157. Again, 3 or 4 digit accuracy is usually all one can expect; see
Table 4.3 for sample timing and accuracy. The pressure curves (bottom graph) are similar to
the Figure in [19].

TABLE 4.3
Sample timings (in seconds), circulations, Γi, and accuracy of the MATLAB code on a laptop for an airfoil

from [19] for m = 4, configuration A, with angle of attack α = 0; see Figure 4.7 for the conformal map and the
full linear systems for the flow, using ksteps = 40 CG iterations. Operation counts for the flow and the map are
O((mN)2 × ksteps).

N map flow Γ1 Γ2 Γ3 Γ4 ε

64 0.37 0.38 0.522048 2.07908 0.72162 4.71769 1.3 · 10−07

128 1.39 0.87 0.521940 2.07956 0.72166 4.71673 4.8 · 10−13

256 7.16 1.91 0.521939 2.07957 0.72167 4.71672 7.5 · 10−15

5. Some comments on convergence and accuracy. The analytic velocity potential
w(z) for the flow over m disks exists and is unique if the velocity at infinity is given and the
circulations are given or determined by the Kutta condition. Our estimates of accuracy and our
analysis of convergence depends on some numerical observations. For J = N/2, there are
exactly m singular values of AS with σk ≈ 10−15. We generally select J = N/2− 1. Then,
these m “zero” singular values are perturbed to about 1 > σk > 10−3; see, e.g., Figure 3.1.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

264 T. DELILLO, J. MEARS, AND S. SAHRAEI

-3 -2 -1 0 1 2 3

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

FIG. 4.5. Flow for configuration B from [19] using the full series with N = 128 and angle of attack α = 20o,
and corresponding pressure curves (bottom).

These values are independent of N and α, and depend mainly on the Cj’s. A discussion of
these effects for similar systems is given in [4, 9]. Choosing J < N/2− 1 does not generally
change these observations. Therefore, with J = N/2− 1 the matrix AS is full rank and it is
possible to prove by standard theorems that conjugate-gradient-like methods converge. The
convergence is superlinear due to the fact that the eigenvalues of ATSAS (the squares of the
singular values of AS) are well-grouped around 1, with about 2m outliers slightly greater than
or less than 1; see Figure 3.1.

One measure ε of the error (used in [9]) is defined by taking the difference of the
imaginary parts of the potential w(z) at 2N Fourier points, zk,n = ck + rke

iθn ∈ Ck, where
θn = 2πn/2N , n = 0, . . . , 2N − 1, with the average value at the N Fourier points used to
solve the system. Let ζk,j = ck + rke

itj , tj = 2πj/N, j = 0, . . . , N − 1, be the collocation
points for our construction of w(z). Then, let

εk,n :=

∣∣∣∣ Im [w(zk,n)]− 1

N

N−1∑
j=0

Im [w(ζk,j)]

∣∣∣∣.
The overall error ε is then given by

εk := max
n

εk,n,

ε := max
k

εk.

This error estimate provides a good measure of how the imaginary parts of the velocity
potential are nearly constant on the circles. Convergence of the error ε of the CG iterates to
the level of accuracy for the given N takes place superlinearly in O(2m) steps, as expected.
As shown by examples in [9], we generally see spectral accuracy, i.e., errors squaring when N
is doubled. Overall accuracy may be less when we conformally map to domains with corners,
as discussed in [11] and below.
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FIG. 4.6. Sequence of maps for configuration A from [19], an exact test case generated by applying m = 4
inverse Karman-Trefftz transformations successively to chosen circles.

REMARK 5.1. If J = N/2 is chosen, the iterations will initially converge and then
diverge due to the presence of near-zero singular values. Such semi-convergence is familiar
for ill-conditioned systems that occur, for instance, in the solution of inverse problems. Taking
J = N/2− 1, or damping higher order coefficients, may therefore be regarded as a form of
regularization. Such “smoothing” of higher-order Fourier coefficients has been found to be
an effective way of handling semi-convergence of iterates for similar problems in numerical
conformal mapping; see, e.g., [21, p. 403].

To discuss convergence of our solutions as N →∞, we will work with the exact series
for w′(z). We will write now this series as

w′(z) = b0 +

m∑
k=1

∞∑
j=1

(
rk

z − ck

)j
bkj ,

where now b0 := U , bk1 := iΓk/2πrk, and bkj := −jakj/rk, j = 2, . . . ,∞, k = 1, . . . ,m.
Since the solution to the potential flow problem for a given circle domain, with U and the Γk’s
given, is unique, this series clearly satisfies our boundary conditions,

Im w′(z) = 0, z ∈ Ck, k = 1, . . . ,m.

Next, note that w′(z) extends analytically across the Ck’s up the radius determined by the
nearest singularities inside Ck. As discussed in [9], the construction of the solution w(z) by
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FIG. 4.7. Flow for configuration A from [19] using the full series with N = 128 and angle of attack α = 0,
and corresponding pressure curves (bottom).

the reflection method (method of images) shows that for two circles Cj and Ck the nearest
singularity to Ck inside Cj is determined by the limit of the successive reflection of the centers
of the two circles. This limit is a fixed point ζkj of the Moebius map formed by reflection in
Cj followed by reflection in Ck. Let

Rj = max
k

|ζkj − cj |
rj

< 1.

Then, |aji| ≤ CRij . Taking R = maxj Rj < 1, we have

|bkj | ≤ CjRj → 0, j →∞, for all k, j and some C > 0.

Now, consider the truncated series

w′J(z) = b0 +

m∑
k=1

J∑
j=1

(
rk

z − ck

)j
bkj .

Then, since |rk/(z − ck)| ≤ 1 for z ∈ Cj , j = 1, . . . ,m,

Im |w′J(z)| ≤ CJRJ → 0, J →∞, for some C > 0.

Therefore, if b denotes the vector of real and imaginary parts of the bkj’s, as above, then b
satisfies a linear system, derived as above from discretizing in z at N Fourier points on each
circle, of the form,

ASb = r + e.

Here r denotes the right-hand side for the discrete system and the error vector e, due to
truncating the infinite series, satisfies ‖e‖∞ = O(JRJ). Note from above that AS is a
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(Nm+m)×(2Jm+m) matrix of full rank 2Jm+mwhen J = N/2−1 in our examples. For
a given domain, we have found that the outlying singular values of AS , σ1 and σ2Jm+m > 0
do not change much with N . Therefore, the condition number of AS , κ(AS) = σ1/σ2Jm+m,
does not grow with N . Let the SVD of AS be

AS =

2Jm+m∑
j=1

σjujv
T
j .

Now let b̂ be the solution to the discrete system from above, now written as

AS b̂ = r,

for convenience. Then,

AS(b− b̂) = e

and therefore

b̂ = b−
2Jm+m∑
j=1

vj
uTj e

σj
.

Since ‖e‖∞ converges to 0 like O(JRJ) as N →∞, b̂ will converge to b. We have therefore
proven the following theorem.

THEOREM 5.2. If the circle domain bounded by given Cj’s, j = 1 . . . ,m, is such that
condition numbers of the family of matrices AS , formed for each N and J = N/2 − 1,
remain uniformly bounded, then the approximate velocity potentials will converge to the exact
potential w(z) as N →∞.

We illustrate the accuracy and convergence with the following two examples.
EXAMPLE 5.3. See Figure 5.1, where we compute the flow over m = 2 ellipses. The

circulations Γ1,Γ2 are given. The errors are listed in Table 5.1. The average values of Im
w(z) at 2N Fourier points converge roughly quadratically as N is doubled. The error in the
conformal map is approximated by how nearly the real and imaginary parts of the map f(z),
evaluated at 2N Fourier points on the circles, satisfy the equations for the elliptical boundaries.
These errors also converge quadratically, as expected for analytic boundaries. We used our
periodic cubic spline with a very large numberNs = 8000 of knots to fit the ellipse boundaries
in the conformal mapping code. The accuracy using the analytic parametrization is similar.

TABLE 5.1
Average values of Im w(z), z ∈ C1, C2, for m = 2 smooth boundaries and overall accuracy of conformal

map in Figure 5.1, Ns = 8000, J = N/2− 1; Γ1 = Γ2 = 2 are given, σmin(AS) ≈ 0.8 for all N .

N Im w(z), z ∈ C1 Im w(z), z ∈ C2 map accuracy

16 0.114391338010714 -0.350081754431789 1.1 · 10−02

32 0.114295133088431 -0.349692481939068 5.6 · 10−05

64 0.114295784168430 -0.349691589528057 9.1 · 10−09

128 0.114295784171233 -0.349691589519629 1.6 · 10−14

256 0.114295784171233 -0.349691589519634 1.6 · 10−14

EXAMPLE 5.4. Here we consider the domain in Figure 4.3 for flow over m = 3 airfoils.
Errors are given in Table 5.2. In this case the full system is solved for the Laurent coefficients
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FIG. 5.1. Streamlines for flow exterior to m = 2 ellipses, with N = 6, Γ1 = Γ2 = 2, and U = 1.

and the circulations satisfying the Kutta condition. The values for the circulation Γ1, Im w(z)
at 2N Fourier points, and the argument φ1 of the stagnation point on the middle (largest) circle
C1 are listed. The convergence is much slower here and the accuracy does not improve much
beyond about 6 digits. The results for the other two boundaries are similar. The accuracy
is limited here by the accuracy of the conformal map. It is difficult to accurately compute
the preimages (with arguments φk) of the trailing edges of the airfoils. These preimages do
not generally fall on Fourier points on the circles and their locations have to be computed by
interpolation. The inverse of the boundary correspondences θk = θk(S) is approximated by
interpolating the mesh points with a cubic spline. Then φk = θk(0) or θk(2π), corresponding
to the images of the trailing edges on the smooth curves. Accuracy of the interpolation is
therefore roughly third order, as can be seen in the tables. In general, it is difficult to compute
conformal maps to domains with corners accurately to more than a few digits using Fourier
series; see, e.g., [11].

TABLE 5.2
Accuracy of Γ1, Im w(z), z ∈ C1, and φ1 for middle circle and overall accuracy ε in Figure 4.3, m =

3, Ns = 8000, J = N/2− 1. The accuracies for C2 and C3 are similar; σmin(AS) ≈ 10−2 for all N .

N Γ1 Im w(z), z ∈ C1 φ1 ε

32 1.0958944619 -0.0700282779 6.2698640405 9.8 · 10−07

64 1.3914187475 -0.0733887932 6.2113250060 4.3 · 10−11

128 1.3905777394 -0.0733406660 6.2102720760 5.4 · 10−16

256 1.3905512683 -0.0733404812 6.2102694711 6.4 · 10−16

512 1.3906294182 -0.0733411579 6.2102693434 1.0 · 10−15

1024 1.3906293929 -0.0733411724 6.2102699099 3.1 · 10−15

6. Conclusions and future work. We have presented an efficient method for computing
potential flow in the plane using conformal mapping. Our conformal mapping method can
also be replaced by Wegmann’s similar Newton-like method. Also, Wegmann’s [21] version
of Prosnak’s projection method [18] can be used to map directly to the airfoil domain. The
projection method does not require smooth boundaries, but is only linearly convergent. We plan
more extensive comparisons of our series method with the method based on the prime function,
as in [8]. Interior flows in bounded multiply-connected domains will also be computed.
Quantities such as moments and lift coefficients can also be calculated form our potential
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functions, and compared to results in the engineering literature. In addition, it should also be
possible to solve efficiently the flow problems directly in the physical domain using series
similar to those proposed in [20], thus avoiding computation of the conformal maps. We
plan to make comparisons of these alternatives, along with more traditional methods based
on integral equations, in future work, but we will not pursue this here. These methods will
provide efficient tools for initial designs in preparation for more expensive CFD simulations.

Acknowledgements. This work was partially supported by a grant to the first author
from the Simons Foundation and funds from the Alan R. Elcrat Professorship of Applied
Mathematics. Some of the work was carried out during a visit to the Isaac Newton Institute,
Cambridge, UK, during the first author’s sabbatical leave from Wichita State University in
Fall 2019. The authors thank the referee for suggestions that improved the paper.

REFERENCES

[1] M. J. ABLOWITZ AND A. S. FOKAS, Complex Variables: Introduction and Applications, Cambridge University
Press, Cambridge, 2003.

[2] D. J. ACHESON, Elementary Fluid Dynamics, Clarendon Press, Oxford, 1990.
[3] M. BADREDDINE, T. K. DELILLO AND S. SAHRAEI, A comparison of some numerical conformal mapping

methods for simply and multiply connected domains, Discret. Contin. Dyn. Syst.-Ser. B, 24 (2019),
pp. 55–82.

[4] R. BALU AND T. K. DELILLO, Numerical methods for Riemann-Hilbert problems in multiply connected circle
domains, J. Comput. Appl. Math., 307 (2016), pp. 248–261.

[5] N. BENCHAMA, T. DELILLO, T. HRYCAK, AND L. WANG, A simplified Fornberg-like method for the
conformal mapping of multiply connected regions–comparisons and crowding, J. Comput. Appl. Math.,
209 (2007), pp. 1–21.

[6] S. CHILDRESS, An Introduction to Theoretical Fluid Mechanics, Courant Lecture Notes 19, AMS, Providence,
2009.

[7] D. CROWDY, Solving Problems in Multiply Connected Domains, CBMS-NSF Regional Conference Series in
Applied Mathematics 97, SIAM, Philadelphia, 2020.

[8] T. K. DELILLO AND C. C. GREEN, Computation of plane potential flow around multi-element airfoils using
the Schottky-Klein prime function, Physica D, 450 (2023), Art. 133753 (14 pages).

[9] T. K. DELILLO, J. MEARS, AND A. SILVA-TRUJILLO, Potential flow in a multiply connected circle domain
using series methods, J. Comput. Appl. Math., 391 (2021), Art. 113445 (16 pages).

[10] T. K. DELILLO AND J. A. PFALTZGRAFF, Numerical conformal mapping methods for simply and doubly
connected regions, SIAM J. Sci. Comput., 19 (1998), pp. 155–171.

[11] T. K. DELILLO AND S. SAHRAEI, Computation of plane potential flow past multi-element airfoils using
conformal mapping, revisited, J. Comput. Appl. Math., 362 (2019), pp. 246–261.

[12] B. FORNBERG, A numerical method for conformal mappings, SIAM J. Sci. Stat. Comput., 1 (1980), pp. 386–
400.

[13] N. D. HALSEY, Potential flow analysis of multielement airfoils using conformal mapping, AIAA J., 17 (1979),
pp. 1281–1288.

[14] P.-C. HANSEN, Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-Posed
Problems, version 2.0 for Matlab 4.0 (1992, revised 1998); see Numer. Algor., 6 (1994), pp. 1–35; software
available via netlib@research.att.com from directory NUMERALGO.

[15] P. HENRICI, Applied and Computational Complex Analysis, Volume 3: Discrete Fourier Analysis, Cauchy
Integrals, Construction of Conformal Maps, Univalent Functions, Wiley, New York, 1993.

[16] W. D. HOSKINS AND P. R. KING, Periodic cubic spline interpolation using parametric splines, Comput. J.,
15 (1972), pp. 282–283.

[17] L. M. MILNE-THOMSON, Theoretical Aerodynamics, Dover, New York, 1973.
[18] W. J. PROSNAK, Computation of Fluid Motions in Multiply Connected Domains, G. Braun, Karlsruhe, 1987.
[19] A. SUDDHOO AND I. M. HALL, Test cases for the plane potential flow past a multi-element airfoil, Aeronaut.

J., 89 (1985), pp. 403–414.
[20] L. N. TREFETHEN, Series solution of Laplace problems, Anziam J., 60 (2018), pp. 1–26.
[21] R. WEGMANN, Methods for numerical conformal mapping, in Handbook of Complex Analysis, Geometric

Function Theory, Vol. 2, R. Kuehnau, ed., Elsevier, Amsterdam, 2005, pp. 351–477.
[22] B. R. WILLIAMS, An exact test case for the plane potential flow about two adjacent lifting airfoils, RAE

Technical Report No. 3717, London (1973). Available at https://reports.aerade.cranfield.
ac.uk/bitstream/handle/1826.2/2993/arc-rm-3717.pdf

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://reports.aerade.cranfield.ac.uk/bitstream/handle/1826.2/2993/arc-rm-3717.pdf
https://reports.aerade.cranfield.ac.uk/bitstream/handle/1826.2/2993/arc-rm-3717.pdf

