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Abstract. In the present paper, we propose a Gauss-type quadrature rule into which the external zeros of the
integrand (the zeros of the integrand outside the integration interval) are incorporated. This new formula with n nodes,
denoted by Gn, proves to be exact for certain polynomials of degree greater than 2n− 1 (while the Gauss quadrature
formula with the same number of nodes is exact for all polynomials of degree less than or equal to 2n− 1). It turns
out that Gn has several good properties: all its nodes are pairwise distinct and belong to the interior of the integration
interval, all its weights are positive, it converges, and it is applicable both when the external zeros of the integrand
are known exactly and when they are known approximately. In order to economically estimate the error of Gn, we
construct its extensions that inherit the n nodes of Gn and that are analogous to the Gauss-Kronrod, averaged Gauss,
and generalized averaged Gauss quadrature rules. Further, we show that Gn with respect to the pairwise distinct
external zeros of the integrand represents a special case of the (slightly modified) Gauss quadrature formula with
preassigned nodes. The accuracy of Gn and its extensions is confirmed by numerical experiments.

Key words. Gauss quadrature formula, external zeros of the integrand, modified weight function, quadrature
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1. Introduction. Assume that [a, b] is a finite closed real interval (a < b) and let f be a
real-valued continuous function on its domain Df , where [a, b] ⊂ Df ⊆ R. Suppose that ω is
a given real-valued weight function, which is non-negative on [a, b] (allowed to take the value
0 only on a set of measure zero) and Riemann integrable on [a, b]. By P we denote the space
of real polynomials, by Pd (d ∈ N0) the space of real polynomials of degree less than or equal
to d, while C[a, b] represents the space of real-valued continuous functions on [a, b].

A quadrature rule is said to exist if all its nodes are real. Under the previously made
assumptions (which are sufficient but not necessary), for each n ∈ N there exists the n-point
Gauss quadrature formula, which is known to be a unique optimal interpolatory quadrature
rule with a polynomial degree of exactness 2n− 1:

(1.1) I(f) =

∫ b

a

f(x)ω(x)dx = Gn(f) +RGn (f) :=

n∑
i=1

ωGi f(τ
G
i ) +RGn (f),

where the remainder term RGn is such that RGn (p2n−1) = 0, ∀p2n−1 ∈ P2n−1.
All nodes τGi are pairwise distinct and contained in the (open) interval (a, b), while all

weights ωGi are positive, i = 1, 2, . . . , n. Besides, the Gauss quadrature rule (1.1) converges,
i.e.,

lim
n→∞

RGn (f) = 0.

Let u, v ∈ P. Monic orthogonal polynomials with respect to the inner product

〈u, v〉ω =

∫ b

a

u(x)v(x)ω(x)dx
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satisfy a three-term recurrence relation whose coefficients can be computed by the Stieltjes
procedure; see, e.g., [4]. These coefficients determine a symmetric tridiagonal Jacobi matrix.
Golub and Welsch [11] developed an efficient algorithm for computing the nodes and weights
of Gn, based on the observations that the nodes τGi are the eigenvalues of the (n× n leading
principal submatrix of the) Jacobi matrix and that the weights ωGi are proportional to the
square of the first components of the corresponding normalized eigenvectors, i = 1, 2, . . . , n.
More details about orthogonal polynomials and Gauss quadrature rules can be found in [4, 8,
10, 12, 23].

In order to economically estimate the error of the Gauss quadrature rule (1.1), we can use
(2n+ 1)-point extensions of Gn, that inherit the n nodes of Gn. These extensions (assumed
to exist) are quadrature formulas of the form

(1.2)

I(f) =

∫ b

a

f(x)ω(x)dx = Hn(f) +RHn (f)

:=

n∑
i=1

ωHi f(τ
G
i ) +

2n+1∑
j=n+1

ωHj f(τ
H
j ) +RHn (f),

where τGi is defined in (1.1) for each i = 1, 2, . . . , n, RHn (pdH ) = 0, ∀pdH ∈ PdH , and
dH > 2n−1 is an integer, the value of which depends on the choice of extension. The formula
(1.2) is commonly used to estimate the error of formula (1.1) by

(1.3) |RGn (f)| = |(I −Gn)(f)| ≈ |(Hn −Gn)(f)|.

If (1.2) represents the Gauss-Kronrod quadrature formula, we set

Hn = Kn, RHn = RKn , dH = dK , ωHi = ωKi , i = 1, 2, . . . , n,

τHj = τKj , ωHj = ωKj , j = n+ 1, n+ 2, . . . , 2n+ 1.

It holds dK = 3n+ 1. The nodes and weights of Kn can be efficiently computed by methods
described in [1, 2, 14]. A nice recent discussion on many properties of Gauss-Kronrod
quadrature rules is provided by Notaris [15].

There are several known situations when the nodes τKj , j = n+1, n+2, . . . , 2n+1, are
complex. For that reason, alternatives to Kn have been developed. The first alternative to Kn

is the averaged Gauss quadrature formula introduced by Laurie [13]. If (1.2) is the averaged
Gauss formula, we use the notation

Hn = Ln, RHn = RLn , dH = dL, ωHi = ωLi , i = 1, 2, . . . , n,

τHj = τLj , ωHj = ωLj , j = n+ 1, n+ 2, . . . , 2n+ 1.

It is valid dL = 2n+ 1.
Spalević [21] (see also [20, 22]), following some results on the characterization of positive

quadrature rules by Peherstorfer [16], proposed the generalized averaged Gauss quadrature
formula, that represents a modification of Ln. If (1.2) is the generalized averaged Gauss
formula, we use the notation

Hn = Sn, RHn = RSn , dH = dS , ωHi = ωSi , i = 1, 2, . . . , n,

τHj = τSj , ωHj = ωSj , j = n+ 1, n+ 2, . . . , 2n+ 1.

Formula Sn is optimal among all averaged Gauss quadrature rules and it is valid dS = 2n+ 2.
In particular, if ω is an even weight function on a symmetric integration interval, then it holds
dS = 2n+ 3.
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Notice that Ln and Sn have lower polynomial degree of exactness than Kn but Ln and
Sn always exist with pairwise distinct real nodes τLj and τSj , j = n+ 1, n+ 2, . . . , 2n+ 1,
respectively, that interlace with the Gauss nodes τGi , i = 1, 2, . . . , n. Moreover, all weights
of Ln and Sn are positive. Besides, Ln and Sn are easier to compute than Kn (when the
latter exists). Recently, Reichel and Spalević [17] gave a new representation of Sn which is
analogous to the representation of Ln and whose computational complexity is equivalent to
that of Ln. For some properties and applications of averaged and generalized averaged Gauss
quadrature rules see Reichel and Spalević [18].

A real zero of an integrand is said to be internal if it belongs to the (closed) integration
interval [a, b], while a real zero of an integrand not belonging to [a, b] is said to be external.
In the present paper, we construct a quadrature formula and its extensions into which the
external zeros of the integrand are incorporated. The approach we use is similar to that given
in papers [5, 6, 9, 19], where the rational Gauss quadrature formula and its extensions are
constructed.

This paper is organized as follows. In Section 2, we introduce a Gauss-type quadrature
rule into which the external zeros of the integrand are incorporated, denoted by Gn; properties
and exactness of Gn are analyzed and its convergence is proved. The improvement achieved
by Gn compared to the Gauss quadrature formula is further discussed as well as the difficulties
encountered at the attempt to incorporate the internal zeros of the integrand into the rule Gn. In
Section 3, we analyze the remainder term of Gn. Section 4 is devoted to the extensions of Gn,
that inherit the n nodes of Gn. These extensions are analogous to the Gauss-Kronrod, averaged
Gauss, and generalized averaged Gauss quadrature rules and can be used to economically
estimate the error of Gn. Situations when the external zeros of the integrand are known
approximately are analyzed in Section 5. In Section 6, we show that Gn with respect to
the pairwise distinct external zeros of the integrand represents a special case of the (slightly
modified) Gauss quadrature rule with preassigned nodes. Numerical examples that illustrate
the accuracy of Gn and its extensions are given in Section 7. The advantages and disadvantages
of Gn are briefly discussed in Section 8.

2. Gauss-type quadrature formula with respect to the external zeros of the integrand.
The main purpose of this section is to construct an n-point quadrature formula

(2.1) I(f) =

∫ b

a

f(x)ω(x)dx = Gn(f) +RGn(f), Gn(f) =
n∑
i=1

ωGi f(τ
G
i ),

into which the external zeros of the integrand are incorporated. The formula we obtain turns
out to be exact for certain polynomials of degree higher than 2n− 1.

2.1. Incorporating the external zeros. Let x1, x2, . . . , xm be m external zeros of the
integrand f (which do not have to be pairwise distinct), i.e.,

f(xk) = 0, xk ∈ R \ [a, b], k = 1, 2, . . . ,m.

The integrand f is allowed to have (internal or external) zeros other than xk, k = 1, 2, . . . ,m.
Notice that the product

∏m
k=1(x − xk) is either positive or negative on [a, b]. Let qm

be a real polynomial of exact degree m having the same zeros xk, k = 1, 2, . . . ,m, as the
integrand f , i.e.,

(2.2) qm(x) = ±
m∏
k=1

(x− xk),
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where the plus or minus sign is chosen so that it holds

(2.3) qm(x) > 0 for x ∈ [a, b].

It follows that

(2.4) ω̃ ≡ qmω

is a real-valued non-negative function on [a, b] (which can take the value 0 only on a set of
measure zero). As a product of two Riemann integrable functions on [a, b], ω̃ is also a Riemann
integrable function on [a, b]. Hence, for each n ∈ N there exists the n-point Gauss quadrature
formula for the modified weight function ω̃:

(2.5) Ĩ(f) =

∫ b

a

f(x) ω̃(x)dx = G̃n(f) + R̃Gn (f) :=

n∑
i=1

ω̃Gi f(τ̃
G
i ) + R̃Gn (f),

with R̃Gn (p2n−1) = 0, ∀p2n−1 ∈ P2n−1.
Note that we are not interested in calculating the integral Ĩ(f) but the nodes and weights

of G̃n will be important in the computation of the nodes and weights of Gn. Determining the
coefficients of the three-term recurrence relation with respect to the inner product

(2.6) 〈u, v〉ω̃ =

∫ b

a

u(x)v(x) ω̃(x)dx, u, v ∈ P,

by the Stieltjes procedure can be difficult because of the (non-classical) weight function ω̃.
In [3], Gautschi proposed the discrete Stieltjes procedure, which consists of applying the
Stieltjes procedure to a discrete inner product

(2.7) 〈u, v〉N =

N∑
i=1

ωi,Nu(τi,N )v(τi,N ), N > n.

In view of (2.4), we obtain discretization (2.7) by

(2.8) τi,N = τGi,N , ωi,N = qm(τGi,N )ωGi,N , i = 1, 2, . . . , N,

where τGi,N and ωGi,N , i = 1, 2, . . . , N , are the nodes and weights of the N -point Gauss
quadrature formula (1.1) with respect to the weight function ω.

Since τ̃Gi ∈ (a, b) and xk ∈ R \ [a, b], it holds

τ̃Gi 6= xk, i = 1, 2, . . . , n, k = 1, 2, . . . ,m,

and therefore

(2.9) qm(τ̃Gi ) 6= 0, i = 1, 2, . . . , n.

From (2.3) and the assumption that f ∈ C[a, b], it follows that f/qm ∈ C[a, b].
We are ready to state the following theorem.
THEOREM 2.1. Let us define the nodes and weights of the formula (2.1) in terms of the

nodes and weights of the formula (2.5) as

(2.10) τGi = τ̃Gi , ωGi =
ω̃Gi

qm(τ̃Gi )
, i = 1, 2, . . . , n.
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Then, the nodes of formula (2.1) given in (2.10) satisfy

(2.11) τGi ∈ (a, b), i = 1, 2, . . . , n, and τGi 6= τGj , i, j = 1, 2, . . . , n, i 6= j,

while its weights are such that

(2.12) ωGi > 0, i = 1, 2, . . . , n.

The remainder term of quadrature rule (2.1) satisfies

(2.13) RGn(qmp2n−1) = 0, p2n−1 ∈ P2n−1,

as well as

(2.14) RGn(f) = R̃Gn (f/qm) .

Moreover, quadrature rule (2.1) converges, i.e.,

(2.15) lim
n→∞

RGn(f) = 0.

Proof. First notice that ωGi , i = 1, 2, . . . , n, is well defined by (2.10), since it holds (2.9).
The nodes of the Gauss quadrature formula (2.5) satisfy

(2.16) τ̃Gi ∈ (a, b), i = 1, 2, . . . , n, and τ̃Gi 6= τ̃Gj , i, j = 1, 2, . . . , n, i 6= j.

The statement (2.11) follows from taking into account (2.10) and (2.16).
The weights of the Gauss quadrature formula (2.5) satisfy

(2.17) ω̃Gi > 0, i = 1, 2, . . . , n.

From (2.3), (2.10), (2.16), and (2.17) follows the statement (2.12).
By (2.4), (2.5), (2.9), and (2.10), we obtain∫ b

a

qm(x)p2n−1(x)ω(x)dx =

∫ b

a

p2n−1(x) ω̃(x)dx =

n∑
i=1

ω̃Gi p2n−1(τ̃
G
i )

=
n∑
i=1

ω̃Gi
qm(τ̃Gi )

qm(τ̃Gi )p2n−1(τ̃
G
i )=

n∑
i=1

ωGi qm(τGi )p2n−1(τ
G
i ),

which proves the statement (2.13). In view of (2.9) and (2.10), it holds

(2.18) Gn(f) =
n∑
i=1

ωGi f(τ
G
i ) =

n∑
i=1

ωGi qm(τ̃Gi )
f(τGi )

qm(τ̃Gi )
=

n∑
i=1

ω̃Gi
f(τ̃Gi )

qm(τ̃Gi )
.

Considering (2.3), which implies qm(x) 6= 0 for x ∈ [a, b], it also holds

(2.19) I(f) =

∫ b

a

f(x)ω(x)dx =

∫ b

a

f(x)

qm(x)
qm(x)ω(x)dx =

∫ b

a

f(x)

qm(x)
ω̃(x)dx.

Since by (2.1)

RGn(f) = I(f)− Gn(f),
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and since by (2.5)

R̃Gn (f/qm) =

∫ b

a

f(x)

qm(x)
ω̃(x)dx−

n∑
i=1

ω̃Gi
f(τ̃Gi )

qm(τ̃Gi )
,

from (2.18) and (2.19) follows the statement (2.14). Since f/qm ∈ C[a, b], the Gauss
quadrature formula (2.5) for the integrand f/qm converges, i.e.,

lim
n→∞

R̃Gn (f/qm) = 0,

and the statement (2.15) follows from the previously proved statement (2.14).
Let us explain the improvement achieved by the formula (2.1), (2.10). The Gauss quadra-

ture rule (1.1) with n nodes is exact for all polynomials of P2n−1. In situations when some
properties of the integrand (such as its external zeros) are known, it may not be necessary for
an n-point quadrature formula to be exact on the whole space P2n−1 but only on its subset
which contains only polynomials similar to the integrand, i.e., polynomials with the same
properties as the integrand. For an integer d ≥ m, let

Qd = {qmpd−m : pd−m ∈ Pd−m}

be the subset of Pd containing only polynomials with the same (external) zeros xk, k =
1, 2, . . . ,m, as the integrand f . The degree of polynomials in Q2n−1 (excluding the zero
polynomial) is greater than or equal to m and less than or equal to 2n− 1 and the Gauss rule
(1.1) with n nodes is exact on Q2n−1. For s > 2n− 1 there is no guarantee that the Gauss rule
(1.1) with n nodes is exact on Qs, since Qs 6⊆ P2n−1. On the other hand, from Theorem 2.1,
it follows that formula (2.1), (2.10) with also n nodes is exact on Q2n−1+m (⊃ Q2n−1). The
degrees of polynomials in Q2n−1+m (excluding the zero polynomial) are greater than or equal
to m and less than or equal to 2n − 1 +m (> 2n − 1). To achieve a polynomial degree of
exactness 2n− 1+m, the Gauss rule (1.1) requires n+

⌊
m+1
2

⌋
nodes (b·c denotes the integer

part of a number).

2.2. Incorporating the internal zeros. Let x1, x2, . . . , xm be m internal zeros of the
integrand f (which do not have to be pairwise distinct), i.e.,

f(xl) = 0, xl ∈ [a, b], l = 1, 2, . . . ,m.

If we wanted to incorporate the internal zeros of the integrand into the quadrature formula
(2.1), (2.10), we would encounter several difficulties. The zeros xl, l = 1, 2, . . . ,m, which
differ from a and b, would have to be of even multiplicities because otherwise the polynomial

qm(x) = ±
m∏
l=1

(x− xl) ,

as well as the modified weight function

ω ≡ qmω,

changes sign in the interior of [a, b]. Moreover, the division by zero in the expression analogous
to (2.10) (and in the expression similar to (2.18)) would be possible, since there is no guarantee
that each node τ̃Gi of the Gauss quadrature formula (2.5) differs from each internal zero xl of
the integrand f , i.e.,

τ̃Gi 6= xl, i = 1, 2, . . . , n, l = 1, 2, . . . ,m,

is not guaranteed. Besides, the division by qm in the expressions analogous to (2.19), and thus
the convergence of quadrature formula (2.1), (2.10), would become questionable. Also notice
that f/qm /∈ C[a, b].
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3. The remainder term. In this section, the remainder term RGn of the quadrature
formula (2.1), (2.10) is analyzed. By ‖·‖, we denote the maximum norm on [a, b], i.e.,

(3.1) ‖f‖ = ‖f‖∞,[a,b] = max
x∈[a,b]

|f(x)|, f ∈ C[a, b].

Let p ∈ P2n−1 be an arbitrary polynomial. Suppose that there exists p̂ ∈ P2n−1 such that
qmp̂ is the best approximation of f by polynomials of the form qmp in the maximum norm.
By

(3.2) ε(f) = min
p∈P2n−1

‖f − qmp‖ = ‖f − qmp̂‖

we denote the error of best approximation of f by polynomials of the form qmp in the
maximum norm.

From (2.1) and (2.13), it follows

(3.3)
∫ b

a

qm(x)p(x)ω(x)dx =

n∑
i=1

ωGi qm(τGi )p(τ
G
i ).

Notice that by (2.12) it holds |ωGi | = ωGi , i = 1, 2, . . . , n.
In view of (2.1) and (3.3), we have

∣∣RGn(f)∣∣ =
∣∣∣∣∣
∫ b

a

f(x)ω(x)dx−
∫ b

a

qm(x)p(x)ω(x)dx

+

n∑
i=1

ωGi qm(τGi )p(τ
G
i )−

n∑
i=1

ωGi f(τ
G
i )

∣∣∣∣∣
≤
∫ b

a

|f(x)− qm(x)p(x)| ω(x)dx+

n∑
i=1

ωGi
∣∣qm(τGi )p(τ

G
i )− f(τ

G
i )
∣∣ .(3.4)

Since (3.4) holds for every p ∈ P2n−1, it also holds for p ≡ p̂ and we obtain

∣∣RGn(f)∣∣ ≤ ∫ b

a

|f(x)− qm(x)p̂(x)| ω(x)dx+

n∑
i=1

ωGi
∣∣qm(τGi )p̂(τ

G
i )− f(τ

G
i )
∣∣

≤ ‖f − qmp̂‖
∫ b

a

ω(x)dx+ ‖f − qmp̂‖
n∑
i=1

ωGi ,

from which, by (3.2), it follows

(3.5)
∣∣RGn(f)∣∣ ≤ ε(f)

(∫ b

a

ω(x)dx+

n∑
i=1

ωGi

)
.

Result (3.5) suggests that if ε(f) is small, i.e., if f can be well approximated by polyno-
mials of the form qmp, then the quadrature error RGn(f) is also small. Since f and qm have the
same m zeros xk, k = 1, 2, . . . ,m, the approximation of f by polynomials of the form qmp
might be better than the approximation of f by polynomials from P2n−1 – this is observed in
several (but not in all) numerical examples in Section 7.
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4. Extensions and error estimates. In order for economically estimate the error of
formula (2.1), (2.10), in this section, we introduce its (2n+ 1)-point extensions that inherit
the n nodes from Gn. These extensions are analogous to formula (1.2).

With an aim to construct a (2n+ 1)-point quadrature formula of the form

(4.1)

I(f) =

∫ b

a

f(x)ω(x)dx = Hn(f) +RHn (f),

:=

n∑
i=1

ωHi f(τ
G
i ) +

2n+1∑
j=n+1

ωHj f(τ
H
j ) +RHn (f),

where τGi , i = 1, 2, . . . , n, are defined in (2.10), we consider a (2n + 1)-point extension
(assumed to exist) of the Gauss quadrature formula (2.5) for the modified weight function ω̃
(given by (2.4)), i.e.,

(4.2)

Ĩ(f) =

∫ b

a

f(x) ω̃(x)dx = H̃n(f) + R̃Hn (f),

:=

n∑
i=1

ω̃Hi f(τ̃
G
i ) +

2n+1∑
j=n+1

ω̃Hj f(τ̃
H
j ) + R̃Hn (f),

where τ̃Gi , i = 1, 2, . . . , n, is defined in (2.5), R̃Hn (pd̃H ) = 0, ∀pd̃H ∈ Pd̃H , and d̃H > 2n− 1
is an integer, the value of which depends on the choice of extension.

If H̃n represents the Gauss-Kronrod (assumed to exist), averaged Gauss, or generalized
averaged Gauss quadrature rule, then the computation of its nodes and weights can also be
done with respect to the discrete inner product (2.7), where discretization is obtained by (2.8).

The proof of the following theorem is analogous to the proof of statements (2.13) and
(2.14) of Theorem 2.1.

THEOREM 4.1. Assume that the quadrature rule (4.2) exists and that each node τ̃Hj
differs from each external zero xk of the integrand f , i.e.,

(4.3) τ̃Hj 6= xk, j = n+ 1, n+ 2, . . . , 2n+ 1, k = 1, 2, . . . ,m.

Setting the nodes and weights of the formula (4.1) in terms of the nodes and weights of the
formula (4.2) as

(4.4)

τGi = τ̃Gi , ωHi =
ω̃Hi

qm(τ̃Gi )
, i = 1, 2, . . . , n,

τHj = τ̃Hj , ωHj =
ω̃Hj

qm(τ̃Hj )
, j = n+ 1, n+ 2, . . . , 2n+ 1,

then the remainder term of quadrature rule (4.1) satisfies

RHn (qmpd̃H ) = 0, pd̃H ∈ Pd̃H ,

as well as

RHn (f) = R̃Hn (f/qm).

We introduce the error estimation of formula (2.1), (2.10) by formula (4.1), (4.4), which
is analogous to the error estimation (1.3):

(4.5) |RGn(f)| = |(I − Gn)(f)| ≈ |(Hn − Gn)(f)|.
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If (4.2) is the Gauss-Kronrod quadrature formula (assumed to exist), then we denote

H̃n = K̃n, R̃Hn = R̃Kn , d̃H = d̃K = 3n+ 1, ω̃Hi = ω̃Ki , i = 1, 2, . . . , n,

τ̃Hj = τ̃Kj , ω̃Hj = ω̃Kj , j = n+ 1, n+ 2, . . . , 2n+ 1,

and

Hn = Kn, RHn = RKn , ωHi = ωKi , i = 1, 2, . . . , n,

τHj = τKj , ωHj = ωKj , j = n+ 1, n+ 2, . . . , 2n+ 1.

If (4.2) represents the averaged Gauss quadrature formula, then we write

H̃n = L̃n, R̃Hn = R̃Ln , d̃H = d̃L = 2n+ 1, ω̃Hi = ω̃Li , i = 1, 2, . . . , n,

τ̃Hj = τ̃Lj , ω̃Hj = ω̃Lj , j = n+ 1, n+ 2, . . . , 2n+ 1,

and

Hn = Ln, RHn = RLn , ωHi = ωLi , i = 1, 2, . . . , n,

τHj = τLj , ωHj = ωLj , j = n+ 1, n+ 2, . . . , 2n+ 1.

Since L̃n always exists, the assumption on the existence of quadrature rule (4.2) in
Theorem 4.1 can be omitted in this case. The nodes τ̃Lj , j = n+1, n+2, . . . , 2n+1, interlace
the nodes τ̃Gi , i = 1, 2, . . . , n. This means that L̃n can have no more than two nodes outside
[a, b] (that could coincide with some of the external zeros of the integrand f and therefore
with the zeros of the polynomial qm). Without loss of generality, assume that τ̃Ln+1 and τ̃L2n+1

are those two nodes. In this case, condition (4.3) comes down to

τ̃Ln+1 6= xk and τ̃L2n+1 6= xk, k = 1, 2, . . . ,m.

If (4.2) represents the generalized averaged Gauss quadrature formula, we write

H̃n = S̃n, R̃Hn = R̃Sn , d̃H = d̃S = 2n+ 2, ω̃Hi = ω̃Si , i = 1, 2, . . . , n,

τ̃Hj = τ̃Sj , ω̃Hj = ω̃Sj , j = n+ 1, n+ 2, . . . , 2n+ 1,

and

Hn = Sn, RHn = RSn , ωHi = ωSi , i = 1, 2, . . . , n,

τHj = τSj , ωHj = ωSj , j = n+ 1, n+ 2, . . . , 2n+ 1.

The assumption on the existence of quadrature rule (4.2) in Theorem 4.1 can be omitted also
in this case because S̃n also always exists. The nodes τ̃Sj , j = n + 1, n + 2, . . . , 2n + 1,
interlace with the nodes τ̃Gi , i = 1, 2, . . . , n, and S̃n can have no more than two nodes outside
[a, b]. Since we can assume (without loss of generality) that τ̃Sn+1 and τ̃S2n+1 are those two
nodes, condition (4.3) in this case comes down to

τ̃Sn+1 6= xk and τ̃S2n+1 6= xk, k = 1, 2, . . . ,m.

In situations when quadrature rule H̃n is internal (i.e. when all its nodes belong to the
(closed) integration interval), then condition (4.3) in Theorem 4.1 can be omitted.
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5. Situations when the external zeros of the integrand are approximated. Denote
by xk the exact values of the external zeros of the integrand f but assume that only their
approximations x∗k are known:

xk ≈ x∗k, x∗k ∈ R \ [a, b], k = 1, 2, . . . ,m.

5.1. Gauss-type quadrature formula with respect to the approximated external
zeros of the integrand. Replacing the exact values xk with the approximated values x∗k,
k = 1, 2, . . . ,m, means that instead of the polynomial (2.2), we consider its approximation

(5.1) qm(x) ≈ q∗m(x) = ±
m∏
k=1

(x− x∗k),

where plus or minus sign in (5.1) is chosen so that it holds

q∗m(x) > 0 for x ∈ [a, b].

The modified weight function (2.4) is replaced by its approximation

ω̃ ≈ ω̃∗ ≡ q∗mω,

while formula (2.5) is replaced by the n-point Gauss quadrature formula for the approximated
modified weight function ω̃∗:

(5.2) Ĩ∗(f) =

∫ b

a

f(x) ω̃∗(x)dx = G̃∗n(f) + R̃G
∗

n (f), G̃∗n(f) =

n∑
i=1

ω̃G
∗

i f(τ̃G
∗

i ),

with

R̃G
∗

n (p2n−1) = 0, p2n−1 ∈ P2n−1.

Instead of the inner product (2.6), we consider the inner product

〈u, v〉ω̃∗ =

∫ b

a

u(x)v(x) ω̃∗(x)dx, u, v ∈ P,

while discretization (2.7) is obtained by

(5.3) τi,N = τGi,N , ωi,N = q∗m(τGi,N )ωGi,N , i = 1, 2, . . . , N,

where τGi,N and ωGi,N , i = 1, 2, . . . , N , are the nodes and weights of the N -point Gauss
quadrature formula (1.1) with respect to the weight function ω. Instead of formula (2.1), we
construct an n-point quadrature formula

(5.4) I(f) =

∫ b

a

f(x)ω(x)dx = G∗n(f) +RG
∗

n (f), G∗n(f) =
n∑
i=1

ωG
∗

i f(τG
∗

i ),

into which the approximated external zeros of the integrand are incorporated. Such formula
has properties described in the following theorem, which can be proved analogously as
Theorem 2.1.

THEOREM 5.1. Setting the nodes and weights of the formula (5.4) in terms of the nodes
and weights of the formula (5.2) as

(5.5) τG
∗

i = τ̃G
∗

i , ωG
∗

i =
ω̃G

∗

i

q∗m(τ̃G
∗

i )
, i = 1, 2, . . . , n,
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then the nodes of formula (5.4) satisfy

τG
∗

i ∈ (a, b), i = 1, 2, . . . , n, and τG
∗

i 6= τG
∗

j , i, j = 1, 2, . . . , n, i 6= j,

while its weights are such that

ωG
∗

i > 0, i = 1, 2, . . . , n.

The remainder term of quadrature rule (5.4) satisfies

RG
∗

n (q∗mp2n−1) = 0, p2n−1 ∈ P2n−1,

as well as

RG
∗

n (f) = R̃G
∗

n (f/q∗m) ,

and quadrature rule (5.4) converges, i.e.,

lim
n→∞

RG
∗

n (f) = 0.

5.2. The remainder term with respect to the approximated external zeros of the
integrand. Let p ∈ P2n−1 be an arbitrary polynomial and assume that there exists p̂∗ ∈ P2n−1
such that q∗mp̂

∗ is the best approximation of f by polynomials of the form q∗mp in the maximum
norm (3.1). By

ε∗(f) = min
p∈P2n−1

‖f − q∗mp‖ = ‖f − q∗mp̂∗‖ ,

we denote the error of best approximation of f by polynomials of the form q∗mp in the
maximum norm (3.1). Analogously as in Section 3, we obtain

(5.6)
∣∣∣RG∗

n (f)
∣∣∣ ≤ ε∗(f)(∫ b

a

ω(x)dx+

n∑
i=1

ωG
∗

i

)
.

Result (5.6) suggests that if ε∗(f) is small (which means that the integrand f can be well
approximated by polynomials of the form q∗mp), then the remainder termRG

∗

n (f) of quadrature
formula (5.4), (5.5) should also be small.

5.3. Extensions and error estimates with respect to the approximated external zeros
of the integrand. In order to economically estimate the error of formula (5.4), (5.5), we
introduce its (2n+ 1)-point extensions that inherit the n nodes from G∗n. Since the external
zeros of the integrand are approximated, formula (4.2) will be replaced by the (2n+ 1)-point
extension (assumed to exist) of the Gauss quadrature formula (5.2) for the approximated
modified weight function ω̃∗:

(5.7)

Ĩ∗(f) =

∫ b

a

f(x) ω̃∗(x)dx = H̃∗n(f) + R̃H
∗

n (f)

:=

n∑
i=1

ω̃H
∗

i f(τ̃G
∗

i ) +

2n+1∑
j=n+1

ω̃H
∗

j f(τ̃H
∗

j ) + R̃H
∗

n (f),

where τ̃G
∗

i , i = 1, 2, . . . , n, is defined in (5.2), R̃H
∗

n (pd̃H∗ ) = 0, ∀pd̃H∗ ∈ Pd̃H∗ , and
d̃H

∗
> 2n− 1 is an integer, the value of which depends on the choice of extension. If (5.7)
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represents the Gauss-Kronrod (assumed to exist), averaged Gauss, or generalized averaged
Gauss quadrature rule, then the computation of its nodes and weights can also be done with
respect to the discrete inner product (2.7), where discretization is obtained by (5.3). Instead of
formula (4.1), we construct a (2n+ 1)-point quadrature formula

(5.8)

I(f) =

∫ b

a

f(x)ω(x)dx = H∗n(f) +RH
∗

n (f)

:=

n∑
i=1

ωH
∗

i f(τG
∗

i ) +

2n+1∑
j=n+1

ωH
∗

j f(τH
∗

j ) +RH
∗

n (f),

where τG
∗

i , i = 1, 2, . . . , n, are defined in (5.5). In the following theorem, which can be
proved analogously as Theorem 4.1, we describe the properties of the formula (5.8).

THEOREM 5.2. Assume that the quadrature rule (5.7) exists and that each node τ̃H
∗

j

differs from each approximated external zero x∗k of the integrand f , i.e.,

τ̃H
∗

j 6= x∗k, j = n+ 1, n+ 2, . . . , 2n+ 1, k = 1, 2, . . . ,m.

Defining the nodes and weights of the formula (5.8) in terms of the nodes and weights of the
formula (5.7) as

(5.9)

τG
∗

i = τ̃G
∗

i , ωH
∗

i =
ω̃H

∗

i

q∗m(τ̃G
∗

i )
, i = 1, 2, . . . , n,

τH
∗

j = τ̃H
∗

j , ωH
∗

j =
ω̃H

∗

j

q∗m(τ̃H
∗

j )
, j = n+ 1, n+ 2, . . . , 2n+ 1,

then the remainder term of quadrature rule (5.8) satisfies

RH
∗

n (q∗mpd̃H∗ ) = 0, pd̃H∗ ∈ Pd̃H∗ ,

as well as

RH
∗

n (f) = R̃H
∗

n (f/q∗m).

The error of formula (5.4), (5.5) can be estimated by formula (5.8), (5.9):

(5.10) |RG
∗

n (f)| = |(I − G∗n)(f)| ≈ |(H∗n − G∗n)(f)|.

If (5.7) is the Gauss-Kronrod (assumed to exist), averaged Gauss, or generalized averaged
Gauss quadrature rule, then we setH∗n = K∗n,H∗n = L∗n, andH∗n = S∗n, respectively.

6. Connection with the Christoffel quadrature formula. In the present section, we
assume that the external zeros of the integrand are pairwise distinct and show that in this
situation the quadrature formula (2.1), (2.10) can be obtained as a special case of the (slightly
modified) Gauss quadrature rule with preassigned nodes, which is also called a Christoffel
quadrature rule.

Let ρCk ∈ R \ [a, b], k = 1, 2, . . . ,m, be pairwise distinct fixed (preassigned) nodes of
the (n+m)-point Christoffel quadrature formula

(6.1)

I(f) =

∫ b

a

f(x)ω(x)dx = Cn(f) +RCn (f)

:=

n∑
i=1

ωCi f(τ
C
i ) +

m∑
k=1

σCk f(ρ
C
k ) +RCn (f),

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

242 J. TOMANOVIĆ

with

RCn (p2n−1+m) = 0, p2n−1+m ∈ P2n−1+m.

Define

ωC(x) =

n∏
i=1

(x− τCi ), σC(x) = ±
m∏
k=1

(x− ρCk ),

where the plus or minus sign is chosen so that it holds σC(x) > 0 for x ∈ [a, b]. Free nodes
τCi , i = 1, 2, . . . , n, are equal to the nodes of the Gauss quadrature formula for the weight
function σCω (on the integration interval [a, b]), while the weights can be computed as

(6.2) ωCi =

∫ b

a

ωC(x)σC(x)

[ωC ]′(τCi )σC(τCi )(x− τCi )
ω(x)dx, i = 1, 2, . . . , n,

(6.3) σCk =

∫ b

a

ωC(x)σC(x)

ωC(ρCk )[σ
C ]′(ρCk )(x− ρCk )

ω(x)dx, k = 1, 2, . . . ,m.

The Christoffel quadrature formula is modified here by setting ρCk ∈ R \ [a, b] instead of
ρCk ∈ R \ (a, b), k = 1, 2, . . . ,m, and by setting σC(x) > 0 instead of σC(x) ≥ 0 for
x ∈ [a, b]; see [4, 12] for more details about the Christoffel quadrature rules.

If we choose the (pairwise distinct) external zeros of the integrand to be preassigned
nodes, i.e.,

(6.4) ρCk = xk, k = 1, 2, . . . ,m,

then it holds

f(ρCk ) = 0, k = 1, 2, . . . ,m,

and the second sum in (6.1) disappears, which means that the weights (6.3) do not have to be
computed.

For the choice (6.4) of preassigned nodes, it holds

(6.5) σC ≡ qm,

as well as σCω ≡ qmω ≡ ω̃. Therefore, the free nodes of Christoffel quadrature formula (6.1)
are equal to the nodes of the Gauss quadrature formula (2.5) for the modified weight function
ω̃, which means that they are also equal to the nodes of quadrature formula (2.1), (2.10), i.e.,
it holds

(6.6) τCi = τ̃Gi = τGi , i = 1, 2, . . . , n.

If let ω̃G(x) =
n∏
i=1

(x− τ̃Gi ), then from (6.6) it follows

ωC ≡ ω̃G.

The weights of the Gauss quadrature formula (2.5) satisfy

ω̃Gi =

∫ b

a

l̃Gi (x) ω̃(x)dx, i = 1, 2, . . . , n,
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where

(6.7) l̃Gi (x) =

n∏
h=1,
h6=i

x− τ̃Gh
τ̃Gi − τ̃Gh

=
ω̃G(x)

[ω̃G]′(τ̃Gi )(x− τ̃Gi )
, i = 1, 2, . . . , n.

From (2.4), (2.10), (6.2), and (6.5)-(6.7), it follows for each i = 1, . . . , n

ωCi =

∫ b

a

ω̃G(x)qm(x)

[ω̃G]′(τ̃Gi )qm(τ̃Gi )(x− τ̃Gi )
ω(x)dx =

1

qm(τ̃Gi )

∫ b

a

l̃Gi (x) ω̃(x)dx

=
ω̃Gi

qm(τ̃Gi )
= ωGi .

The endpoints a and b of the integration interval [a, b] are not allowed to be the preassigned
nodes because in that case the division by qm in (2.19), and thus the convergence of the
quadrature formula (2.1), (2.10), would become questionable.

To summarize,

τCi = τGi , ωCi = ωGi , i = 1, 2, . . . , n.

On the other hand, notice that

RCn (p2n−1+m) = 0 for p2n−1+m ∈ P2n−1+m,

while

RGn(qmp2n−1) = 0 for p2n−1 ∈ P2n−1,

i.e., it appears that the space on which Gn is exact is a subset of the space on which Cn is
it. The reason is the fact that Cn is the (n+m)-point formula whose construction does not
depend on an integrand. However, if m preassigned nodes coincide with the external zeros
of the integrand, then Cn can be considered as the n-point formula which is the same as Gn
(the construction of Gn does depend on the integrand). In the n-point formula Cn, the external
zeros of the integrand are incorporated as the preassigned nodes, while in the n-point formula
Gn, the external zeros of the integrand are incorporated as the property of the integrand.

Let us notice that when the external zeros of the integrand are approximated, then the
Gauss-type quadrature rule G∗n clearly differs from the Chistoffel quadrature rule Cn.

7. Numerical tests. The present section is devoted to numerical experiments. We used
the OPQ suite [7] and some codes written in MATLAB by the author of this paper. The
computation is done with 16 significant decimal digits. For comparison, at the beginning of
each example, the value of the considered integral is displayed with 15 significant digits after
the decimal point.

EXAMPLE 7.1. In this example, we illustrate the accuracy of quadrature rules (2.1), (2.10)
and (5.4), (5.5) and compare with the accuracy of the Gauss quadrature rule (1.1).

Let ω ≡ 1 and consider a simple analytically solvable integral

I =

∫ 1

0

cos2 x dx =
2 + sin 2

4
≈ 0.727324356706420.

All zeros of the integrand cos2 x are external, double, and take the form

(7.1) (2t+ 1)π/2, t ∈ Z.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

244 J. TOMANOVIĆ

TABLE 7.1
Example 7.1: Errors |I −Gn| and |I − Gn| (the external zeros of the integrand are known exactly).

I =

∫ 1

0

cos2 x dx ≈ 0.727324356706420

n |I −Gn| |I − Gn| |I − Gn| |I − Gn| |I − Gn|
q1 = π

2 − x q1 = π
2 + x q2 = (π2 − x)(

π
2 + x) q2 = (π2 − x)

2

3 8.318e–06 4.090e–06 4.032e–06 1.451e–06 1.647e–07
4 3.795e–08 1.438e–08 1.709e–08 4.097e–09 7.018e–10
5 1.069e–10 3.286e–11 4.364e–11 7.795e–12 1.660e–12

TABLE 7.2
Example 7.1: Error |I − G∗4 | (the external zeros of the integrand are known approximately).

I =

∫ 1

0

cos2 x dx ≈ 0.727324356706420, |I −G4| = 3.795e–08

δ x∗1 x∗2 |I − G∗4 |

0 π/2 −π/2 4.097e–09
0.5 · 10−7 1.5707963 −1.5707963 4.097e–09
0.5 · 10−5 1.57080 −1.57080 4.097e–09
0.5 · 10−3 1.571 −1.571 4.099e–09
0.5 · 10−2 1.57 −1.57 4.100e–09
0.5 · 10−1 1.6 −1.6 1.280e–08

In Table 7.1 the error |I −Gn| of the Gauss quadrature formula (1.1), and the error |I − Gn|
of quadrature formula (2.1), (2.10) are shown for different choices of incorporated zeros (7.1)
and for n = 3, 4, 5. The choices of incorporated zeros and corresponding polynomials qm are:

x1 = π/2, q1 = q1(x) = π/2− x;
x1 = −π/2, q1 = q1(x) = π/2 + x;

x1 = π/2, x2 = −π/2, q2 = q2(x) = (π/2− x)(π/2 + x);

x1 = x2 = π/2, q2 = q2(x) = (π/2− x)2.

Notice that in all cases, formulas Gn turn out to be more accurate than formula Gn. Besides,
formulas Gn into which two zeros are incorporated show better accuracy than formulas Gn
into which only one zero is incorporated.

Consider now the situation that corresponds to the choice of incorporated zeros x1 = π/2
and x2 = −π/2 but assume that x1 ≈ x∗1 and x2 ≈ x∗2 are given approximately and suppose
there is given δ ≥ 0 such that it holds

|xk − x∗k| ≤ δ, k = 1, 2.

In Table 7.2 the errors |I − G∗4 | are shown, first for δ = 0 (which means that we know the
exact values x1 and x2 of incorporated zeros), and then for different choices of δ > 0. Notice
that the obtained results for δ > 0 are close to the result obtained for δ = 0, except when
δ = 0.5 · 10−1 but even in that case the error |I − G∗4 | is less than the error |I −G4|.
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TABLE 7.3
Example 7.2: Errors |I − Gn|, |I − Kn|, |I − Ln|, and |I − Sn|, as well as errors |I − Gn|, |I −Kn|,

|I − Ln|, and |I − Sn|.

I =

∫ 1

0

(
x+

1

10

)55/2

dx ≈ 0.530697042044031

n |I − Gn| |I −Kn| |I − Ln| |I − Sn|

3 2.544e–01 5.290e–04 2.680e–03 1.139e–03
4 8.589e–02 1.913e–05 2.131e–04 2.656e–05
5 1.925e–02 6.101e–08 1.490e–05 1.715e–08

n |I −Gn| |I −Kn| |I − Ln| |I − Sn|

3 3.352e–01 1.659e–03 5.959e–03 3.716e–03
4 1.324e–01 5.861e–05 4.446e–04 2.084e–04
5 3.428e–02 2.248e–07 3.042e–05 9.619e–06

EXAMPLE 7.2. The purpose of the present example is to illustrate the precision of error
estimate (4.5) and to compare the accuracy of the quadrature rule (4.1), (4.4) with the accuracy
of the corresponding quadrature rule (1.2).

As in the previous example, let ω ≡ 1. We consider a simple analytically solvable integral

I =

∫ 1

0

(
x+

1

10

)55/2

dx =
2

57

((
11

10

)57/2

−
(

1

10

)57/2
)
≈ 0.530697042044031.

Notice that the integrand (x + 1/10)55/2 has a unique (external) zero x1 = −1/10. We
incorporate this zero into quadrature rules Gn, Kn, Ln, and Sn. In Table 7.3 the errors

|I − Gn|, |I −Kn|, |I − Ln|, and |I − Sn|,

as well as (for comparing) the errors

|I −Gn|, |I −Kn|, |I − Ln|, and |I − Sn|,

for n = 3, 4, 5, are shown, while in Table 7.4 the error estimations

|Kn − Gn|, |Ln − Gn|, and |Sn − Gn|,

as well as the estimations

|Kn −Gn|, |Ln −Gn|, and |Sn −Gn|,

also for n = 3, 4, 5 are given. It turns out that |Kn − Gn|, |Ln − Gn|, and |Sn − Gn| give
good error estimates of |I − Gn|. If we compare the errors |I − Gn|, |I − Kn|, |I − Ln|,
and |I − Sn| with |I − Gn|, |I − Kn|, |I − Ln|, and |I − Sn|, respectively, we notice that
incorporating the external zero x1 = −1/10 improves in all considered cases.

EXAMPLE 7.3. In this example, we consider the integrand whose zeros cannot be
determined analytically but must be computed by some numerical method. Then we illustrate
the accuracy of quadrature rule (5.4), (5.5) using error estimate (5.10) and compare it to the
accuracy of quadrature rule (1.1) obtained using error estimate (1.3).
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TABLE 7.4
Example 7.2: Error estimations |Kn−Gn|, |Ln−Gn|, and |Sn−Gn|, as well as error estimations |Kn−Gn|,

|Ln −Gn|, and |Sn −Gn|.

I =

∫ 1

0

(
x+

1

10

)55/2

dx ≈ 0.530697042044031

n |Kn − Gn| |Ln − Gn| |Sn − Gn|

3 2.549e–01 2.571e–01 2.556e–01
4 8.591e–02 8.610e–02 8.592e–02
5 1.925e–02 1.926e–02 1.925e–02

n |Kn −Gn| |Ln −Gn| |Sn −Gn|

3 3.369e–01 3.412e–01 3.390e–01
4 1.324e–01 1.328e–01 1.326e–01
5 3.428e–02 3.431e–02 3.429e–02

Let f(x) = 6 sinx−x3− 0.2 be the integrand, ω(x) =
√
1− x the weight function, and

[−1, 1] the integration interval. We consider the integral

I =

∫ 1

−1
(6 sinx− x3 − 0.2)

√
1− xdx ≈ −2.181300514422565.

The integrand f has two external zeros,

x1 ≈ x∗1 = −1.81878 and x2 ≈ x∗2 = 1.78273,

where

|xk − x∗k| ≤ 0.5 · 10−5, k = 1, 2.

The errors

|I − G∗2 |, |I −K∗2|, |I − L∗2|, and |I − S∗2 |,

as well as (for comparison) the errors

|I −G2|, |I −K2|, |I − L2|, and |I − S2|,

are shown in Table 7.5, while the error estimations

|K∗2 − G∗2 |, |L∗2 − G∗2 |, and |S∗2 − G∗2 |,

as well as the error estimations

|K2 −G2|, |L2 −G2|, and |S2 −G2|,

are shown in Table 7.6. For instance, notice that when only x∗1 or x∗2 is incorporated, then
formula G∗2 is less accurate than formula G2; on the other hand, when both x∗1 and x∗2 are
incorporated, then G∗2 is more accurate than G2.

EXAMPLE 7.4. The aim of this example is to compare the Christoffel quadrature formula
(6.1) with the Gauss-type quadrature rule (5.4), (5.5) into which approximated external zeros
of the integrand are incorporated.
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TABLE 7.5
Example 7.3: Errors |I − G∗2 |, |I − K∗2 |, |I − L∗2|, and |I − S∗2 |, as well as errors |I − G2|, |I − K2|,

|I − L2|, and |I − S2|.

I =

∫ 1

−1
(6 sinx− x3 − 0.2)

√
1− xdx ≈ −2.181300514422565

Incorporated zero(s) |I − G∗2 | |I −K∗2| |I − L∗2| |I − S∗2 |

x∗1 = −1.81878 9.809e–03 2.016e–08 1.427e–06 7.011e–08
x∗2 = 1.78273 1.007e–02 2.669e–08 2.704e–08 4.479e–08
x∗1 = −1.81878, x∗2 = 1.78273 1.959e–04 8.443e–10 5.601e–08 4.649e–08

|I −G2| |I −K2| |I − L2| |I − S2|

2.904e–03 3.665e–08 9.083e–07 6.500e–07

TABLE 7.6
Example 7.3: Error estimations |K∗2−G∗2 |, |L∗2−G∗2 |, and |S∗2 −G∗2 |, as well as error estimations |K2−G2|,

|L2 −G2|, and |S2 −G2|.

I =

∫ 1

−1
(6 sinx− x3 − 0.2)

√
1− xdx ≈ −2.181300514422565

Incorporated zero(s) |K∗2 − G∗2 | |L∗2 − G∗2 | |S∗2 − G∗2 |

x∗1 = −1.81878 9.809e–03 9.808e–03 9.809e–03
x∗2 = 1.78273 1.007e–02 1.007e–02 1.007e–02
x∗1 = −1.81878, x∗2 = 1.78273 1.959e–04 1.959e–04 1.959e–04

|K2 −G2| |L2 −G2| |S2 −G2|

2.904e–03 2.903e–03 2.903e–03

For the weight function ω ≡ 1, consider a simple analytically solvable integral

I =

∫ 1

0

(100− e3x) dx =
301− e3

3
≈ 93.638154358937456.

The integrand 100− e3x has a unique (external) zero

x1 =
ln 100

3
≈ 1.53506 = x∗1,

where

|x1 − x∗1| ≤ 0.5 · 10−5.

In Table 7.7 the errors |I −Gn|, |I − Cn|, and |I − G∗n| for n = 3, 4, 5 are shown. We notice
that Cn and G∗n are more accurate than Gn but there is no significant difference in accuracy
between Cn and G∗n.

8. Conclusions. In this paper, the quadrature rule Gn with respect to the external zeros
of the integrand is constructed. As we have seen, all nodes of Gn are pairwise distinct and
belong to the interior of the integration interval, all its weights are positive, it converges, it is
applicable when the external zeros of the integrand are known exactly as well as when they are
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TABLE 7.7
Example 7.4: Errors |I −Gn|, |I − Cn|, and |I − G∗n|.

I =

∫ 1

0

(100− e3x) dx ≈ 93.638154358937456

n |I −Gn| |I − Cn| |I − G∗n|

3 1.735e–03 1.063e–03 1.063e–03
4 1.748e–05 7.664e–06 7.640e–06
5 1.094e–07 3.715e–08 3.552e–08

known approximately, and with n nodes it is exact for certain polynomials of degree greater
than 2n− 1.

One flaw of Gn is that it depends on the integrand f , i.e., on its external zeros xk,
k = 1, 2, . . . ,m, and once calculated nodes and weights can be used only for other integrands
which also have the external zeros xk, k = 1, 2, . . . ,m. However, the idea of Gn was not to
make the constructed formula applicable for all integrands. The idea was to use known or
easily determined external zeros of a given integrand to improve the accuracy which would be
obtained by the Gauss quadrature formula.

Another flaw of Gn is that it could have a high computational cost if we have to apply
certain numerical methods to determine the external zeros of f . In such situations, it might
be better to use the Gauss quadrature formula with more than n nodes to achieve the desired
accuracy. However, if the external zeros of f are trivial to find, or the numerical method for
determining them does not require a high computational cost (recall that we do not have to
know all the external zeros of f to construct Gn), or if we have some a prior knowledge about
the external zeros of f , then Gn should be efficient and practical for use.

Notice that results in Section 5 suggest that the introduced formulas are not necessarily
related to the external zeros of f . The main point seems to be that the polynomial q∗mp̂

∗ must
provide a good approximation of f .
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