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PARAMETER-FREE RESTORATION OF PIECEWISE SMOOTH IMAGES∗

ALESSANDRO LANZA†, MONICA PRAGLIOLA‡, AND FIORELLA SGALLARI†

Abstract. We propose a novel strategy for the automatic estimation of the two regularization parameters arising
in the image decomposition variational model employed for the restoration task when the underlying corrupting noise
is known to be additive white Gaussian. In the model of interest, the target image is decomposed in its piecewise
constant and smooth components, with a total variation term penalizing the former and a Tikhonov term acting on the
latter. The proposed criterion, which relies on the whiteness property of the noise, extends the residual whiteness
principle, originally introduced in the case of a single regularization parameter. The structure of the considered
decomposition model allows for an efficient estimation of the pair of unknown parameters, that can be automatically
adjusted along the iterations with the alternating direction method of multipliers employed for the numerical solution.
The proposed multi-parameter residual whiteness principle is tested on different images with different levels of
corruption. The performed tests highlight that the whiteness criterion is particularly effective and robust when moving
from a single-parameter to a multi-parameter scenario.

Key words. image restoration, image decomposition, whiteness principle, ADMM

AMS subject classifications. 68U10, 94A08, 65K10.

1. Introduction. In this paper, we are interested in the restoration of piecewise smooth
images corrupted by blur and additive white Gaussian (AWG) noise. The image formation (or
degradation) model considered can be formally written in vectorized form as follows

(1.1) y = Kx̄+ ε̄ with ε̄ realisation of E ∼ G
(
0n, σ

2In
)
,

where x̄, ε̄,y ∈ Rn denote the vectorized (column-major) forms of the n1 × n2 unknown
target image, unknown AWG noise realisation and observed blur- and noise-corrupted image,
respectively, with n = n1n2 the total number of pixels. The n-dimensional random vector E
is Gaussian-distributed with null mean-vector and scalar covariance matrix (0n and In denote
the n-dimensional null vector and the n× n identity matrix, respectively), with σ indicating
the noise standard deviation. Finally, K ∈ Rn×n is the coefficient matrix of a linear blurring
operator, which we assume to be known and space-invariant, hence K is the coefficient matrix
of a discrete 2-dimensional convolution operator.

Recovering x̄ starting from the knowledge of the observation y, the blurring matrix K
and, possibly, the noise standard deviation σ is typically an ill-conditioned (if not ill-posed)
inverse problem, so that one rather seeks for an estimate x̂ of the target image x̄ which solves
a regularized, well-posed problem as close as possible to the original one. In the variational
framework, the estimate x̂ of x̄ in (1.1) is obtained as the solution of a general minimization
problem which we refer to as the R-L2 class of variational models and typically takes the
form

(R-L2)
x̂(µ) ∈ argmin

x∈Rn
{J (x;µ) := R(x;µ) + L2(x;y,K)} ,

L2(x;y,K) :=
1

2
‖Kx− y‖22 ,

where the cost (or energy) functional J : Rn → R is made by the sum of two terms. The
quadratic L2 data fidelity term comes deductively from applying the maximum likelihood
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approach to the estimation of x̄ in (1.1), after explicitly considering the Gaussian distribution
of the additive noise corruption. On the other hand, the regularization termR(x;µ) encodes
information or beliefs that may be available a priori on the target image x̄, such as smoothness
or sparsity properties, and in general depends on a vector µ = (µ1, . . . , µp) ∈ Rp++ of free
parameters called the regularization parameters (in the apaper, we denote by R+ and R++

the sets of non-negative and positive real numbers, respectively).
One of the most popular regularization terms in image processing is the Total Variation

(TV) semi-norm [15], which corresponds to

(TV) R(x;µ) = µTV(x) := µ

n∑
i=1

‖(∇x)i‖2,

where (∇x)i ∈ R2 represents the discrete gradient of image x computed at pixel i. The TV
term, which induces sparsity of gradient magnitudes, is known to be particularly effective
for the restoration of piecewise constant images; however, it is also well-established that the
TV regularizer tends to promote edges thus producing the so-called staircasing effect on the
smooth parts of the image.

As a way to partially overcome the classical drawbacks of TV, one can employ the TV2

regularizer (see, e.g., [5]) defined by

(TV2) R(x;µ) = µTV2(x) := µ

n∑
i=1

‖(∇2x)i‖F ,

with (∇2x)i ∈ R2×2 indicating the discrete Hessian of image x at pixel i and ‖ · ‖F denoting
the Frobenius norm. The TV2 regularizer promotes piecewise-affine structures in the image,
however its ability to recover sharp edges is less than TV.

A widely used regularizer aimed to promote smoothness of the restored image is the TV2
2

regularizer defined by

(TV2
2) R(x;µ)=µTV2

2(x):=µ

n∑
i=1

‖(∇2x)i‖2F .

All the (TV), (TV2) and (TV2
2) regularization terms depend on one scalar regularization

parameter µ ∈ R++ only and are inherently unable to deal effectively with the restoration of
piecewise smooth images.

An effective regularizer for this class of images has been proposed in [7] and relies on
the explicit assumption that the target unknown image x̄ in (1.1) is given by the sum of a
piecewise constant (or cartoon) component c̄ and a smooth component s̄; in formulas,

(1.2) x̄ = c̄+ s̄.

Based on (1.2), the authors in [7] propose a “composite” regularizer - that we refer to as
TV-TV2

2 - given by the weighted sum of a TV regularizer for the cartoon component and a
TV2

2 regularizer for the smooth component, with the weights µ1, µ2 ∈ R++ regarded as two
free regularization parameters:

(TV-TV2
2) R(x;µ1, µ2) = µ1TV(c) + µ2TV2

2(s).

After introducing the two first- and second-order differential matrices D1 and D2 defined by

(1.3) D1 = (Dh; Dv) ∈ R2n×n, D2 = (Dhh; Dvv;Dhv;Dvh) ∈ R4n×n,
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with Dh,Dv,Dhh,Dvv,Dhv,Dvh ∈ Rn×n finite difference matrices discretizing the first-
order partial derivatives of the vectorized n1 × n2 image c ∈ Rn in the horizontal and vertical
direction and the second-order partial derivatives of the vectorized n1 × n2 image s ∈ Rn
in the horizontal, vertical, mixed horizontal-vertical and mixed vertical-horizontal directions
(with Dvh = Dhv), respectively, the restoration-by-decomposition variational model proposed
in [7], which we will henceforth refer to RBD-L2 model, reads

x̂ (µ1, µ2) = ĉ (µ1, µ2) + ŝ (µ1, µ2) ,(1.4)

{ĉ (µ1, µ2) , ŝ (µ1, µ2)}∈ argmin
c,s∈Rn

J (c, s;µ1, µ2) ,(1.5)

J (c, s;µ1, µ2) =

n∑
i=1

‖(D1c)i‖2 +
µ1

2
‖D2s‖22 +

µ2

2
‖K (c+ s)− y‖22 ,(1.6)

where, with a little abuse of notation, we indicate by (D1c)i :=
(
(Dhc)i; (Dvc)i

)
∈ R2 the

discrete gradient of image c at pixel i and where the dependence of the solution image x̂,
the solution components ĉ, ŝ and the cost function J on the two regularization parameters
µ1, µ2 has been made explicit. We notice that in (1.6) the parameters µ1 and µ2 multiply the
TV2

2 regularizer and the fidelity term, respectively, rather than the TV and TV2
2 regularizers

as would follow from the definition of the (TV-TV2
2) regularizer. This choice, although it

clearly leads to a completely equivalent RBD-L2 variational model, is crucial for the automatic
parameter selection strategy proposed in this paper.

Besides the choice of a suitable regularization termR(x;µ), the selection of the regular-
ization parameter vector µ can strongly influence the quality of the output restoration provided
by the (R-L2) class of variational models, hence also by the RBD-L2 model (1.4)–(1.6). For
the case of a single scalar regularization parameter µ - that is, when the (TV), (TV2) or (TV2

2)
regularizers are used - some effective selection criteria have been proposed in literature;
cf. [4, 9]. The most popular one is the discrepancy principle (DP) (cf. [8, 13]) which sets µ so
that the value of the quadratic data fidelity term in the (R-L2) model is equal to a prescribed
value depending on the number of pixels and on the noise standard deviation. In formula:

(DP) Select µ = µ̂ such that ‖r̂(µ)‖2 =
√
nσ, with r̂(µ) := Kx̂(µ)− b

indicating the µ-dependent residual image. Recently another selection criterion, called the
residual whiteness principle (RWP), has been proposed first for the case of images corrupted
by AWG noise [12, 14], then also for Poisson noise-corrupted images [1, 2]. The idea is
to select the µ-value yielding a residual image r̂(µ) (or a standardized version of it for the
Poisson noise case) which most resembles the realization of a white noise random process.
The RWP not only outperforms the DP but also does not require the knowledge of AWG noise
standard deviation σ. According to the definition in [12], the RWP applied to the selection
of a single regularization parameter µ in the (R-L2) class of restoration models - which, we
recall, is suitable for AWG noise corruptions - can be formulated as follows:

(RWP) Select µ = µ̂ such that µ̂ ∈ argmin
µ∈R++

W (µ), W (µ) =
‖r̂(µ) ∗ r̂(µ)‖22
‖r̂(µ)‖42

,

where ∗ denotes the discrete 2-dimensional correlation operator and the scalar function W
measures whiteness of the µ-dependent residual image r̂(µ) by means of its normalized
auto-correlation—see [12] for details. However, the RWP in its existing form does not apply
to the case of more than one regularization parameter and thus can not be used for the joint
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automatic selection of µ1, µ2 in the RBD-L2 model (1.4)–(1.6) for the restoration of piecewise
smooth images, which is the focus of this work.

The contribution of this paper can be summarized as follows:
(i) we analyze the original RBD-L2 model (1.4)–(1.6) proposed in [7] and prove that

the associated minimization problem (1.5)–(1.6) is not well-posed, as it admits
an infinity of solutions. Then, we demonstrate that (1.4)–(1.6) is equivalent to a
linearly constrained model of reduced dimensionality, whose associated minimization
problem is well-posed and can be solved numerically in a faster way;

(ii) we extend for the first time the RWP proposed in [12] to the case of more than
one regularization parameter. In particular, we formalize a multi-parameter RWP
(MRWP) for the selection of the pair (µ1, µ2) of regularization parameters in the
reduced RBD-L2 model;

(ii) we propose a numerical optimization approach for the solution of the reduced
RBD-L2 model based on the Alternating Direction Method of Multipliers (ADMM)
which allows to apply the MRWP along the ADMM iterations. This makes the
proposed MRWP fully automatic;

(iv) from an applicative point of view, we propose and experimentally validate a novel,
fully automatic and efficient approach for the restoration of piecewise smooth images
corrupted by AWG noise, which does not require to know the noise standard deviation.

The paper is organized as follows. In Section 2 we analyze the original RBD-L2 model
and then introduce its equivalent constrained version of reduced dimensionality. In Section 3
we show how the multi-parameter RWP admits an explicit formulation for models in which a
quadratic regularizer is coupled with an L2 fidelity term and, then, in Section 4 we exploit this
result to illustrate how the application of the MRWP to the reduced RBD-L2 model can be
embedded along the iterations of a suitable ADMM-based optimization scheme. In Section 5
we experimentally test the overall proposed fully automatic approach for the restoration of
piecewise smooth images and, finally, in Section 6 we draw conclusions.

Notations. Throughout the paper, we denote by R+ the set of nonnegative real numbers,
by R++ = R+ \ {0} the set of positive real numbers, by 1n the n-dimensional column
vector of all ones and by ιS the indicator function of set S, with ιS(x) = 0 for x ∈ S, +∞
otherwise. We denote by F, F∗ ∈ Cn×n the unitary matrices representing the 2D discrete
Fourier transform operator and its conjugate transpose (i.e., its inverse) applied to vectorized
n1 × n2 images. The action of F on a vectorized image u is denoted by ũ (i.e., ũ = Fu is
the Fourier-transformed version of u), and for a complex number c we indicate by |c| and c its
modulus and conjugate, respectively.

2. Analysis and reformulation of the RBD-L2 model. In this section, also based on
similar results in [10, 11], we first analyze the original RBD-L2 model (1.4)–(1.6) proposed
in [7] and prove that the associated minimization problem (1.5)–(1.6) is not well-posed, as it
admits an infinity of solution components. Then, we demonstrate that (1.4)–(1.6) is equivalent
to a linearly constrained model with associated well-posed minimization problem of reduced
dimensionality (dimension n instead of 2n).

Some of the reported results (or their proof) can depend on the discretization choices
for the first- and second-order differential matrices D1 and D2 in (1.3). However, analogous
results could be obtained in a similar manner for other discretization schemes. Here, we
adopt unscaled forward finite difference discretizations for the first-order horizontal and
vertical partial derivatives (i.e., for matrices Dh and Dv), unscaled centered finite difference
discretizations for the second-order horizontal and vertical partial derivatives (i.e., for matrices
Dhh and Dvv) and unscaled forward finite difference discretizations for the second-order
mixed horizontal-vertical partial derivatives (i.e., for matrices Dhv = Dvh). More formally,
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the matrices Dh,Dv,Dhh,Dvv,Dhv ∈ Rn×n in (1.3) are 2D discrete convolution matrices
acting on vectorized n1 × n2 images and defined by the following point spread functions (or
convolution kernels):

(2.1)

Dh: (+1,−1) , Dv:

(
+1
−1

)
,

Dhh: (+1,−2,+1) , Dvv:

 +1
−2
+1

 , Dhv:

(
+1 −1
−1 +1

)
,

with boldface cells indicating the center of application of the point spread functions.
The space-invariant blurring matrix K is also a convolution matrix and can be very

ill-conditioned or even singular, hence in subsequent analyses we allow the null space of K
to be non-trivial. However, all results reported in this section are valid under the following
assumption, that is satisfied in most practical situations and, hence, we assume to hold true.

Assumption. The null spaces of the space-invariant blurring matrix K ∈ Rn×n in (1.1)
and of the finite difference matrices D1 ∈ R2n×n, D2 ∈ R4n×n in (1.3) satisfy

(2.2) null(K) ∩ null(D1) = null(K) ∩ null(D2) = {0n} .

Moreover, we adopt periodic boundary conditions for all convolution matrices K, Dh,
Dv, Dhh, Dvv, and Dhv which, hence, are all block-circulant with circulant blocks (from
now on, BCCB) matrices and can be diagonalized by the 2D discrete Fourier transform; in
formula

(2.3)
K̃ = FKF∗, D̃h = FDhF

∗, D̃v = FDvF
∗,

D̃hh = FDhhF
∗, D̃vv = FDvvF

∗, D̃hv = FDhvF
∗,

with the diagonal matrices K̃, D̃h, D̃v , D̃hh, D̃vv and D̃hv ∈ Cn×n defined by

(2.4)

K̃ = diag
(
k̃1, . . . , k̃n

)
, D̃h = diag

(
d̃h,1, . . . , d̃h,n

)
,

D̃v = diag
(
d̃v,1, . . . , d̃v,n

)
, D̃hh = diag

(
d̃hh,1, . . . , d̃hh,n

)
,

D̃vv = diag
(
d̃vv,1, . . . , d̃vv,n

)
, D̃hv = diag

(
d̃hv,1, . . . , d̃hv,n

)
.

To simplify the notations, we introduce the total optimization variable t := (c; s) ∈ R2n

of the RBD-L2 model.
In Lemma 2.1 we analyze the two finite difference matrices D1, D2 defined in (1.3), (2.1)

and other four newly introduced matrices that will be of interest later. In Lemma 2.2 we
analyze the cost function J in (1.6) and, then, in Proposition 2.3 we outline some important
properties of the original RBD-L2 model (1.4)–(1.6). Finally, in Proposition 2.4 we state the
equivalence of the original RBD-L2 model with a linearly constrained version of it having
reduced dimensionality. To improve readability, the proofs of Lemmas 2.1, 2.2, and of
Proposition 2.4 are postponed to Appendix A.

LEMMA 2.1. Let D1 ∈ R2n×n and D2 ∈ R4n×n be the finite difference matrices
in (1.3) with convolution kernels in (2.1), let K ∈ Rn×n be a space-invariant blurring
matrix satisfying (2.2) and let M1(µ1, µ2),M2(µ1, µ2),A(µ1, µ2),B(µ1, µ2) ∈ Rn×n be
the (µ1, µ2)-dependent matrices defined by

M1(µ1, µ2)=(µ1/µ2)DT
2 D2+KTK,(2.5)

M2(µ1, µ2)=−M−1
1 (µ1, µ2)KTK,(2.6)

A(µ1, µ2)=In + M2(µ1, µ2),(2.7)
B(µ1, µ2)=µ2A(µ1, µ2)KTK.(2.8)
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Then, under the assumption of periodic boundary conditions, for any (µ1, µ2) ∈ R2
++ the

above matrices M1, M2, A, B are all symmetric, BCCB matrices, with M1 positive definite,
M2 negative semidefinite, A and B positive semidefinite. Moreover, the null spaces of the
matrices D1, D2, M1, M2, A, B satisfy

null (D1) = null (D2) = null (A(µ1, µ2)) = span (1n) ∀(µ1, µ2) ∈ R2
++,(2.9)

null (M1(µ1, µ2)) = {0n} ∀(µ1, µ2) ∈ R2
++,(2.10)

null (M2(µ1, µ2)) = null (B(µ1, µ2)) = null (K) ∀(µ1, µ2) ∈ R2
++.(2.11)

LEMMA 2.2. For any data y ∈ Rn and any (µ1, µ2) ∈ R2
++, the cost function J in (1.6)

is proper, continuous, convex, bounded below by zero and non-coercive jointly in t = (c; s).
In fact, J is constant along straight lines in its domain R2n of direction defined by the vector

(2.12) d := (2n)−1/2 (1n;−1n) .

However, the restriction of J to any hyperplaneHθv ⊂ R2n not parallel to d,

(2.13) Hθv :=
{
t ∈ R2n : vTt = θ

}
, with θ ∈ R and v ∈ R2n : vTd 6= 0,

is coercive, hence J admits (an infinity of) global minimizers over R2n.

PROPOSITION 2.3. For any data y ∈ Rn and any (µ1, µ2) ∈ R2
++, the RBD-L2 model

proposed in [7] and defined in (1.4)–(1.6) admits a unique solution image x̂(µ1, µ2), however
the minimization problem (1.5)–(1.6) admits an infinity of pairs of solution components

(2.14) ĉα(µ1, µ2) = ĉ(µ1, µ2) + α1n, ŝα(µ1, µ2) = ŝ(µ1, µ2)− α1n, α ∈ R,

with (ĉ (µ1, µ2) ; ŝ (µ1, µ2)) denoting any particular global minimizer of J in (1.6).
Proof. The infinitely many pairs of solution components as defined in (2.14) comes in a

straightforward manner from statement of Lemma 2.2, in particular from J being constant
along straight lines of direction d given in (2.12). Then, it is immediate to note that the
infinitely many solution components in (2.14) leads to a unique solution image. In fact,
according to (1.4), we have

x̂(µ1, µ2) = ĉα(µ1, µ2) + ŝα(µ1, µ2) = ĉ(µ1, µ2) + ŝ(µ1, µ2) ∀α ∈ R.

PROPOSITION 2.4. For any data y ∈ Rn and any (µ1, µ2) ∈ R2
++, the RBD-L2 model

proposed in [7] and defined in (1.4)–(1.6) is equivalent—that is, it admits the same solution
image x̂ (µ1, µ2)—to the following linearly constrained, reduced one:

x̂ (µ1, µ2) = A (µ1, µ2) ĉ (µ1, µ2) + a (µ1, µ2) ,(2.15)

ĉ (µ1, µ2) = argmin
c∈Rn

Jc (c;µ1, µ2) ,(2.16)

Jc (c;µ1, µ2) =

n∑
i=1

‖(D1c)i‖2 + cTB (µ1, µ2) c− cTb (µ1, µ2) + ιC(c),(2.17)

with matrices A (µ1, µ2) ,B (µ1, µ2) ∈ Rn×n defined in (2.5)–(2.8), with column vectors
a(µ1, µ2), b(µ1, µ2) ∈ Rn given by

a(µ1, µ2) = M−1
1 (µ1, µ2)KTy,(2.18)

b(µ1, µ2) = µ2A(µ1, µ2)KTy,(2.19)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

208 A. LANZA, M. PRAGLIOLA, AND F. SGALLARI

and with C ⊂ Rn the (n− 1)-dimensional linear subspace defined by

(2.20) C =

{
c ∈ Rn :

n∑
i=1

ci = 0

}
.

As C can be seen as a particular hyperplane of the class Hθv in (2.13), with θ = 0 and
v = (1n; 0n), then the convex minimization problem (2.16)–(2.17) admits a unique solution.

REMARK 2.5. We remark that uniqueness of the solution of problem (2.16)–(2.17) holds
true by constraining the optimization variable c to belong to any set in the class

(2.21) Cθv :=
{
c ∈ Rn : vTc = θ

}
, with θ ∈ R and v ∈ Rn : vT1n 6= 0.

However, our special choice in (2.20), which corresponds to θ = 0 and, more important, to
v = 1n, will be crucial for the automatic parameter selection strategy outlined in Section 3
and Section 4. More precisely, only taking v = κ1n with κ ∈ R \ {0} in (2.21) will allow us
to solve very efficiently (by means of the 2D fast Fourier transform) the constrained linear
system arising as an ADMM sub-problem and simultaneously set the pair of regularization
parameters (µ1, µ2) satisfying the residual whiteness principle.

3. Multi-parameter RWP for the reduced RBD-L2 model. Starting from the definition
of the single-parameter (RWP), the formulation of the multi-parameter RWP (MRWP) for the
reduced, linearly constrained RBD-L2 model in (2.15)–(2.17) is quite straightforward. In fact,
based on the idea to select (µ1, µ2) so that the residual image r̂(µ1, µ2) = Kx̂(µ1, µ2)− y
of the reduced RBD-L2 model is maximally white, the MRWP reads

(3.1) Select (µ̂1, µ̂2) = (µ1, µ2) such that {µ̂1, µ̂2} ∈ argmin
µ1,µ2∈R++

W (µ1, µ2),

with the multi-parameter whiteness measure function W : R2
++ → R+ defined by

(3.2) W (µ1, µ2):=
‖r̂(µ1, µ2) ∗ r̂(µ1, µ2)‖22

‖r̂(µ1, µ2)‖22
,

and where the residual image, according to definition (2.15), can be written as

(3.3) r̂(µ1, µ2) = Kx̂(µ1, µ2)− y = K (A (µ1, µ2) ĉ (µ1, µ2) + a (µ1, µ2))− y,

with matrix A (µ1, µ2) and vector a (µ1, µ2) defined in (2.7) and (2.18), respectively, and with
ĉ (µ1, µ2) the (unique) solution component of the reduced minimization problem (2.16)–(2.17).
We note that, upon the assumption of periodic boundary conditions for the three convolution
matrices D1, D2, K, analogously to the single-parameter whiteness measure function W (µ)
in (RWP) (see [12, Proposition 3.1]) also W (µ1, µ2) in (3.2) can be equivalently written in
terms of the 2D Fourier transformed version of the residual image ˜̂r(µ1, µ2) = Fr̂(µ1, µ2):

(3.4) W (µ1, µ2)=

n∑
i=1

w4
i (µ1, µ2)(

n∑
i=1

w2
i (µ1, µ2)

)2 , with wi(µ1, µ2) =
∣∣˜̂ri(µ1, µ2)

∣∣,

where ˜̂ri(µ1, µ2) ∈ C is the i-th component of ˜̂r(µ1, µ2) and | · | indicates the modulus.
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Due to non-smoothness of the cost function Jc in (2.17), the solution ĉ(µ1, µ2) of the
minimization problem (2.16)–(2.17) and, hence, the solution image x̂(µ1, µ2) in (2.17) and
the associated residual image r̂(µ1, µ2) in (3.3) can not be written as explicit functions of the
pair of parameters (µ1, µ2). Therefore, in principle, the MRWP outlined above can only be
applied a posteriori: one can compute the solution ĉ(µ1, µ2) - and, then, the residual r̂(µ1, µ2)
- of the reduced RBD-L2 model (2.15)–(2.17) for different values of (µ1, µ2) selected on a
pre-defined or dynamically defined 2D grid and then calculate the corresponding whiteness
measures W (µ1, µ2) by (3.2) or, equivalently, (3.4). The optimal pair (µ̂1, µ̂2) can thus be
selected as the one minimizing W (µ1, µ2) on the chosen discrete grid. Nonetheless, such
approach is particularly demanding in terms of computing time and requires choosing a priori
a grid search strategy.

As a way to drastically reduce the computational cost, inspired by [12], we propose to
update the parameters µ1, µ2 along the iterations of the algorithm employed for the solution
of (2.15)–(2.17) so as to satisfy the MRWP at convergence. We remark that this approach
requires to solve the optimization problem (2.15)–(2.17) only once.

4. Iterated multi-parameter RWP for the reduced RBD-L2 model. In the previous
section we formalized the MRWP for the reduced RBD-L2 model in (2.15)–(2.17), and
discussed how it can be applied a posteriori. In what follows, we are going to show how
the proposed parameter selection criterion can be rather adopted along the iterations of the
optimization algorithm employed for the numerical solution of the model. In particular, first
we introduce a standard two-blocks Alternating Direction Method of Multipliers (ADMM)
iterative approach [3] for the solution of our minimization problem (2.15)–(2.17), then we
illustrate how this approach can be equipped with an interlaced updating of the regularization
parameters µ1,µ2 aimed to satisfy the proposed MRWP in (3.1)–(3.3) at convergence.

We resort to the variable splitting strategy and introduce the new variable g = D1c ∈ R2n,
so that minimization problem (2.16)–(2.17) can be written in the following equivalent form:

(4.1) {ĉ (µ1, µ2) , ĝ (µ1, µ2)}= argmin
c∈Rn, g∈R2n

{F1(g) + F2(c;µ1, µ2)} s.t. g = D1c,

with functions F1 : Rn → R+ and F2 : R2n → R+ defined by

(4.2) F1(g) =

n∑
i=1

‖gi‖2 , F2(c;µ1, µ2) =
1

2
cTB (µ1, µ2) c−cTb (µ1, µ2) +ιC(c),

where, with a little abuse of notation, we indicate by gi = (D1c)i =
(
(Dhc)i; (Dvc)i

)
∈ R2

the discrete gradient of image c at pixel i and ιC(c) denotes the indicator function of the
hyperplane constraint C defined in (2.20).

The Lagrangian function L and the β-augmented Lagrangian function Lβ associated to
the linearly constrained problem (4.1)–(4.2) read

L(c, g,ρ;µ1, µ2) = F1(g) + F2(c;µ1, µ2) + ρT(D1c− g) ,(4.3)

Lβ(c, g,ρ;µ1, µ2) = L(c, g,ρ;µ1, µ2) +
β

2
‖D1c− g‖22,(4.4)

where ρ ∈ R2n is the vector of Lagrange multipliers associated to the system of 2n linear
constraints in (4.1) and β ∈ R++ is a penalty parameter.

Solving (4.1)–(4.2) amounts to seek for the saddle point(s) of the augmented Lagrangian
function Lβ in (4.4). The saddle-point problem takes the form:

(4.5) {ĉ(µ1, µ2), ĝ(µ1, µ2), ρ̂(µ1, µ2)}∈ argmin
c∈Rn, g∈R2n

{
max
ρ∈R2n

Lβ(c, g,ρ;µ1, µ2)

}
.
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Upon suitable initialization, and for any k ≥ 0, the k-th iteration of the standard two-
blocks ADMM [3] applied to solving the saddle-point problem (4.5) reads as follows:

g(k+1) = argmin
g∈R2n

Lβ
(
c(k), g,ρ(k);µ1, µ2

)
,(4.6)

c(k+1) = argmin
c∈Rn

Lβ
(
c, g(k+1),ρ(k);µ1, µ2

)
,(4.7)

ρ(k+1) = ρ(k)+β
(
D1c

(k+1)−g(k+1)
)
.(4.8)

We remark that, since the two cost functions F1 and F2 in the (standard) two-blocks
separable minimization problem (4.1), defined in (4.2), are both clearly proper, lower semicon-
tinuous and convex, it is a standard result that, in case that the two regularization parameters
µ1, µ2 (and the penalty parameter β) are kept fixed along the iterations, the ADMM scheme
in (4.6)–(4.8) converges if the Lagrangian function L in (4.3) admits a saddle point; see [6].
Nonetheless, the proof of convergence of the interlaced scheme we are going to detail remains
an open issue.

We note in advance that the parameters µ1, µ2 are only involved in sub-problem (4.7); in
Section 4.1 we thus analyze the g sub-problem, while in Section 4.2 we are going to discuss
the c-update as well as the adjustment of the parameters according to the MRWP.

4.1. Solving the subproblem for g. After removing in the expression (4.4) of the
augmented Lagrangian function Lβ all the terms that do not depend on g, we have that the
explicit expression of the g-update problem in (4.6) reads

g(k+1)= argmin
g∈R2n

{
F2(g) +

(
ρ(k)

)T
(D1c

(k) − g) +
β

2
‖D1c

(k) − g‖22
}

= argmin
g∈R2n

{
n∑
i=1

‖gi‖2 +
β

2
‖g − u(k)‖22

}
, u(k) = D1c

(k) +
1

β
ρ(k).

The above 2n-variate problem can be split into n independent bivariate problems of the form

g
(k+1)
i ∈ argmin

gi∈R2

{
‖gi‖2 +

β

2
‖gi − u(k+1)

i ‖22
}

= prox 1
β ‖·‖2

(
u
(k+1)
i

)
, i = 1, . . . , n,

with proxf indicating the proximity operator of function f that, when applied to the Euclidean
norm, has the following closed form expression (soft-thresholding shrinkage operator)

(4.9) g
(k+1)
i = max

(
1− 1

β‖u(k)
i ‖2

, 0

)
u
(k)
i , i = 1, . . . , n,

where max{1− 1/0, 0} = 0 is assumed.

4.2. Solving the subproblem for c and updating µ1, µ2. After dropping out all terms
not depending on c in the augmented Lagrangian function Lβ , introducing the vector

q(k) = g(k+1) − 1

β
ρ(k),

and writing the indicator function ιC(c) as a hard constraint, the c-update problem (4.7) reads

(4.10) c(k+1)(µ1, µ2) = argmin
c∈C

Q(k)(c;µ1, µ2),
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with the quadratic cost function, which depends on (µ1, µ2) and also on q(k), given by

(4.11) Q(k)(c;µ1, µ2)=
1

2
cT

S(µ1,µ2)︷ ︸︸ ︷(
B (µ1, µ2) + βDT

1 D1

)
c− cT

z(µ1,µ2)︷ ︸︸ ︷(
b (µ1, µ2) + βDT

1 q
(k)
)
.

The c-update problem (4.10)–(4.11) is a quadratic program which admits a unique solution,
as stated (and proved) in more general settings in Lemma 4.1, whose proof is postponed to the
Appendix A.

LEMMA 4.1. Let S ∈ Rn×n be a symmetric, positive definite, BCCB matrix. Then, for
any vector z ∈ Rn the quadratic program

(4.12) p̂ = argmin
p∈Rn

{
Q(p) :=

1

2
pTSp− pTz

}
subject to

n∑
i=1

pi=0,

admits a unique solution given by

p̂ = F∗˜̂p, with ˜̂pi =

{
0 for i = 1,˜̂p(U)

i for i = 2, . . . , n,

where ˜̂p(U)
∈ Cn denotes the (unique) Fourier-transformed solution of the unconstrained

version of problem (4.12), which reads

(4.13) ˜̂p(U)
= S̃

−1
z̃, with S̃ = FSF∗ = diag(s̃1, . . . , s̃n) ∈ Cn.

The c-update problem (4.10)–(4.11) has exactly the same form as (4.12). Moreover, it is
easy to prove that, for any (µ1, µ2) ∈ R2

++, the Hessian matrix of the quadratic cost function
Q(k) in (4.11), namely S(µ1, µ2) = B (µ1, µ2) + βDT

1 D1, is symmetric, positive definite
and BCCB under our assumption of periodic boundary conditions for K, D1 and D2. In
fact, according to Lemma 2.1, matrix B (µ1, µ2) is a symmetric, positive semidefinite BCCB
matrix with null space equal to the null space of the blurring matrix K, whereas DT

1 D1 is
clearly a symmetric positive semidefinite BCCB matrix with null space equal to the null space
of D1. Then, due to assumption (2.2), the matrix S(µ1, µ2) in (4.11) is a symmetric positive
definite BCCB matrix.

Hence, according to Lemma 4.1, the unique solution of the c-update problem (4.10)–
(4.11) reads

(4.14) c(k+1)(µ1, µ2) = F∗c̃(k+1)(µ1, µ2),

with

(4.15) c̃
(k+1)
i (µ1, µ2) =


0 for i = 1,

z̃i(µ1, µ2)

s̃i(µ1, µ2)
for i = 2, . . . , n,

where z̃(µ1, µ2) = Fz(µ1, µ2) with z(µ1, µ2) defined in (4.11) and where s̃i(µ1, µ2) is
the i-th diagonal element of the Fourier diagonalization of matrix S(µ1, µ2), again defined
in (4.11).
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It follows from the definition in (3.3) that, at any ADMM iteration k, the updated residual
image r(k+1)(µ1, µ2) can be written as an affine function of c(k+1)(µ1, µ2),

(4.16) r(k+1)(µ1, µ2) = K
(
A (µ1, µ2) c(k+1) (µ1, µ2) + a (µ1, µ2)

)
− y,

hence also - by exploiting (4.14) - as an explicit function of the pair of regularization parameters
(µ1, µ2). In the following Proposition 4.2 we show how, relying on (4.14)–(4.16), at any
ADMM iteration it is possible to derive the explicit expression of the whiteness measure W as
a function of µ1, µ2, and to select efficiently the two regularization parameters satisfying the
MRWP.

PROPOSITION 4.2. Let c(k+1)(µ1, µ2) be the updated cartoon component in (4.14)–
(4.15) and r(k+1)(µ1, µ2) the associated updated residual image defined according to (3.3),
with r̃(k+1)(µ1, µ2) its Fourier transform. Then, the parameters µ(k+1)

1 , µ
(k+1)
2 yielding the

whitest residual image according to the scalar whiteness metric defined in (3.2) or, equivalently,
in (3.4), are given by
(4.17)

{
µ
(k+1)
1 , µ

(k+1)
2

}
∈ argmin
µ1,µ2∈R++


W (k+1)(µ1, µ2) =

n∑
i=1

(
w

(k+1)
i (µ1, µ2)

)4
(

n∑
i=1

(
w

(k+1)
i (µ1, µ2)

)2)2


,

with
(4.18)

w
(k+1)
i (µ1, µ2) = |r̃(k+1)

i (µ1, µ2)| =


ηi|ỹi|

ηi + εi(µ2/µ1)
i = 1,

ηiφ
(k)
i

ζi(ηi + εi(µ2/µ1)) + ηiεi(µ2/β)
i = 2, . . . , n,

where

εi =|k̃i|2, ζi = |d̃h,i|2 + |d̃v,i|2, ηi = |d̃hh,i|2 + 2|d̃hv,i|2 + |d̃vv,i|2,

φ
(k)
i =|k̃iz̃(k)i − ζiỹi|, z̃

(k)
i = d̃h,iq̃

(k)
1,i + d̃v,iq̃

(k)
2,i ,

(4.19)

and k̃i, d̃h,i, d̃v,i, d̃hh,i, d̃vv,i, d̃hv,i are defined in (2.3) and (2.4).

Based on the above proposition, µ(k+1)
1 , µ

(k+1)
2 can be computed by minimizing the

whiteness function W (k+1) expressed in (4.17), (4.18), and (4.19) by means of the Newton
algorithm; that is, tantamount to find the zero of the gradient ∇W (k+1). Notice that all the
quantities in (4.19), except z̃(k)i , φ

(k)
i , can be computed once for all at the beginning of the

ADMM iterations. The updated parameters µ(k+1)
1 , µ

(k+1)
2 can then be plugged into (4.14)–

(4.15) so as to get the solution of (4.10)–(4.11).

The main steps of the overall proposed approach, to which we refer as Iterated MRWP-
ADMM (IMRWP-ADMM) are summarized in Algorithm 1.

5. Numerical results. In this section, we evaluate experimentally the performance of the
proposed MRWP-based automatic procedure for selecting the pair of regularization parameters
(µ1, µ2) inthe reduced RBD-L2 image restoration variational model in (1.6). The aim of our
analysis is twofold:
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Algorithm 1: Proposed parameter-free IMRWP-ADMM approach for the solution
of the reduced RBD-L2 variational model (2.15)–(2.17).

inputs: observed degraded image y ∈ Rn,

blur matrix, difference matrices K ∈ Rn×n,D1 ∈ R2n×n,D2 ∈ R4n×n

output:restored image x̂ ∈ Rn, piecewise constant component ĉ ∈ Rn

smooth component ŝ ∈ Rn

1. initialize: set c(0) = y

2. for k = 0, 1, 2, . . . until convergence do:

3. · compute µ
(k+1)
1 , µ

(k+1)
2 by solving (4.17), (4.18), and (4.19)

4. · compute c(k+1) by (4.14), (4.15)

5. · compute g(k+1) by (4.9)

6. · compute ρ(k+1) by (4.8)

7. end for

8. ĉ = c(k+1), ŝ = M2

(
µ
(k+1)
1 , µ

(k+1)
2

)
ĉ+ a

(
µ
(k+1)
1 , µ

(k+1)
2

)
, x̂ = ĉ+ ŝ

(i) first, we want to assess the robustness of the whiteness principle when transferred
from a single parameter to a multiple parameters scenario;

(ii) then, we want to assess that the proposed IMRWP-ADMM is capable of selecting
(µ̂1, µ̂2), i.e., the parameters minimizing the whiteness function, in a very robust and
efficient way.

For what concerns point (i), the performance of the MRWP for the selection of (µ1, µ2) in
the RBD-L2 variational model will be compared with the performance of the RWP for the
selection of µ in the TIK-L2, TV-L2 variational models.

The quality of the restorations x̂ for different values of µ̂ in the TIK-L2, TV-L2 models,
and for different (µ̂1, µ̂2) in the RBD-L2 variational model, with respect to the original
uncorrupted image x, will be assessed by means of two scalar measures, namely the Improved
Signal-to-Noise Ratio (ISNR),

ISNR(y,x, x̂) := 10 log10

‖y − x‖22
‖x̂− x‖22

,

and the Structural Similarity Index (SSIM) [16]. The larger the ISNR and SSIM values, the
higher the quality of the restoration.

For all tests, iterations of the IRWP-ADMM approach in Algorithm 1 are stopped as soon
as

δ(k)x :=

∥∥x(k) − x(k−1)
∥∥
2∥∥x(k−1)

∥∥
2

< 10−6, k ∈ N \ {0},

and the ADMM penalty parameter β has been set manually. It is also worth remarking that, as
far as the minimization of function W (k+1) is concerned, we observed that at each iteration
of Algorithm 1 a global minimum exists and it is always attained, i.e., Newton algorithm for
finding a zero of ∇W (k+1) converges in few iterations.
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(a) phantom (b) peppers

FIG. 5.1. Original test image phantom (200×200) (a) and peppers (256×256) (b).

We consider the phantom (200×200) and peppers (256×256) test images, with pixel
values normalized in the range [0,1], shown in Figure 5.1. Each image is corrupted by a space-
invariant Gaussian blur defined by a convolution kernel generated using the Matlab routine
fspecial with parameters band= 5 and sigma= 1. The band parameter represents the
side length (in pixels) of the square support of the kernel, whereas sigma is the standard
deviation (in pixels) of the isotropic bivariate Gaussian distribution defining the kernel in the
continuous setting. The blurred images are further corrupted by AWG noise with standard
deviation σ = 0.05.

First, we employ the TIK-L2 and the TV-L2 variational models for the restoration of the
test image phantom. The two models are applied for different values of µ selected on fine
one-dimensional grids. Then, for what concern the reduced RBD-L2 model, we consider the
reparametrization introduced in the proof of Proposition 4.2 and recalled below

λ :=
µ1

µ2
, γ :=

µ2

β
.

Hence, we let (λ, γ) vary on a fine two-dimensional grid.
For each output restoration we record the ISNR and SSIM achieved, and the corresponding

whiteness measure. In the first line of Figure 5.2, we show the behaviour of the one-dimensional
whiteness curves W (µ) for the TIK-L2 and the TV-L2 models, as well as the two-dimensional
whiteness surfaceW (λ, γ) for the RBD-L2 model. The vertical magenta lines in the left panels
represent the µ-value detected by the RWP, and denoted by µ(W ), while the magenta circle in
the third panel detects the couple (λ, γ) estimated by the MRWP for the RBD-L2 model. In
Figures 5.2d and 5.2e we plot the ISNR and SSIM values achieved by the TIK-L2 and TV-L2

models, respectively; the vertical blue and red lines represent the µ-values corresponding to the
maximum ISNR and SSIM obtained, and denoted by µISNR, µSSIM, respectively. Finally, on
the bottom row of Figure 5.2 we show the behaviour of the quality metrics for the RBD-L2 on
the selected grid for (λ, γ). The blue circle in the Figure 5.2f and the red circle in Figure 5.2g
represent the highest ISNR and SSIM achieved, respectively.

From Figures 5.2e and 5.2f it seems clear that the RWP for the TV-L2 and the MRWP for
the RBD-L2 return output restorations which are very close to the one achieving the maximum
ISNR. Notice also that, although apparently far, the magenta and the red circles in Figure 5.2g
belong to very close level curves.

In order to assess the robustness of the whiteness criterion when employed for a multi-
parameter selection, in the left part of Table 5.1 we report the ISNR and SSIM values achieved
by the the RWP for the TIK-L2 and TV-L2 models and by the MRWP for the RBD-L2, together
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(a) W (µ) for TIK-L2 (b) W (µ) for TV-L2 (c) W (λ, γ) for RBD-L2

(d) ISNR(µ)/SSIM(µ) for TIK-L2 (e) ISNR(µ)/SSIM(µ) for TV-L2

(f) ISNR(λ, γ) for RBD-L2 (g) SSIM(λ, γ) for RBD-L2

FIG. 5.2. Whiteness measure functions for the three variational models performed (top row) and ISNR/SSIM
values (middle and bottom rows) for the test image phantom corrupted by Gaussian blur with band = 5, sigma =
1 and AWGN with σ = 0.05.

TABLE 5.1
ISNR and SSIM values achieved by the RWP for the TIK-L2, TV-L2 models, and by the MRWP for the RBD-L2

model, together with the corresponding percentage differences for the test images phantom and peppers corrupted
by Gaussian blur with band = 5, sigma = 1, and AWGN with σ = 0.05.

phantom peppers

TIK-L2 TV-L2 RBD-L2 TIK-L2 TV-L2 RBD-L2

ISNR 3.1795 14.0253 14.8631 2.2198 3.2020 3.3745
SSIM 0.5674 0.9533 0.9653 0.7613 0.7984 0.8047
∆ISNR 21.4228 0.6221 0.5148 12.1158 9.3110 6.7113
∆SSIM 36.3393 0.4552 0.2946 0.4374 0.8346 0.6636

with the percentage differences

∆ISNR = 100× ISNRmax − ISNR(y,x, x̂)

ISNRmax
, ∆SSIM = 100× SSIMmax − SSIM(x, x̂)

SSIMmax
.

One can easily observe that, when comparing the TV-L2 and the RBD-L2, the whiteness
criterion presents a very stable behaviour, as the percentage differences are particulalry close.
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y x̂ by TIK-L2 x̂ by TV-L2

ĉ by RBD-L2 ŝ by RBD-L2 x̂ by RBD-L2

FIG. 5.3. Output restorations for the test image phantom corrupted by Gaussian blur with band = 5, sigma
= 1, and AWGN with σ = 0.05.

Finally, in Figure 5.3 we show the output restorations for the three models considered
combined with the RWP/MRWP. Notice that for the RBD-L2, in the bottom row, we also show
the piecewise constant component ĉ and the smooth component ŝ.

For the second test image peppers, we show the monitored ISNR and SSIM values,
as well as the whiteness measure function, for different selection of parameters in the three
models considered. Also in this case, we notice that the output restoration obtained by the
MRWP for the RBD-L2 model is characterized by quality metrics that are very close to the
highest achievable.

In the right part of Table 5.1, we report the ISNR and SSIM values, as well as the
percentage differences, obtained for the test image peppers. Notice that ∆ISNR, ∆SSIM

present a very stable behaviour for the three models considered, thus reflecting the robustness
of the whiteness criterion along the different scenarios in which it is employed.

The output restorations obtained by the RWP/MRWP for the three models are shown in
Figure 5.5.

Then, we considered a more severe degradation for the two test images, which have been
corrupted by a space-invariant Gaussian blur with band = 9 and sigma = 2, and by AWGN
with σ = 0.1. In Figures 5.6 and 5.8 we show the behaviour of the quality metrics and of the
whiteness measure for the TIK-L2, TV-L2 and RBD-L2 model for the test image phantom
and peppers, respectively. Also in this case, for the phantom image, the whiteness criterion
returns an output restoration which is very close to the one with the highest ISNR for the TV-L2

and the RBD-L2 models. On the other hand, for the test image peppers the restorations
obtained by means of the whiteness principle are either very close to the one with highest
SSIM - in the case of TIK-L2 - or to the one with highest ISNR - in the case of TV-L2 - or to
both - in the case of the RBD-L2.

The values reported in Table 5.2 confirm again the robustness of the whiteness principle
also in higher degradation scenarios, as the percentage differences are stable when moving
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(a) W (µ) for TIK-L2 (b) W (µ) for TV-L2 (c) W (λ, γ) for RBD-L2

(d) ISNR(µ)/SSIM(µ) for TIK-L2 (e) ISNR(µ)/SSIM(µ) for TV-L2

(f) ISNR(λ, γ) for RBD-L2 (g) SSIM(λ, γ) for RBD-L2

FIG. 5.4. Whiteness measure functions for the three variational models performed (top row) and ISNR/SSIM
values (middle and bottom rows) for the test image peppers corrupted by Gaussian blur with band = 5, sigma =
1, and AWGN with σ = 0.05.

TABLE 5.2
ISNR and SSIM values achieved by the RWP for the TIK-L2, TV-L2 models, and by the MRWP for the RBD-L2

model, together with the corresponding percentage differences for the test images phantom and peppers corrupted
by Gaussian blur with band = 9, sigma = 2, and AWGN with σ = 1.

phantom peppers

TIK-L2 TV-L2 RBD-L2 TIK-L2 TV-L2 RBD-L2

ISNR 6.5437 14.4841 15.0326 4.6037 5.0583 5.3749
SSIM 0.6028 0.9229 0.9376 0.6502 0.6804 0.6956
∆ISNR 6.2763 0.1724 0.8331 6.5130 6.0155 3.2684
∆SSIM 30.0668 0.7075 0.5521 0.1375 1.5632 0.8294

from a single to a coupled estimate.

Finally, the ouput restorations for the phantom and peppers are shown in Figures 5.7
and 5.9, respectively.

After assessing the robustness of the MRWP when employed a posteriori, that is the RBD-
L2 is solved over a two-dimensional grid of parameters and the optimal couple of parameters
is selected according to the output values of the whiteness measure, it is also worth evaluating
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y x̂ by TIK-L2 x̂ by TV-L2

ĉ by RBD-L2 ŝ by RBD-L2 x̂ by RBD-L2

FIG. 5.5. Output results for the test image peppers corrupted by Gaussian blur with band = 5, sigma = 1,
and AWGN with σ = 0.05.

TABLE 5.3
Output ISNR/SSIM values and µ1, µ2 obtained by employing the MRWP and the IMRWP for the solution of the

RBD-L2 model for images corrupted by Gaussian blur with band = 5, sigma = 1, and AWGN with σ = 0.05.

phantom peppers
MRWP IMRWP-ADMM MRWP IMRWP-ADMM

µ1 23698.31 21090.56 6082.34 6835.42
µ2 30.08 27.98 36.57 32.29
ISNR 14.8631 14.7092 3.3745 3.3168
SSIM 0.9653 0.9648 0.8047 0.8013

the robustness of the IMRWP-ADMM. To this purpose, we run the IMRWP-ADMM outlined
in Algorithm 1 for the restoration of the test images phantom and peppers in the lower
degradation scenario considered. In Table 5.3 we report the output ISNR/SSIM and the
estimated µ1, µ2 obtained by solving the RBD-L2 model with the MRWP in its a posteriori
and iterated version. We remark that µ1, µ2 can be recovered from the output parameters λ, γ -
that are actually estimated - via the transformation in (A.16). One can observe that the results
achieved by the IMRWP-ADMM are very close to the one obtained by employing the MRWP
a posteriori.

The output restorations by the IRWP-ADMM , together with the piecewise constant and
smooth components, for the test images phantom and peppers are displayed in Figure 5.10.

The same analysis is carried out for the larger degradation case; the output quality metrics
and parameters are reported in Table 5.4, while the ouptut restorations are shown in Figure 5.11.
Again, we observe that the IMRWP-ADMM is capable of obtaining results which are very
close to the ones achieved a posteriori.
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(a) W (µ) for TIK-L2 (b) W (µ) for TV-L2 (c) W (λ, γ) for RBD-L2

(d) ISNR(µ)/SSIM(µ) for TIK-L2 (e) ISNR(µ)/SSIM(µ) for TV-L2

(f) ISNR(λ, γ) for RBD-L2 (g) SSIM(λ, γ) for RBD-L2

FIG. 5.6. Whiteness measure functions for the three variational models performed (top row) and ISNR/SSIM
values (middle and bottom rows) for the test image phantom corrupted by Gaussian blur with band=9, sigma=2
and AWGN with σ = 0.1.

6. Conclusions. We proposed an automatic strategy for the selection of the regularization
parameters µ1, µ2 in the RBD-L2 variational model for restoration of piecewise smooth images.
The proposed strategy relies on the extension of the well-known residual whiteness principle
to the multi-parameter scenario, to which we referred as Multi-parameter residual whiteness
principle, in short MRWP. The MRWP has been applied for the solution of the RBD-L2

model when the only information available on the corrupting additive Gaussian noise is its
whiteness. The MRWP has been also embedded along the iterations of a suitable ADMM-
based optimization scheme, thus yielding the IMRWP-ADMM approach, which allows for
an efficient and automatic selection of the target parameters based on the whiteness criterion.
The proposed approach has been tested on the restoration of different test images for different
degradation levels, whence we concluded that the MRWP inherits the effectiveness of the
RWP, originally designed for single-parameter estimates. As a future research direction, we
plan to extend the MRWP in its a posteriori version to different variational models involving
in their expressions multiple unknown parameters, possibly related to the employment of more
articulated regularizers, or fidelity terms yielded by mixed noise corruption.
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y x̂ by TIK-L2 x̂ by TV-L2

ĉ by RBD-L2 ŝ by RBD-L2 x̂ by RBD-L2

FIG. 5.7. Output results for the test image phantom corrupted by Gaussian blur with band = 9, sigma = 2,
and AWGN with σ = 0.1.

TABLE 5.4
Output ISNR/SSIM values and µ1, µ2 obtained by employing the MRWP and the IMRWP for the solution of the

RBD-L2 model for images corrupted by Gaussian blur with band = 9, sigma = 2, and AWGN with σ = 0.1.

phantom peppers
MRWP IMRWP-ADMM MRWP IMRWP-ADMM

µ1 44223.67 34206.12 6720.54 7056.82
µ2 19.21 17.10 24.53 27.14
ISNR 15.0326 15.0122 5.3749 5.3612
SSIM 0.9376 0.9369 0.6956 0.6945

“Metodi numerici per l’imaging: dal 2D al 3D” (code CUP_E55F22000270001) and “Modelli
e metodi avanzati in Computer Vision” (code CUP_E53C22001930001).

Appendix A. In what follows, we prove the results stated in Sections 2 and 4.

Proof of Lemma 2.1. Under the assumption of periodic boundary conditions, it is quite
well-known that the finite difference matrices D1 and D2 in (1.3) with convolution kernels
in (2.1) have the same null space containing constant images, as stated in (2.9). Then, it
follows easily from assumption (2.2) and from definition (2.5) that matrix M1 is a symmetric,
BCCB, positive definite matrix and, hence, admits symmetric, BCCB positive definite inverse
M−1

1 , for any (µ1, µ2) ∈ R2
++. Matrix M2 in (2.6) is given by the negative product of the two

square symmetric matrices M−1
1 and KTK, with M−1

1 positive definite and KTK positive
semidefinite. Since both matrices are BCCB matrices, they commute, i.e.,

M−1
1 (KTK) = (KTK)M−1

1 .
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(a) W (µ) for TIK-L2 (b) W (µ) for TV-L2 (c) W (λ, γ) for RBD-L2

(d) ISNR(µ)/SSIM(µ) for TIK-L2 (e) ISNR(µ)/SSIM(µ) for TV-L2

(f) ISNR(λ, γ) for RBD-L2 (g) SSIM(λ, γ) for RBD-L2

FIG. 5.8. Whiteness measure functions for the three variational models performed (top row) and ISNR/SSIM
values (middle and bottom rows) for the test image peppers corrupted by Gaussian blur with band = 9, sigma =
2, and AWGN with σ = 0.1.

Hence, their product is symmetric and positive semidefinite with null space equal to the null
space of K. Matrix M2 in (2.6) is thus symmetric negative semidefinite with the same null
space. Matrix A in (2.7) is clearly a symmetric, BCCB matrix and, by resorting to its Fourier
diagonalization, it is easy to prove that it is positive semidefinite with null space equal to the
null space of D1. Finally, matrix B in (2.8) is the product of two symmetric, BCCB matrices,
hence it is a symmetric BCCB matrix with null space equal to the null space of K. �

Proof of Lemma 2.2. Function J in (1.6) is given by the sum of three terms which are all
clearly proper, continuous, convex and bounded below by zero independently of the observed
data y ∈ Rn and of the parameter pair (µ1, µ2) ∈ R2

++, so J also has these properties.
Then, replacing in the expression (1.6) of J all points belonging to straight lines `t(t) ⊂ R2n

parallel to the versor d in (2.12) and passing through a generic point t = (c; s), in formula

`t(t) := t̄+ td = (c+ α1n, s− α1n), t ∈ R, α = t(2n)−1/2 ∈ R,
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y x̂ by TIK-L2 x̂ by TV-L2

ĉ by RBD-L2 ŝ by RBD-L2 x̂ by RBD-L2

FIG. 5.9. Output results for the test image peppers corrupted by Gaussian blur with band = 9, sigma = 2,
and AWGN with σ = 0.1.

ĉ ŝ x̂

FIG. 5.10. Output restorations by the IRWP-ADMM employed for the solution of the RBD-L2 model for the
restoration of phantom (top) and peppers (bottom) corrupted by Gaussian blur with band = 5, sigma = 1, and
AWGN with σ = 0.05.
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ĉ ŝ x̂

FIG. 5.11. Output restorations by the IRWP-ADMM employed for the solution of the RBD-L2 model for the
restoration of phantom (top) and peppers (bottom) corrupted by Gaussian blur with band = 9, sigma = 2, and
AWGN with σ = 0.1.

one gets

J (`t(t);µ1, µ2) =

n∑
i=1

‖(D1 (c̄+ α1n))i‖2 +
µ1

2
‖D2 (s̄− α1n)‖22

+
µ2

2
‖K (c̄+ α1n + s̄− α1n)− y‖22

=

n∑
i=1

‖(D1c̄)i‖2 +
µ1

2
‖D2s̄‖22 +

µ2

2
‖K (c̄+ s̄)− y‖22(A.1)

= J
(
t;µ1, µ2

)
∀t ∈ R2n, ∀t ∈ R,

where in (A.1) we applied the properties D11n = 02n and D21n = 04n, which come
from (2.9). Function J is thus constant along straight lines of direction d, therefore it is not
coercive. Finally, (2.13) can be proved after noting that by restricting J to any hyperplane
which intersects in a single point any straight line of direction d yields coercivity of J . �

Proof of Proposition 2.4. First, we notice that, for any fixed value of the first optimization
variable (component) c, the function J (c, s;µ1, µ2) in (1.6) is quadratic and strongly convex
in the second optimization variable s, independently of the observed data y ∈ Rn and of the
parameter pair (µ1, µ2) ∈ R2

++. In fact, it is easy to verify that the gradient∇sJ ∈ Rn and
Hessian matrix∇2

sJ ∈ Rn×n of function J with respect to s are given by

∇sJ (c, s;µ1, µ2) = µ2M1(µ1, µ2)s+ µ2K
T (Kc− y) ,

∇2
sJ (c, s;µ1, µ2) = µ2M1(µ1, µ2),

where matrix M1(µ1, µ2), according to its definition in (2.5) and to the statement of Lemma 2.1,
is symmetric and positive definite, hence non-singular. It follows that, for any fixed c, the
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global minimiser of function J with respect to s is unique and coincides with the zero of
the (linear) gradient function∇sJ in (A). After some simple algebraic manipulations, this
implies that the global minimizers of function J in (1.6) take the following form

(A.2) {ĉ (µ1, µ2) , ŝ (µ1, µ2)} , with ŝ (µ1, µ2) = M2(µ1, µ2)ĉ (µ1, µ2) + a(µ1, µ2),

with the matrix M2(µ1, µ2) defined in (2.6) and the vector a(µ1, µ2) defined in (2.18). Hence,
the solution image x̂(µ1, µ2) in the original RBD-L2 model (1.4)–(1.6) clearly reads

x̂(µ1, µ2) = ĉ(µ1, µ2) + M2ĉ (µ1, µ2) + a(µ1, µ2) = A(µ1, µ2)ĉ(µ1, µ2) + a(µ1, µ2),

with the matrix A(µ1, µ2) defined in (2.7).
We can thus plug the expression of s as a function of c given in (A.2) into the original

cost function J in (1.6), so that the minimization problem (1.5)–(1.6) turns into

(A.3) ĉ (µ1, µ2)∈ argmin
c∈Rn

{
J̃c (c;µ1, µ2) =

n∑
i=1

‖D1c‖2 +Qc (c;µ1, µ2)

}
,

with the quadratic function Qc : Rn → R defined by

(A.4) Qc (c;µ1, µ2) =

U(c;µ1,µ2)︷ ︸︸ ︷
µ1

2
‖D2 (M2c+ a)‖22 +

V (c;µ1,µ2)︷ ︸︸ ︷
µ2

2
‖K (c+ M2c+ a)− y‖22,

where for shortness we drop the dependencies of M2 and a on (µ1, µ2). We observe that

U(c;µ1, µ2) =
µ1

2
(D2M2c+ D2a)T(D2M2c+ D2a)

=
µ1

2
cTMT

2 DT
2 D2M2c+ µ1c

TMT
2 DT

2 D2a+ κU ,(A.5)

and that

V (c;µ1, µ2) =
µ2

2
‖K(In + M2)c+ Ka− y‖22

=
µ2

2
‖KAc+ Ka− y‖22

=
µ2

2
(KAc+ Ka− y)T(KAc+ Ka− y)

=
µ2

2
cTATKTKAc+ µ2c

TATKT(Ka− y) + κV ,(A.6)

with the matrix A defined in (2.7) and where the terms κU in (A.5) and κV in (A.6) both
depend on (µ1, µ2) but not on the optimization variable c.

It follows from (A.4)–(A.6) that

Qc (c;µ1, µ2) =
1

2
cT
(
µ1M

T
2 DT

2 D2M2 + µ2A
TKTKA

)
c

+ cT
(
µ1M

T
2 DT

2 D2a+ µ2A
TKT(Ka− y)

)
+ κU + κV(A.7)

=
1

2
cTBc− cTb+ κU + κV ,(A.8)

with the matrix B defined in (2.8) and the vector b in (2.19), and where (A.8) comes from (A.7)
by replacing A = In + M2 and then carrying out some algebraic manipulations. In fact, we
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have

B = µ1M
T
2 DT

2 D2M2 + µ2(In + MT
2 )KTK(In + M2)

= µ1M
T
2 DT

2 D2M2 + µ2(KTK + MT
2 KTK + KTKM2 + MT

2 KTKM2)

= MT
2 (µ1D

T
2 D2 + µ2K

TK)M2 + µ2(KTK + MT
2 KTK + KTKM2)

= µ2M
T
2 M1M2 + µ2K

TKM2 + µ2(KTK + MT
2 KTK)

= µ2

(
−M−1

1 KTK
)T

M1M2 + µ2K
TKM2 + µ2(In + MT

2 )KTK(A.9)

= −µ2K
TKM2 + µ2K

TKM2 + µ2(In + M2)KTK(A.10)

= µ2AKTK,(A.11)

where in (A.9) we replaced the expression (2.6) of M2 and, then, in (A.10) and (A.11) we
exploited the symmetry of matrices M1,M2 - as proved in Lemma 2.1 - and the definition (2.7)
of matrix A, respectively. Relying on the same properties and definitions, we have

b = −µ1M
T
2 DT

2 D2a− µ2A
TKT(Ka− y)

= µ1K
TKM−1

1 DT
2 D2a− µ2(In −KTKM−1

1 )KTKa+ µ2(In −KTKM−1
1 )KTy

= µ1K
TKM−1

1 DT
2 D2a− µ2K

TKa+ µ2K
TKM−1

1 KTKa

+ µ2K
Ty − µ2K

TKM−1
1 KTy

= KTKM−1
1 (µ1D

T
2 D2 + µ2K

TK)a− µ2K
TKa+ µ2K

Ty − µ2K
TKM−1

1 KTy

= µ2K
TKM−1

1 M1a− µ2K
TKa+ µ2K

Ty − µ2K
TKM−1

1 KTy

= µ2K
Ty − µ2K

TKM−1
1 KTy=µ2(In −KTKM−1

1 )KTy

= µ2(In + MT
2 )KTy=µ2AKTy.

By replacing the obtained expression (A.8) of Qc into (A.3), dropping the constant (with
respect to the optimization variable c) term κU + κV and including the indicator function of
set C defined in (2.20), we get the optimization problem (2.16)–(2.17).

Then, based on definition (2.13), we have

(A.12) Hθ=0
v=(1n;0n)

=

{
t = (c; s) ∈ R2n : 1T

nc = 0⇐⇒
N∑
i=1

ci = 0

}
= C × Rn,

with C ⊂ Rn the set in (2.20). Since clearly

vTd = (1n,0n)(2n)−1/2(1n;−1n) = (2n)−1/2n =
√
n/2 6= 0,

then the set in (A.12) belongs to the class of hyperplane constraints introduced in (2.13)
which, according to Lemma 2.2, guarantee coercivity of function J in (1.6) and, as a con-
sequence of Proposition 2.3, also guarantee uniqueness of the pairs of solution components
{ĉ(µ1, µ2), ŝ(µ1, µ2)} of the minimization problem (1.5)–(1.6). The constraint set in (A.12)
for the original RBD-L2 model thus corresponds to the constraint set C in (2.20) for the re-
duced RBD-L2 model. It follows that the reduced, linearly constrained minimization problem
in (2.16)–(2.17) admits a unique solution. �

Proof of Lemma 4.1. Since by hypothesis matrix S is BCCB, it can be diagonalized by
the 2D discrete Fourier transform as formalized in (4.13). Moreover, as S is assumed to be
positive definite, hence nonsingular, it admits inverse and the quadratic program (4.12) admits
a unique solution (minimization of a strongly convex quadratic function over an hyperplane
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constraint). The Lagrangian function L(p, ν) associated to the quadratic program (4.12) reads

L(p, ν) = Q(p) + ν

n∑
i=1

pi =
1

2
pTSp+ pT(ν1n − z).

The solution of the system of Lagrangian conditions∇pL(p, ν) = 0 ∧∇νL(p, ν) = 0 is

ν̂ =
1T
nS−1z

1T
nS−11n

, p̂ = S−1z − ν̂ S−11n = p̂(U) − ν̂ S−11n,

where p̂(U) = S−1z denotes the solution of the unconstrained version of (4.12). Multiplying
(on the left) by the Fourier transform matrix F both sides of the second equality above, and
noting that, clearly, the inverse of S admits the Fourier diagonalizaton S−1=F∗S̃

−1
F, we get

(A.13) Fp̂ = Fp̂(U) − ν̂F
(
F∗S̃

−1
F
)
1n ⇐⇒ ˜̂p = ˜̂p(U)

− ν̂ S̃
−1

(F1n) ,

with the Lagrange multiplier ν̂ given by

(A.14) ν̂ =
1T
n

(
F∗S̃

−1
F
)
z

1T
n

(
F∗S̃

−1
F
)

1n
=

(F1n)
∗
S̃
−1
z̃

(F1n)
∗
S̃
−1

(F1n)
.

Then, by recalling the well-know property that the (unitary) 2D discrete Fourier transform
of a (vectorized) image of all ones satisfies

F1n =
1√
n

(1; 0n−1) ⇐⇒ (F1n)
∗

=
1√
n

(1; 0n−1)T,

the complex vector ˜̂p in (A.13) with z̃ in (A.14) reads

˜̂p = ˜̂p(U)
− �

��
1√
n

(1; 0n−1)TS̃
−1
z̃

�
��
1√
n

(1; 0n−1)TS̃
−1

�
��
1√
n

(1; 0n−1)

S̃
−1

�
��
1√
n

(1; 0n−1)

= ˜̂p(U)
− z̃1/s̃1

1/s̃1

1

s̃1
(1; 0n−1) = ˜̂p(U)

− z̃1
s̃1

(1; 0n−1).(A.15)

The proof is completed by recalling that

˜̂p(U)

i = z̃i/s̃i

and replacing this expression in (A.15). �

Proof of Proposition 4.2. In the following derivations, the iteration super-indices will be
dropped out for the sake of better readability.

According to Lemma 4.1, the solution of the unconstrained version of problem (4.10)
and (4.11) is given by

c(U)(µ1, µ2) = F∗S̃
−1

(µ1, µ2)z̃(µ1, µ2),
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with

S(µ1, µ2) =
1

β
B(µ1, µ2) + DT

1 D1, z(µ1, µ2) =
1

β
b(µ1, µ2) + DT

1 q.

The above minimizer can be plugged into (3.3) so as to get the corresponding residual image

r(U)(µ1, µ2) = K(A(µ1, µ2)F∗S̃
−1

(µ1, µ2)z̃(µ1, µ2) + a(µ1, µ2))− y

= K(A(µ1, µ2)F∗F

(
1

β
B(µ1, µ2)+DT

1 D1

)−1
F∗F

(
1

β
b(µ1, µ2)+DT

1 q

)
+ Ka(µ1, µ2)− y,

with the index (U) indicating that in the above expression the constraint c ∈ C has not been yet
accounted. In order to simplify the following calculations, the parameters µ1, µ2 are mapped
into the novel

(A.16) λ :=
µ1

µ2
, γ :=

µ2

β
.

Notice that the matrices and the vectors defined in Lemma 2.1 and in Proposition 2.4 can be
easily re-parametrized in terms of λ, γ as follows

M1(λ) = λDT
2 D2 + KTK, M2(λ) = −M−1

1 (λ)KTK,

A(λ) = In + M2(λ), a(λ) = M−1
1 (λ)KTy

while, with a little abuse of notations, in what follows we are going to denote

B(λ, γ) = γA(λ)KTK, b(λ, γ) = γA(λ)KTy.

Hence, the r(U)(µ1, µ2) can be equivalently re-written as
(A.17)

r(U)(λ, γ) = KA(λ)F∗F
(
B(λ, γ) + DT

1 D1

)−1
F∗F

(
b(λ, γ) + DT

1 q
)

+Ka(λ)− y.

Relying on the diagonalizations provided in (2.3) and (2.4), we have that the expression of the
residual image in (A.17) can be manipulated by suitably multiplying by F,F∗ and exploiting
the property F∗F = In, thus yielding

r(U)(λ, γ) = F∗K̃(I + M̃2(λ))(B̃(λ, γ) + |D̃|21)−1(b̃(λ, γ) + D̃1q) + F∗K̃ã(λ)− F∗ỹ,

whence

r̃(U)(λ, γ) = K̃(I + M̃2(λ))(B̃(λ, γ) + |D̃|21)−1(b̃(λ, γ) + D̃1q) + K̃ã(λ)− ỹ.

We introduce

εi = |k̃i|2, ηi = |d̃hh,i|2 + 2|d̃hv,i|2 + |d̃vv,i|2,

ζi = |d̃h,i|2 + |d̃v,i|2, z̃i = d̃h,iq̃1,i + d̃v,iq̃2,i,
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so that the i-th component of r̃(U) can be written as

˜̂r(U)

i (λ, γ) = k̃i

(
1− εi

ληi + εi

)(
γεi

(
1− εi

ληi + εi

)
+ ζi

)−1
×

×
[
z̃i + γ

(
1− εi

ληi + εi

)
¯̃
kiỹi − γ

(
1− εi

ληi + εi

)
εi

ληi + εi

¯̃
kiỹi

+ γλ
εiηi

(ληi + εi)2
¯̃
kiỹi

]
−
(

1− εi
ληi + εi

)
ỹi

= k̃i

(
ληi

ληi + εi

)(
γληiεi + ζi(ληi + εi)

ληi + εi

)−1 [
z̃i + γ

ληi
ληi + εi

¯̃
kiỹi

((((
((((

(((
((((

(((

−γλ εiηi
(ληi + εi)2

¯̃
kiỹi + γλ

εiηi
(ληi + εi)2

¯̃
kỹi

]
− ληi
ληi + εi

ỹi

=
ληi

γληiεi + ζi(ληi + εi)

[
k̃iz̃i + γλ

ηiεi
ληi + εi

ỹi

− γληiεi + ζi(ληi + εi)

ληi

ληi
ληi + εi

ỹi

]
=

ληi
γληiεi + ζi(ληi + εi)

[
k̃iz̃i + γλ

ηiεi
ληi + εi

ỹi −
γληiεi
ληi + εi

ỹi − ζiỹi
]

=
ληi

γληiεi + ζi(ληi + εi)

[
k̃iz̃i − ζiỹi

]
.

As highlighted in Lemma 4.1, accounting for the constraint c ∈ C amounts to require c̃1 = 0,
so that the Fourier transform of the residual image corresponding to the solution of the original
constrained problem (4.10) and (4.11) is given, componentwise, by

r̃i(λ, γ) =


−
(

1− εi
ληi + εi

)
ỹi i = 1,

r̃
(U)
i i = 2, . . . , n.

Hence, after introducing

φi = |k̃iz̃i − ζiỹi|,

we have that wi(λ, γ) takes the form

wi(λ, γ) = |r̃i(λ, γ)| =


ληi

ληi + εi
|ỹi| i = 1,

ληiφi
γληiεi + ζi(ληi + εi)

i = 2, . . . , n.

The above functions wi(λ, γ) can be plugged into (3.4) so as to get the final expression of the
whiteness function W in terms of λ, γ, i.e., µ1, µ2. �
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