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OPTIMAL AVERAGED PADÉ-TYPE APPROXIMANTS∗
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LOTHAR REICHEL‡, AND MIODRAG M. SPALEVIĆ†

Abstract. Padé-type approximants are rational functions that approximate a given formal power series.
Boutry [Numer. Algorithms, 33 (2003), pp 113–122] constructed Padé-type approximants that correspond to
the averaged Gauss quadrature rules introduced by Laurie [Math. Comp., 65 (1996), pp. 739–747]. More recently,
Spalević [Math. Comp., 76 (2007), pp. 1483–1492] proposed optimal averaged Gauss quadrature rules, that have
higher degree of precision than the corresponding averaged Gauss rules, with the same number of nodes. This paper
defines Padé-type approximants associated with optimal averaged Gauss rules. Numerical examples illustrate their
performance.
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1. Introduction. Consider a formal power series

(1.1) f(t) =

∞∑
i=0

cit
i

with real coefficients. If the series diverges for some t ∈ C, then f(t) represents the corre-
sponding analytic continuation, which is assumed to exist. The power series (1.1) is associated
with the linear functional c, whose moments are the coefficients ci, i.e.,

c(xi) = ci for i = 0, 1, . . . ,

where we for notational simplicity assume that c0 = 1. The functional c is defined on
polynomials and extended by continuity to all power series in the variable x with a positive
radius of convergence. Then,

f(t) = c0 + c1t+ c2t
2 + · · · = c(1 + xt+ x2t2 + · · · ) = c

( 1

1− xt

)
;

see Brezinski [2] for details.
For an arbitrary polynomial P (x) of degree n, we define

(1.2) P̃ (x) = xnP (x−1) and P ∗(t) = c
(P (x)− P (t)

x− t

)
.

The polynomial P ∗ is of degree n− 1 and is said to be pseudo-associated to the polynomial
P . We will write P̃ ∗ for the polynomial (P ∗)̃ , which is in general not the same as (P̃ )∗. We
have

(1.3)

P̃ ∗(t)

P̃ (t)
=
P ∗(t−1)

tP (t−1)
= c
(1− P (x)/P (t−1)

1− xt

)
= f(t)− 1

P (t−1)
c
(P (x)

1−xt

)
= f(t)− tn

P̃ (t)

∞∑
i=0

c(xiP (x))ti = f(t) + o(tn−1),
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as t → 0. Thus, f(t) can be approximated accurately by the rational function P̃ ∗(t)/P̃ (t)
when t is close to zero.

The quotient P̃ ∗/P̃ is called a Padé-type approximant of f generated by the polynomial
P , and its poles are the reciprocals of the zeros of P ; see Brezinski [2]. The Maclaurin
expansion of this approximant matches that of f(t) at least up to the tn−1-term. As can be
seen from (1.3), a match of further terms, say up to the tn+k−1-term, can be achieved if

c(xiP (x)) = 0 for i = 0, 1, . . . , k − 1,

i.e., if P (x) is orthogonal with respect to c to all polynomials of degree less than k.
A sequence of monic polynomials {Pn(x)}∞n=0 is said to be a formal orthogonal polyno-

mial sequence with respect to a linear functional c if
• c(Pn(x)Pk(x)) = 0 for k 6= n,
• c(Pn(x)2) 6= 0 for all n.

Necessary and sufficient conditions for the existence of a sequence of monic orthogonal
polynomials with respect to the linear functional c are that the Hankel determinants are
nonvanishing:

∆n =

∣∣∣∣∣∣∣∣∣
c0 c1 · · · cn−1
c1 c2 · · · cn

...
...

. . .
...

cn−1 cn · · · c2n−2

∣∣∣∣∣∣∣∣∣ 6= 0 for n = 1, 2, . . . ,

where ci = c(xi) are the moments of the functional c; see Brezinski [2] or Chihara [5] for
details. In this case the functional c is said to be quasi-definite. Then, the monic orthogonal
polynomials Pk(x) satisfy a three-term recurrence relation of the form

(1.4) Pk+1(x) = (x− αk)Pk(x)− βkPk−1(x) for k = 0, 1, . . . ,

with P−1(x) ≡ 0 and P0(x) ≡ 1. We will henceforth assume the functional c to be quasi-
definite.

It is possible to define Gauss-type quadrature rules with respect to this functional; see [2,
5, 8, 14, 17, 18] for discussions. However, the orthogonal polynomials may have zeros of
multiplicity larger than one; see [2, p. 57] for an illustration. We will assume, for simplicity,
that the zeros of the required orthogonal polynomials Pk are simple. This is the generic
situation. Then, the n-node Gauss quadrature rule associated with the functional c can be
expressed as

(1.5) Gn(g) =

n∑
k=1

g(t
(n)
k )ω

(n)
k ,

and satisfies Gn(xi) = ci, for i = 0, 1, . . . , 2n− 1; see [2, 5, 8, 14, 17, 18].
In the special case when the functional c is positive definite, i.e., when

c(Pn(x)2) > 0 for all n = 0, 1, 2, . . . ,

there is a nonnegative measure dω with infinitely many points of support such that

ci =

∫
tidω(t), i = 0, 1, 2, . . . ;
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see, e.g., [2, p. 42]. The n-node Gauss rule (1.5) is then a quadrature rule for approximating
the integral

I(g) =

∫
g(t) dω(t),

for suitable integrands g. In particular, Gn has degree of precision 2n− 1, i.e., Gn(p) = I(p)
for all polynomials p of degree at most 2n−1; see, e.g., [5, 14, 17] for properties of orthogonal
polynomials associated with a quasi-definite functional c.

Since c is assumed to be quasi-definite, we have c(xiP (x)) = 0, for i = 0, 1, . . . , n− 1,
if and only if P is the n-th orthogonal polynomial Pn with respect to c. By (1.3), this choice of
P yields a Padé-type approximant which agrees with the Maclaurin expansion of f at least up
to the t2n−1-term (inclusive). This approximant, called a Padé approximant of f , is precisely
the n-node Gauss quadrature rule associated with the functional c, i.e.,

(1.6) Rn[f ](t) = Gn
( 1

1− xt

)
=

t

Pn(t−1)
· c
(
Pn(t−1)− Pn(x)

1− xt

)
=
P̃ ∗n(t)

P̃n(t)
,

with the same notation as in (1.2). We refer the reader to Brezinski and Van Iseghem [3], as
well as to Gragg [12], for discussions on Padé approximants. By (1.3), the remainder term can
be written as

f(t)−Rn[f ](t) =
1

Pn(t−1)
c
(Pn(x)

1− xt

)
= o(t2n−1).

It is important to be able to estimate the quadrature error I(g) − Gn(g) for a given
integrand. When the measure dω is nonnegative and has infinitely many points of support on
the real axis, a classical method for estimating this error is to evaluate the (2n+1)-node Gauss-
Kronrod rule K2n+1 associated with the Gauss rule (1.5) and estimate the quadrature error
by K2n+1(g)− Gn(g). However, the rule K2n+1 is not guaranteed to exist for every measure
dω and number of nodes n; see Notaris [16] for a fairly recent discussion on Gauss-Kronrod
quadrature.

This shortcoming of Gauss-Kronrod rules led Laurie [13] to introduce anti-Gauss rules
and averaged Gauss rules for nonnegative real measures dω. These rules also exist when Gauss-
Kronrod rules do not, and they can be used to estimate the quadrature error. Subsequently,
Ehrich [9] defined optimal averaged rules for Gauss-Laguerre and Gauss-Hermite measures.
Spalević [22] derived a new representation of these rules and introduced optimal averaged
rules for more general nonnegative real measures. For properties and applications of optimal
averaged Gauss rules associated with nonnegative real measures; see [6, 7, 15, 20, 23] and
references therein.

Anti-Gauss, averaged Gauss, and optimal averaged Gauss rules can be defined for quasi-
definite functionals c; see [4, 21]. These references define these quadrature rules by using
recursion coefficients of two sets of biorthogonal polynomials. Here we will define these rules
with the recursion coefficients (1.4).

Boutry [1] introduced Padé-type approximants determined by averaged Gauss quadrature
rules associated with the quasi-definite functional c. It is the purpose of the present paper to
define Padé-type approximants that are determined by optimal averaged Gauss rules associated
with c.

This paper is organized as follows. Section 2 is concerned with averaged and optimal
averaged Gauss rules associated with the quasi-definite functional c, and Section 3 discusses
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orthogonal polynomials related to the generalized averaged Gauss rule. The main results
are in Section 4, where optimal averaged Padé-type approximants are introduced and proved
to correspond to optimal averaged Gauss rules. A few computed examples are presented in
Section 5. Section 6 contains concluding remarks.

2. Averaged and optimal averaged Gauss rules. This section describes averaged and
optimal averaged Gauss rules associated with a quasi-definite functional c. We start with the
former and first note that the recursion coefficients βk in (1.4) are real and nonzero.

The n-node Gauss quadrature rule (1.5) with respect to c can be represented as

(2.1) Gn(g) = eT1 g(Jn)e1,

where Jn is the symmetric n× n tridiagonal matrix

Jn =


α0

√
β1 0√

β1 α1

√
β2

. . . . . . . . .√
βn−2 αn−2

√
βn−1

0 √
βn−1 αn−1


determined by recursion coefficients (1.4) for the polynomials Pk; see [17]. Here
e1 = [1, 0, . . . , 0]T ∈ Rn stands for the first axis vector, and the superscript T denotes
transposition. The Gauss quadrature rule (2.1) has degree of precision 2n− 1; see [5].

The (n+ 1)-node anti-Gauss rule Ğn+1 associated with the quasi-definite functional c is
determined by the requirement

(Ğn+1 − c)(xk) = −(Gn − c)(xk), k = 0, 1, . . . , 2n+ 1.

It can be represented as

Ğn+1(g) = eT1 g(J̆n+1)e1,

where J̆n+1 is the (n+ 1)× (n+ 1) tridiagonal matrix obtained from Jn+1 by replacing the
two occurrences of

√
βn by

√
2βn. Then, the averaged Gauss rule associated with the n-node

Gauss rule (2.1) for the functional c is defined as

GL2n+1(g) =
1

2

(
Gn(g) + Ğn+1(g)

)
.

It has degree of precision at least 2n+ 1; see [4, 13] for related results.

The optimal averaged Gauss rule for the functional c associated with the n-node Gauss
rule (2.1) can be written as

(2.2) GS2n+1(g) = eT1 g(JS2n+1)e1,
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where JS2n+1 is the (possibly complex) symmetric matrix

(2.3)

JS2n+1 =

α0

α1

αn−2

αn−1

αn

αn−1

α1

α0

. . . . . . . . .

. . . . . . . . .

√
β1√

β1
√
β2

√
βn−2

√
βn−1√

βn−1
√
βn√

βn
√
βn+1√

βn+1
√
βn−1

√
β2

√
β1√

β1

.

3. Some properties of polynomials related to generalized averaged Gaussian rules.
Let n be fixed and let Gn denote the n-node Gauss rule with respect to a linear functional c.
For an arbitrary constant θ 6= −1, we introduce the functional ć as

ć = c + θ
(
c− Gn

)
and define a quadrature rule Ǵn+1 as the Gauss rule with respect to the functional ć. The
n+ 1 nodes of the rule Ǵn+1 are the zeros of the (n+ 1)-th orthogonal polynomial Ṕn+1 with
respect to ć. A generalized averaged quadrature rule Gθ2n+1 is then defined as

(3.1) Gθ2n+1(g) =
θ · Gn(g) + Ǵn+1(g)

θ + 1
.

It is shown in [19] that, under the assumption that the functional c is positive definite, the
choice

θ =
βn+1

βn

yields a quadrature rule (3.1) of highest possible algebraic degree of precision, which in this
case is 2n + 2. For this particular choice of θ, when c is positive definite, the quadrature
rule (3.1) coincides with the optimal averaged quadrature rule GS2n+1 from (2.2). In this case,

(3.2) GS2n+1(g) =
βn+1Gn(g) + βnǴn+1(g)

βn + βn+1
,

and the n+ 1 nodes of the rule Ǵn+1 are the zeros of the polynomial

(3.3) Qn+1 = Pn+1 − βn+1Pn−1.

More generally, since ć(P ) = c(P ) for all polynomials P of degree up to 2n − 1, the
monic orthogonal polynomials Ṕk with respect to ć coincide with the monic orthogonal
polynomials Pk with respect to c for k 6 n. In fact,

Ṕk = Pk for k = 0, 1, . . . , n, and Ṕn+1 = Pn+1 − θβnPn−1.
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Thus the polynomials Ṕk satisfy Ṕ−1(x) ≡ 0, Ṕ0(x) ≡ 1, and

Ṕk+1(x) = (x− άk)Ṕk(x)− β́kṔk−1(x) for k = 0, 1, 2, . . . ,

where άk = αk for k = 0, 1, . . . , n, β́k = βk for k = 0, 1, . . . , n− 1, and

β́n = (θ + 1)βn.

Recalling that αk = ć(xṔ 2
k )/ć(Ṕ 2

k ) and β́k = ć(Ṕ 2
k )/ć(Ṕ 2

k−1), it is easy to derive the
following properties of the functional c.

THEOREM 3.1. We have c(xkṔn+1) = 0 for k = 0, 1, . . . , n−2. Moreover,

c(xn−1Ṕn+1) = −θβnc(P 2
n−1) = − c(P 2

n+1)

c(P 2
n)

c(P 2
n−1),

c(xnṔn+1) = −θβnc(xnPn−1) = − c(P 2
n+1)

c(P 2
n)

c(xnPn−1).

3.1. Pseudo-associated polynomials. Since the polynomials Ṕk are orthogonal with
respect to the functional ć, the pseudo-associated polynomials

Ṕ ∗k+1(t) = c

(
Ṕk+1(x)− Ṕk+1(t)

x− t

)
,

for k 6 n, satisfy the same recurrence relation as the polynomials Ṕk, but with Ṕ ∗−1(x) ≡ −1

and Ṕ ∗0 (x) ≡ 0.

THEOREM 3.2. It holds that

Ṕn(x)Ṕ ∗n+1(x)− Ṕ ∗n(x)Ṕn+1(x) = (θ + 1)βnc(Ṕ
2
n−1).

Proof. From the recurrence relations Ṕk(x)Ṕ ∗k+1(x) = (x− άk)Ṕ ∗k (x)− β́kṔ ∗k−1(x) and
Ṕk+1(x) = (x− αk)Ṕk(x)− β́kṔk−1(x)Ṕ ∗k (x), it follows that

Ṕk(x)Ṕ ∗k+1(x)− Ṕ ∗k (x)Ṕk+1(x) = β́k
(
Ṕk−1(x)Ṕ ∗k (x)− Ṕk(x)Ṕ ∗k−1(x)

)
,

for k = 0, 1, . . . , n. Multiplying the above equality over all k yields

Ṕn(x)Ṕ ∗n+1(x)− Ṕ ∗n(x)Ṕn+1(x) = β́n · β́n−1 · · · β́1
(
Ṕ0(x)Ṕ ∗1 (x)− Ṕ ∗0 (x)Ṕ1(x)

)
= (θ + 1)βn ·

ć(Ṕ 2
n−1)

ć(Ṕ 2
n−2)

· · · ć(Ṕ
2
1 )

ć(Ṕ 2
0 )
· 1,

which reduces to what we claimed.

The following result is an immediate consequence of Theorem 3.2.

THEOREM 3.3. If c is positive definite, then for all k
• Ṕ ∗k and Ṕ ∗k+1 have no common zeros,

• Ṕk and Ṕ ∗k have no common zeros.

We recall a general fact about orthogonal polynomials that can be applied to the polyno-
mials Ṕ ∗k .

THEOREM 3.4. If c is positive definite and θ > −1, then for all k
• the zeros of Ṕ ∗k are real and distinct,

• the zeros of Ṕ ∗k and the zeros of Ṕk interlace.
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4. Optimal averaged Padé-type approximants. Boutry [1] introduced the anti-Gauss
Padé-type approximants, which can be used to construct averaged Padé-type approximants.
The latter are also discussed in [1]. The anti-Gauss approximants correspond to anti-Gauss
quadrature rules.

A more general construction uses another approximant Ŕn+1 of the form (1.3), where
P := Q is some polynomial of degree n+ 1, and considers a linear combination of the Padé
approximant (1.6) and Ŕn+1:

(4.1) Rθ2n+1[f ](t) =
θ ·Rn[f ](t) + Ŕn+1[f ](t)

θ + 1
=

θ

θ+1
· P̃
∗
n(t)

P̃n(t)
+

1

θ+1
· Q̃
∗(t)

Q̃(t)
.

where θ 6= −1 is a constant.

Our main result shows that there is a unique Padé-type approximant of the form (4.1)
that coincides with the power series of f up to the degree 2n + 2. The analogy with the
representation (3.2) of the optimal averaged quadrature rule is obvious, so we will call this
Padé-type approximant optimal averaged and denote it by RS2n+1.

THEOREM 4.1. The approximant Rθ2n+1 given by (4.1) has degree of exactness at least
2n+ 2 if and only if Q = Qn+1 is given by (3.3) and θ = βn+1

βn
. Thus,

(4.2) RS2n+1[f ](t) =
βn+1Rn[f ](t) + βnŔn+1[f ](t)

βn + βn+1
, where Ŕn+1[f ](t) =

Q̃∗n+1(t)

Q̃n+1(t)
,

and Rn[f ] is defined by (1.6). Here we use the same notation as in (1.2).

Proof. We start by noting that the coefficients βn and βn+1 are nonzero by the quasi-
definiteness of the functional c.

In order for the approximant (4.1) to have degree of exactness 2n + 2, the additional
approximant Ŕn+1 must have degree of exactness equal to that of Rn, which is 2n − 1.
Moreover, we must have

(4.3) θ
(
f(t)−Rn

)
+
(
f(t)− Ŕn+1

)
= o(t2n+2),

where, for simplicity of notation, we abbreviate Rn[f ](t) and Ŕn+1[f ](t) by Rn and Ŕn+1,
respectively. By (1.3), Ŕn+1 has degree of exactness 2n− 1 if and only if Q is orthogonal to
all polynomials of degree up to n− 2. Therefore Q and Q̃ have the form

(4.4) Q(t) = (t+ a)Pn(t) + bPn−1(t) and Q̃(t) = (1 + at)P̃n(t) + bt2P̃n−1(t).

We observe that P̃n(t) = 1 + o(1) and P̃n−1(t) = 1 + o(1) when t→ 0.

The equality (1.3) gives us expressions for the remainders as

P̃n(t)
(
f(t)−Rn

)
= c(xnPn)t2n + c(xn+1Pn)t2n+1 + c(xn+2Pn)t2n+2 + o(t2n+2),

Q̃(t)
(
f(t)− Ŕn+1

)
= c(xn−1Q)t2n + c(xnQ)t2n+1 + c(xn+1Q)t2n+2 + o(t2n+2),

when t → 0. We can express all values of c in the above equalities in terms of the three
quantities

g1 = c(xnPn), g2 = c(xn+1Pn), g3 = c(xn+2Pn).
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In particular, we have βnc(xn−1Pn−1) = g1, βnc(xnPn−1) = g2 − αng1, c(xn+1Pn+1) =
βn+1g1, and βnc(xn+1Pn−1) = g3 − αng2 − βn+1g1, so that

βnc(x
n−1Q) = (b+ βn)g1,

βnc(x
nQ) = (b+ βn)g2 + (aβn − bαn)g1,

βnc(x
n+1Q) = (b+ βn)g3 + (aβn − bαn)g2 − bβn+1g1.

Therefore, the left-hand side of (4.3) multiplied by βnP̃n(t)Q̃(t) becomes

L = θβnQ̃(t) · P̃n(t)(f(t)−Rn) + βnP̃n(t) · Q̃(t)(f(t)− Ŕn+1)

= θβn
(
(1+at)P̃n(t) + bt2P̃n−1(t)

)
(g1t

2n + g2t
2n+1 + g3t

2n+2)

+ P̃n(t)
[
(b+βn)g1t

2n +
(
(b+βn)g2 + (aβn−bαn)g1

)
t2n+1

+
(
(b+βn)g3 + (aβn−bαn)g2 − bβn+1g1

)
t2n+2

]
+ o(t2n+2)

= P̃n(t)
(
Ag1t

2n + (Ag2+Bg1)t2n+1 + (Ag3+Bg2+Cg1)t2n+2
)

+ o(t2n+2),

where

A = b+(θ+1)βn, B = (θ+1)aβn−bαn, C = b
(
θβn

P̃n−1(t)

P̃n(t)
−βn+1

)
.

In order for the above expression to be o(t2n+2) when t→ 0, the coefficients A, B, and
C must all be zero, which implies that

b = −(θ + 1)βn, a = −αn, θ =
βn+1

βn
.

Now, Q(x) = (x − αn)Pn(x) − (βn + βn+1)Pn−1(x) = Qn+1(x), which completes the
proof.

The optimal averaged Padé approximants can be related to Padé approximants as follows.

THEOREM 4.2. The following equalities hold:

Ŕn+1[f ] = Rn+1[f ] + βn+1t
2 P̃n−1

Q̃n+1
(Rn+1[f ]−Rn−1[f ]) ,

Ŕn+1[f ] = Rn−1[f ] + P̃n+1

Q̃n+1
(Rn+1[f ]−Rn−1[f ]) .

Proof. By Theorem 4.1 and equation (4.4), we have

Ŕn+1 =
P̃ ∗n+1 − βn+1t

2P̃ ∗n−1

P̃n+1 − βn+1t2P̃n−1
=
P̃ ∗n+1

P̃n+1

+
βn+1t

2(P̃n−1P̃
∗
n+1 − P̃n+1P̃

∗
n−1)

P̃n+1Q̃n+1

= Rn+1 + βn+1t
2 P̃n−1

Q̃n+1

(
P̃ ∗n+1

P̃n+1

−
P̃ ∗n−1

P̃n−1

)
and

Ŕn+1 =
P̃ ∗n−1

P̃n−1
+

(P̃n−1P̃
∗
n+1 − P̃n+1P̃

∗
n−1)

P̃n−1Q̃n+1

= Rn−1 +
P̃n+1

Q̃n+1

(
P̃ ∗n+1

P̃n+1

−
P̃ ∗n−1

P̃n−1

)
,

as claimed.

Finally, we prove that the optimal averaged Padé type approximant is in fact the optimal
averaged quadrature rule (2.2) applied to the power series of f .
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THEOREM 4.3. The optimal averaged Padé approximant RS2n+1[f ] (4.2) can be repre-
sented as

RS2n+1[f ](t) = GS2n+1

( 1

1− xt

)
= eT1

(
I − tJS2n+1

)−1
e1,

where JS2n+1 is given by (2.3).

Proof. Let J = I − tJS2n+1. Then, eT1 J
−1e1 is the upper-left corner entry of the matrix

J−1 and equals

eT1 J
−1e1 =

J11
|J |

,

where J11 denotes the (1, 1) minor of the matrix J .
We first compute |J |. The characteristic polynomial of the matrix JS2n+1 is |tI−JS2n+1| =

Pn(t)Qn+1(t), where Qn+1 is given by (3.3). This can be easily obtained, for example, by
expanding |JS2n+1| along the (n+ 1)-th row. Therefore

|J | = t2n+1
∣∣t−1I − JS2n+1

∣∣ = P̃n(t)Q̃n+1(t).

Similarly, an expansion along the n-th row shows that the (1, 1) minor of tI − JS2n+1 equals

(t− αn)Pn(t)P ∗n(t)− βnPn(t)P ∗n−1(t)− βn+1Pn−1(t)P ∗n(t)

= βn+1

βn+βn+1
P ∗n(t)

(
(t−αn)Pn(t)− (βn+βn+1)Pn−1(t)

)
+ βn

βn+βn+1
Pn(t)

(
(t−αn)P ∗n(t)− (βn+βn+1)P ∗n−1(t)

)
= βn+1

βn+βn+1
P ∗n(t)Qn+1(t) + βn

βn+βn+1
Pn(t)Q∗n+1(t).

Therefore J11 = βn+1

βn+βn+1
P̃ ∗n(t)Q̃n+1(t) + βn

βn+βn+1
P̃n(t)Q̃∗n+1(t) and

J11
|J |

=
βn+1

βn + βn+1
· P̃
∗
n(t)

P̃n(t)
+

βn
βn + βn+1

·
Q̃∗n+1(t)

Q̃n+1(t)
= RS2n+1[f ](t),

as claimed.

EXAMPLE 4.4. Consider the function f(t) = et. Its Padé approximant for n = 3 is

R3(t) =
1 + 2

5 t+ 1
20 t

2

1− 3
5 t+ 3

20 t
2 − 1

60 t
3

= 1 + t+
t2

2!
+
t3

3!
+
t4

4!
+
t5

5!
+

11t6

7200
+ o(t6)

and the corresponding optimal averaged Padé-type approximant RS2n+1 is

RS7 (t) =
25

74

( 1 + 2
5 t+ 1

20 t
2

1− 3
5 t+ 3

20 t
2 − 1

60 t
3

)
+

49

74

( 1 + 3
7 t+ 15

196 t
2 + 19

2940 t
3

1− 4
7 t+ 29

196 t
2 − 11

490 t
3 + 1

490 t
4

)
= 1 + t+

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!
+
t6

6!
+
t7

7!
+
t8

8!
+

403t9

148176000
+ o(t9),

as t→ 0. This approximant agrees with the Maclaurin expansion of the function f(t) up to
the t8-term, but not for the t9-term. This shows that the degree of precision of the approximant
RS2n+1 in general is not larger than 2n+ 2.
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5. Numerical examples. This section illustrates the behavior of some Padé and Padé-
type approximants. We determine these approximants from moments c0 = 1, c1, c2, . . . . The
evaluation of the approximants requires recursion coefficients α0, β1, α2, β2, . . . . We evaluate
the necessary recursion coefficients with the aid of the Chebyshev algorithm. Gautschi [10,
p. 77] presents the modified Chebyshev algorithm, of which the Chebyshev algorithm is a
special case, for the case of a positive definite functional c. The Chebyshev algorithm may be
sensitive to errors in the moments and to round-off errors introduced during the computations,
and the sensitivity increases with the number of moments used; see [10, Section 2.1] for
a discussion. It is therefore important to be able to compute accurate approximations of
functions (1.1) by carrying out only a fairly small number of steps of the Chebyshev algorithm.
The execution of a large number of steps typically requires the use of high-precision arithmetic,
which we will avoid in the present paper.

Assume that the moments c0, c1, . . . , c2n are known. This allows us to compute the Padé
approximant Rn, which requires the moments c0, c1, . . . , c2n−1. The next Padé approximant
Rn+1 would require also c2n+1, which is assumed not to be available. The evaluaton of the
averaged Padé-type approximant RL2n−1 requires the recursion coefficients α0, . . . , αn−1 and
β1, . . . , βn−1, which can be determined from the moments c0, c1, . . . , c2n by the Chebyshev
algorithm. The evaluation of the optimal averaged Padé-type approximant RS2n−1 demands
one more recursion coefficient, βn, than the evaluation of RL2n−1. The (modified) Chebyshev
algorithm, as presented in [10, p. 77], seemingly also requires the moment c2n+1. However,
this additional moment is needed to compute the recursion coefficient αn, and not βn. There-
fore, with a slight modification of the algorithm, the moments c0, c1, . . . , c2n allow us to
compute the Padé approximant Rn and the Padé-type approximants RL2n−1 and RS2n−1.

This section presents a few numerical examples that illustrate the performance of the
approximants Rn, RL2n−1, and RS2n−1. All computations have been carried out in MATLAB
with about 15 significant decimal digits.

EXAMPLE 5.1. Figure 6.1 displays the errors when approximating the function Γ(1 + t)
by the Padé approximant R4 and the Padé-type approximants RL7 and RS7 . The corresponding
errors are presented in a semi-log plot, i.e., with a linear scale on the horizontal t-axis and a
base-10 logarithmic scale on the vertical axis.

The figure shows the optimal averaged approximant RS7 (t) to give a smaller error than
both the Padé approximant R4(t) and the averaged approximant RL7 (t) described in [1] when
t is sufficiently close to zero. Note the “cusps” on the graphs. Downward cusps correspond to
points at which the approximant is equal to the function, and upward cusps correspond to the
poles of the approximant.

EXAMPLE 5.2. Figure 6.2 depicts the error when approximating the function et by the
Padé approximant R4, and the Padé-type approximants RL7 and RS7 . The errors are presented
in a semi-log plot. We observe the same behaviour as in the previous example.

6. Conclusion. This paper introduces Padé-type approximants associated with optimal
averaged Gauss quadrature rules, and complements results by Boutry [1] on Padé-type approx-
imants associated with averaged Gauss quadrature rules. Computed examples show the former
approximants to yields approximations of higher accuracy close to the origin. This can be
expected, since the optimal averaged Gauss quadrature rules have higher degree of precision
than averaged Gauss quadrature rules with the same number of nodes.
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FIG. 6.1. Comparison of the errors of the Padé approximant R4(t) (dotted line), the Padé-type approximant
RL

7 (t) (dashed line), and the Padé-type approximant RS
7 (t) (continuous line) in log-scale as a function of t.
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FIG. 6.2. Comparison of the errors of the Padé approximant R4(t) (dotted line), the Padé-type approximant
RL

7 (t) (dashed line), and the Padé-type approximant RS
7 (t) (continuous line) in log-scale as a function of t.
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