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CHARACTERIZATIONS OF ADJOINT SOBOLEV EMBEDDING OPERATORS
WITH APPLICATIONS IN INVERSE PROBLEMS∗

SIMON HUBMER†, EKATERINA SHERINA‡, AND RONNY RAMLAU§

Abstract. We consider the Sobolev embedding operator Es : Hs(Ω) → L2(Ω) and its role in the solution of
inverse problems. In particular, we collect various properties and investigate different characterizations of its adjoint
operator E∗s , which is a common component in both iterative and variational regularization methods. These include
variational representations and connections to boundary value problems, Fourier and wavelet representations, as
well as connections to spatial filters. Moreover, we consider characterizations in terms of Fourier series, singular
value decompositions, and frame decompositions, as well as representations in finite dimensional settings. While
many of these results are already known to researchers from different fields, a detailed and general overview or
reference work containing rigorous mathematical proofs is still missing. Hence, in this paper we aim to fill this
gap by collecting, introducing, and generalizing a large number of characterizations of E∗s and discuss their use in
regularization methods for solving inverse problems. The resulting compilation can serve both as a reference as well
as a useful guide for its efficient numerical implementation in practice.
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1. Introduction. In this paper, we consider the Sobolev embedding operator

(1.1) Es : Hs(Ω)→ L2(Ω) , u 7→ Esu := u ,

where Hs(Ω) denotes the Sobolev space of order s ∈ R and Ω ⊆ RN , for some N ∈ N. The
embedding operator Es not only plays a role in the proper definition of inverse problems,
but is also crucial in their solution. Especially its adjoint operator E∗s commonly appears in
regularization methods and, thus, close attention needs to be paid to its properties and efficient
implementation. Please note that, while the implementation of the embedding operator Es
itself is trivial, the evaluation of its adjoint E∗s is not.

Due to its ubiquitous appearance in inverse problems, researchers have used a number of
different approaches for dealing with the adjoint embedding operator E∗s . These are typically
either based on proper discretizations of the underlying problems, or on characterizations of
E∗s in terms of certain variational or boundary value problems; see, e.g., [13, 23, 33, 34, 37].
Implicitly, the connection between the (adjoint) Sobolev embedding operator and differential
equations is also present in classic reference works such as [2, 5, 14, 15, 28, 31]. Furthermore,
characterizations of E∗s in terms of Fourier series as well as Fourier and wavelet transforms
are explicitly considered in a one-dimensional setting in [36, 37], and are implicitly present in,
e.g., [3, 6, 9, 28, 29]. Unfortunately, these approaches for characterizing the adjoint embedding
operator E∗s are scattered throughout the literature and their description is often very brief,
restricted to simple cases, or given without explicitly specifying underlying assumptions or
providing proper mathematical proofs.

Hence, with this paper we want to bridge this gap, collecting, introducing, and generaliz-
ing a large number of different approaches to and characterizations of the adjoint embedding
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operator E∗s . With this, we aim to establish a common reference point for both researchers
and students in Inverse Problems and other fields. Among the considered topics are char-
acterizations of E∗s as the solution of certain boundary value problems, representations in
terms of Fourier and wavelet transforms, as well as characterizations via Bessel potentials and
spatial filters. Furthermore, we consider representations in terms of Fourier series, singular
value decompositions, and frame decompositions, as well as different representations in finite
dimensional settings. Whenever the basic ideas of the presented approaches could be traced
back to previous publications, we provided proper references, and aimed to generalize the
corresponding approaches as far as possible, for example, by extending them to higher dimen-
sions, by explicitly stating otherwise implicit or overlooked assumptions, and by providing
concise proofs for all of them.

The outline of this paper is as follows: In Section 2, we review some basic definitions
and results on Sobolev spaces that are used throughout the paper. In Section 3, we present
characterizations via boundary value problems and in Section 4 we consider representations
via Fourier transforms, which are also the starting point for representations via spatial filters
given in Section 5. This is followed by wavelet characterizations in Section 6, via Fourier
series in Section 7, and via singular value and frame decompositions in Section 8. Finally, we
consider representations in finite dimensional settings in Section 9, followed by applications of
the adjoint embedding operator in inverse problems and two numerical examples in Section 10,
as well as a short conclusion in Section 11.

2. Sobolev spaces and embeddings. In this section, we recall the definition and some
general facts about Sobolev spaces and the Sobolev embedding operator, which are collected
from [2, 3, 4, 14, 28, 31, 32].

2.1. Sobolev spaces of integer order. Throughout this paper, we use the following
standard notations and assumptions

• Let N ∈ N and let the domain Ω ⊆ RN be nonempty and open.
• For all m ∈ N, let Cm(Ω) denote the vector space of all continuous functions
u : Ω→ C whose partial derivatives up to order m are also continuous on Ω.

• Let C∞(Ω) :=
⋂∞
m=0 C

m(Ω) be the space of infinitely differentiable functions and
let C∞0 (Ω) be the subspace of all functions in C∞(Ω) with compact support in Ω.

• Let α = (α1 , . . . , αN ) denote a multiindex, i.e., anN -tuple of non-negative integers,
and let |α| := α1 + · · ·+ αN denote the order of α.

DEFINITION 2.1. The Lebesgue space L2(Ω) is defined as

L2(Ω) :=
{
u : Ω→ R |u is measurable and ‖u‖L2(Ω) <∞

}
,

with norm

‖u‖L2(Ω) :=

(∫
Ω

|u(x)|2 dx
)1/2

.

Hereby, we identify functions in L2(Ω) which are equal almost everywhere in Ω.
The space L2(Ω) is a separable Hilbert space when equipped with the inner product

〈u, v 〉L2(Ω) :=

∫
Ω

u(x)v(x) dx .

In order to define Sobolev spaces, we first need to introduce the derivatives

Dαu :=
∂|α|

∂xα1
1 · · · ∂x

αN

N

u = ∂α1
x1
· · · ∂αN

xN
u .
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Throughout this paper, derivatives are understood in the weak sense, i.e., if u and v are locally
integrable functions, then v is the αth-weak partial derivative of u if and only if

〈u,Dαφ 〉L2(Ω) = (−1)|α| 〈 v, φ 〉L2(Ω) , ∀φ ∈ C∞0 (Ω) .

In this case, we write Dαu = v. With this, we can now introduce Sobolev spaces in the
following definition.

DEFINITION 2.2. For any m ∈ N, the Sobolev space Hm(Ω) of order m is defined by

(2.1) Hm(Ω) := {u ∈ L2(Ω) | Dαu ∈ L2(Ω) for all α with 0 ≤ |α| ≤ m} .

On the space Hm(Ω) we define the norm

(2.2) ‖u‖Hm(Ω) :=

 ∑
0≤|α|≤m

‖Dαu‖2L2(Ω)

1/2

.

Furthermore, we define Hm
0 (Ω) as the closure of C∞0 (Ω) in the space Hm(Ω).

Note that H0(Ω) = H0
0 (Ω) = L2(Ω). Furthermore, equipped with the inner products

(2.3) 〈u, v 〉Hm(Ω) :=
∑

0≤|α|≤m

〈Dαu,Dαv 〉L2(Ω) ,

the Sobolev spaces Hm(Ω) are separable Hilbert spaces. Next, consider the seminorms

(2.4) |u|Hm(Ω) :=

 ∑
|α|=m

‖Dαu‖2L2(Ω)

1/2

which, in certain situations, can be used to define equivalent norms on Hm(Ω) and Hm
0 (Ω),

influencing the corresponding inner products and, in turn, also E∗s . For discussing these
situations we first need to introduce two geometric properties on the domain Ω, which are
given in the following definition adapted from [3, 4].

DEFINITION 2.3. For all x ∈ Ω ⊆ RN , let R(x) denote the set of all y ∈ Ω such that the
line segment from x to y lies entirely in Ω. Then, Ω satisfies the weak cone condition if and
only if there exists a δ > 0 such that, for all x ∈ Ω, there holds

λN ({y ∈ R(x) | |y − x| < 1}) ≥ δ ,

where λN denotes the Lebesgue measure in RN . Furthermore, the domain Ω is said to have a
finite width if it lies between two parallel lines of dimension (N − 1).

Using these geometric properties, we can now state the following result; see [2, 4, 31].
PROPOSITION 2.4. If the domain Ω ⊆ RN satisfies the weak cone condition, then

(2.5) |||u|||Hm(Ω) :=
(
‖u‖2L2(Ω) + |u|2Hm(Ω)

)1/2

,

defines a norm on Hm(Ω) which is equivalent to ‖·‖Hm(Ω). Similarly, if Ω has a finite width,
then the seminorm |·|Hm(Ω) itself is a norm on Hm

0 (Ω) equivalent to ‖·‖Hm(Ω).
Proof. The first part of the this proposition essentially follows from [3, Theorem 2]; see

also [31]. The second part was originally shown in [2]; see also [4, Corollary 6.31].
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Note that the norm |||·|||Hm(Ω) considered in (2.5) is induced by the inner product

(2.6) 〈u, v 〉Hm(Ω) := 〈u, v 〉L2(Ω) +
∑
|α|=m

〈Dαu,Dαv 〉L2(Ω) .

Similarly, on Hm
0 (Ω) the equivalent seminorm |·|Hm(Ω) is induced by the inner product

(2.7) 〈u, v 〉Hm(Ω) :=
∑
|α|=m

〈Dαu,Dαv 〉L2(Ω) .

REMARK 2.5. Concerning the geometric assumptions in Proposition 2.4, note that the
domain Ω satisfies the weak cone condition, e.g., if its boundary is uniformly Cm regular for
some m ≥ 2 or if it satisfies the strong local Lipschitz condition [4]. Furthermore, the weak
cone condition is also satisfied if Ω = RN or some half space in RN . Moreover, note that any
bounded domain Ω also has finite width.

2.2. Sobolev spaces of fractional order. Next, we consider Sobolev spaces Hs(Ω) of
fractional order, i.e., when 0 ≤ s ∈ R is not necessarily an integer. These can be defined in
different ways, for example

1. Via interpolation theory, as intermediate spaces between L2(Ω) and Hdse(Ω) [4, 7].
2. Via the Slobodeckij seminorm, then also called Sobolev-Slobodeckij spaces [3, 28].
3. Via Bessel potentials, then also called Bessel-potential spaces [3, 14, 28].

These definitions are equivalent as long as the domain Ω is sufficiently regular [3]. In this
paper, we restrict ourselves to fractional Sobolev spaces over RN and focus on the definition
via Bessel potentials. For this, we first need to recall the following definition.

DEFINITION 2.6. For any integrable u : RN → C we define the Fourier transform

(Fu)(ξ) =

∫
RN

e−2πiξ·xu(x) dx , ∀ ξ ∈ RN ,

as well as the inverse Fourier transform

(F−1u)(x) =

∫
RN

e2πix·ξu(ξ) dξ , ∀x ∈ RN .

Both operators F and F−1 uniquely determined bounded linear operators

F : L2(RN )→ L2(RN ) , F−1 : L2(RN )→ L2(RN ) ,

satisfying FF−1 = F−1F = I (see [14, 28]) as well as the convolution property

(2.8) F(u ∗ v) = F(u)F(v) , where (u ∗ v)(x) :=

∫
RN

u(x− y)v(y) dy .

With this, we can now introduce fractional order Sobolev spaces over RN .
DEFINITION 2.7. For any 0 ≤ s ∈ R the Sobolev space Hs(RN ) of order s is defined by

(2.9) Hs(RN ) :=

{
u ∈ L2(RN ) | F−1

((
1 + 4π2 |·|2

)s/2
Fu
)
∈ L2(RN )

}
.

On the space Hs(RN ) we define the norm

(2.10) ‖u‖Hs(RN ) :=
∥∥∥(1 + 4π2 |·|2)s/2Fu

∥∥∥
L2(RN )

.
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The Sobolev spaces Hs(RN ) defined in (2.9) are also called Bessel-potential spaces;
compare with Section 4. They become Hilbert spaces when equipped with the inner product

(2.11) 〈u, v 〉Hs(RN ) :=

∫
RN

(
1 + 4π2 |ξ|2

)s
(Fu)(ξ)(Fv)(ξ) dξ .

Note that, instead of 4π2, any other positive constant could be used in (2.9), (2.10), and (2.11),
leading to the same Sobolev space Hs(RN ) and equivalent norms. The following result
adapted from [28] relates the Bessel potential spaces Hs(RN ) to the spaces Hm(Ω) defined
above.

PROPOSITION 2.8. For all s = m ∈ N the Sobolev spaces Hs(RN ), as defined in (2.1)
and (2.9), are equal and the corresponding norms, defined in (2.2) and (2.10), are equivalent.

Proof. The proof is the same as in [28, Theorem 3.16], with a minor modification dealing
with the additional factor 4π2 in the definition of the inner product (2.11).

Instead of (2.10) the spaces Hs(RN ) are often equipped with an equivalent norm.
PROPOSITION 2.9. For all s ≥ 1 an equivalent norm to ‖·‖Hs(RN ) is given by

|||u|||Hs(RN ) :=

∥∥∥∥(1 + (2π |·|)2s
) 1

2 Fu
∥∥∥∥
L2(RN )

=

(∫
RN

(
1 + (2π |ξ|)2s

)
|(Fu)(ξ)|2 dξ

)1/2

.

(2.12)

Proof. Let s ≥ 1 be fixed. In order to show the equivalence between the norms defined in
(2.10) and (2.12) it suffices to show that there exist constants C1, C2 > 0 such that

(2.13) C1

(
1 + (2π |ξ|)2s

)
≤
(

1 + 4π2 |ξ|2
)s
≤ C2

(
1 + (2π |ξ|)2s

)
, ∀ ξ ∈ RN ,

since from these inequalities it follows that

C1 |||u|||2Hs(RN ) ≤ ‖u‖
2
Hs(RN ) ≤ C2 |||u|||2Hs(RN ) , ∀u ∈ Hs(RN ) .

We start with the second inequality in (2.13). Since x 7→ xs is convex on R+
0 , we have(

1 + 4π2 |ξ|2
)s

= 2s
(

1

2
+

1

2
4π2 |ξ|2

)s
≤ 2s−1

(
1 + (2π |ξ|)2s

)
, ∀ ξ ∈ RN ,

and, thus, the second inequality in (2.13) holds with C2 = 2s−1. On the other hand, since

1 ≤
(

1 + 4π2 |ξ|2
)s

, and (2π |ξ|)2s ≤
(

1 + 4π2 |ξ|2
)s

, ∀ ξ ∈ RN ,

it follows that

1 + (2π |ξ|)2s ≤ 2
(

1 + 4π2 |ξ|2
)s

, ∀ ξ ∈ RN .

Hence, the first inequality in (2.13) holds with C1 = 1/2, which concludes the proof.
Note that the norm |||·|||Hs(RN ) defined in (2.12) is induced by the inner product

(2.14) 〈u, v 〉Hs(RN ) :=

∫
RN

(
1 + (2π |ξ|)2s

)
(Fu)(ξ)(Fv)(ξ) dξ .
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2.3. Adjoint Sobolev embedding operators and Hilbert scales. We now return to the
embedding operator Es defined in (1.1) for all 0 ≤ s ∈ R, i.e.,

Es : Hs(Ω)→ L2(Ω) , u 7→ Esu := u .

Whenever we consider only Sobolev spaces Hm(Ω) of integer order m ∈ N, we write

Em : Hm(Ω)→ L2(Ω) , u 7→ Emu := u ,

and similarly, when working with the Sobolev spaces Hm
0 (Ω) with m ∈ N, we define

Em,0 : Hm
0 (Ω)→ L2(Ω) , u 7→ Em,0u := u .

For further reference, the proper definition of an adjoint operator is given as follows.
DEFINITION 2.10. Let A : X → Y be a bounded, linear operator between two Hilbert

spaces X and Y . Then, the adjoint operator A∗ : Y → X of A is defined by the relation

〈A∗u, v 〉X = 〈u,Av 〉Y , ∀u ∈ Y , v ∈ X .

Hence, for Es : Hs(Ω)→ L2(Ω) the adjoint E∗s : L2(Ω)→ Hs(Ω) is defined by

〈E∗su, v 〉Hs(Ω) = 〈u,Esv 〉L2(Ω) = 〈u, v 〉L2(Ω) , ∀u ∈ L2(Ω) , v ∈ Hs(Ω) ,

and analogously for the embeddings Em : Hm(Ω)→ L2(Ω) and Em,0 : Hm
0 (Ω)→ L2(Ω).

It follows from its definition that E∗s is a bounded linear operator and it may even be
compact, depending on properties of the domain Ω; see, e.g., [2, 14, 28, 31]. For example,
if Ω is a bounded domain with a Lipschitz continuous boundary, then it follows from [31,
Theorem 1.4] that Em : Hm(Ω) → L2(Ω) and, thus, also E∗m is compact for all m ∈ N.
Since Hm

0 (Ω) ⊂ Hm(Ω) the same is true for Em,0 : Hm
0 (Ω)→ L2(Ω).

REMARK 2.11. Note that the definition of the operator E∗s given in Definition 2.10
implicitly depends on the specific choice of the inner products on Hs(Ω) and L2(Ω). This is
important to keep in mind when working with one of the equivalent norms onHs(Ω) discussed
above, since they are induced by different inner products and, thus, the corresponding operator
E∗s is generally different. Hence, when using the notation ‖·‖Hs(Ω) and 〈 ·, · 〉Hs(Ω) to denote
a norm and inner product on Hs(Ω), respectively, we always have to specify which one of
the different equivalent norms and corresponding inner products is meant. Whenever we do
not explicitly specify the norm and corresponding inner product, the considered result holds
independently of the specific choice.

Next, we connect the embedding operator Es to the theory of Hilbert scales, revealing
another link between its adjoint E∗s and the theory of inverse problems. For this, we restate
some results found in, e.g., [11, 13, 24, 32]. Let L : D(L) ⊆ X → X be a densely defined,
selfadjoint, strictly positive operator on a Hilbert space X such that

‖Lu‖X ≥ ‖u‖X , ∀u ∈ D(L) .

Furthermore, for all s ≥ 0 and u, v ∈
⋂∞
k=0D(Lk), we define the inner product

(2.15) 〈u, v 〉Xs
:= 〈Lsu, Lsv 〉X .

Now, for any s ≥ 0 the space Xs is defined as the completion of
⋂∞
k=0D(Lk) with respect to

the norm ‖·‖Xs
induced by the inner product 〈 ·, · 〉Xs

defined in (2.15). Furthermore, for any
s < 0 the space Xs is defined as the dual space of X−s. The collection of these spaces, i.e.,
(Xs)s∈R, is called a Hilbert scale induced by the operator L.
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It was shown in [24] that the Sobolev spaces Hs(RN ) form a Hilbert scale. However,
when the domain Ω ⊆ RN is bounded, this is no longer true due to boundary conditions [32].
The proof of this interesting fact relies on the following result [32, Proposition 2.1].

PROPOSITION 2.12. Let X1 and X2 be real Hilbert spaces such that X2 is dense in X1

and ‖u‖X1
≤ ‖u‖X2

for all u ∈ X2. Then, L : D(L)(⊂ X1) → X1 is a densely defined,
selfadjoint, strictly positive operator with D(L) = X2 satisfying

‖Lu‖X1
≥ ‖u‖X2

, 〈Lu,Lv 〉X1
= 〈u, v 〉X2

, ∀u, v ∈ X2 ,

if and only if

L = (I∗)−1/2 ,

where I : X2 → X1 denotes the embedding operator and I∗ : X1 → X2 denotes its adjoint.
Since I∗ is selfadjoint from X1 → X1, the operator (I∗)1/2 is well-defined.

From the above proposition we obtain the following corollary.
COROLLARY 2.13. For any s ≥ 0 let Es : Hs(Ω)→ L2(Ω) and E∗s : L2(Ω)→ Hs(Ω)

be the embedding and its adjoint as defined in (1.1) and Definition 2.10, respectively. Then,

〈u, v 〉Hs(Ω) =
〈

(E∗s )−1/2u, (E∗s )−1/2v
〉
L2(Ω)

=
〈

(E∗s )−1u, v
〉
L2(Ω)

, ∀u, v ∈ Hs(Ω) ,

as well as

(2.16) ‖u‖Hs(Ω) =
∥∥∥(E∗s )−1/2u

∥∥∥
L2(Ω)

, ∀u ∈ Hs(Ω) .

3. Adjoint embeddings and BVPs. In this section, we consider some representations
of the adjoint embedding E∗s in terms of the solution of variational problems related to weak
solutions of certain boundary value problems (BVPs). Our first result is a direct consequence
of Definition 2.10.

PROPOSITION 3.1. Let 0 ≤ s ∈ R, u ∈ L2(Ω), and define the bilinear and linear forms

(3.1) a(z, v) := 〈 z, v 〉Hs(Ω) , and lu(v) := 〈u, v 〉L2(Ω) , ∀ v, z ∈ Hs(Ω) .

Then, the element E∗su is given by the unique solution z ∈ Hs(Ω) of

(3.2) a(z, v) = lu(v) , ∀ v ∈ Hs(Ω) .

Similarly, for m ∈ N, the element E∗m,0u is the unique solution z ∈ Hm
0 (Ω) of

(3.3) a(z, v) = lu(v) , ∀ v ∈ Hm
0 (Ω) .

Proof. The result follows from the Definition 2.10 of E∗s and E∗m,0 and the definitions of
the bilinear and linear forms. The uniqueness of the solutions of (3.2) and (3.3) also follows
from the Lax-Milgram Lemma [14], the assumptions of which are trivially satisfied.

Note that the above result holds for all equivalent norms and corresponding inner products
on Hs(Ω) and Hm

0 (Ω), as long as they are used consistently both in (3.1) and Definition 2.10.
Hence, in practice, the adjoint embedding operators E∗s and E∗m,0 are often implemented using
suitable finite element discretizations of the variational problems (3.2) and (3.3); compare
with Section 9. This is also motivated by the fact that, for m ∈ N and for particular choices of
norms on Hm(Ω) and Hm

0 (Ω), the variational problems (3.2) and (3.3) are related to weak
solutions of certain BVPs. To be more precise, we first consider the following proposition
adapted from [5, Theorem 10.2].
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PROPOSITION 3.2. Let m ∈ N and let Ω ⊂ RN be a bounded domain with a sufficiently
smooth boundary ∂Ω. Furthermore, let the constants cα ∈ {0, 1} be such that for all |α| = m
there holds cα = 1, and let the linear differential operator B be defined by

Bz :=
∑

0≤|α|≤m

(−1)|α|cαD
2αz .

Then, there exist m linear differential operators Nk of order k, m ≤ k ≤ 2m− 1, i.e.,

Nkz =
∑

0≤|α|≤k

dk,αD
αz ,

with functions dk,α defined on ∂Ω, such that for all v, z ∈ C2m(Ω) there holds

(3.4)
∑

0≤|α|≤m

cα 〈Dαz,Dαv 〉L2(Ω) = 〈Bz, v 〉L2(Ω) +

m−1∑
j=0

∫
∂Ω

∂jv

∂nj
N2m−1−jz dS .

Here ∂j/∂nj denotes the jth derivative in the direction of the exterior normal vector n of ∂Ω
and the surface ∂Ω is non-characteristic for the differential operators Nk.

For m ∈ N and coefficients cα ∈ {0, 1} with cα = 1 for |α| = m consider the BVP
∑

0≤|α|≤m
(−1)|α|cαD

2αz(x) = u(x) , ∀x ∈ Ω ,

N2m−1−jz(x) = 0 , ∀x ∈ ∂Ω , 0 ≤ j ≤ m− 1 .

Due to (3.4), the variational problem associated to this boundary value problem is∑
0≤|α|≤m

cα 〈Dαz,Dαv 〉L2(Ω) = 〈u, v 〉L2(Ω) , ∀ v ∈ Hm(Ω) .

Comparing this with (3.2) and the definition (2.3) of 〈 ·, · 〉Hm(Ω) we obtain the following
proposition.

PROPOSITION 3.3. Let m ∈ N and let Ω ⊂ RN be a bounded domain with a sufficiently
smooth boundary ∂Ω. Furthermore, let Hm(Ω) be equipped with the norm ‖·‖Hm(Ω) defined
in (2.2) and let 〈 ·, · 〉Hm(Ω) denote its corresponding inner product given in (2.3). Then,
there exist m linear differential operators Nk of order k, with m ≤ k ≤ 2m − 1, which
are non-characteristic on ∂Ω, such that for each u ∈ L2(Ω) the element E∗mu is the unique
solution z of the variational problem associated to the BVP

(3.5)


∑

0≤|α|≤m
(−1)|α|D2αz(x) = u(x) , ∀x ∈ Ω ,

N2m−1−jz(x) = 0 , ∀x ∈ ∂Ω , 0 ≤ j ≤ m− 1 .

Proof. Applying Proposition 3.2 with cα = 1 for all α we find that there exist m linear
differential operators Nk of order k with m ≤ k ≤ 2m− 1 such that there holds

(3.6)
∑

0≤|α|≤m

〈Dαz,Dαv 〉L2(Ω) = 〈Bz, v 〉L2(Ω) +

m−1∑
j=0

∫
∂Ω

∂jv

∂nj
N2m−1−jz dS ,

for all v, z ∈ C2m(Ω), where the linear differential operator B is defined by

Bz :=
∑

0≤|α|≤m

(−1)|α|D2αz .
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Consider the variational problem associated to the BVP (3.5), which is obtained by multiplying
the differential equation with a test function v and integrating, i.e.,

〈Bz, v 〉L2(Ω) = 〈u, v 〉L2(Ω) .

Together with (3.6) and using the boundary conditions N2m−1−jz(x) = 0 for all x ∈ ∂Ω and
0 ≤ j ≤ m− 1, we find that the variational problem associated to (3.5) is given by∑

0≤|α|≤m

〈Dαz,Dαv 〉L2(Ω) = 〈u, v 〉L2(Ω) , ∀ v ∈ Hm(Ω) .

Comparing this with (3.2) and the definition (2.3) of 〈 ·, · 〉Hm(Ω) we obtain that E∗mu is in
fact the unique solution of exactly this variational problem, which yields the assertion.

We demonstrate how to derive explicit expressions for the operators N2m−1−j in the
following example.

EXAMPLE 3.4. Let the domain Ω ⊂ RN be bounded with ∂Ω ∈ C1, let Hm(Ω) be
equipped with the norm (2.2) corresponding to the inner product (2.3), and consider the
embedding operator E1 : H1(Ω)→ L2(Ω) . Then, Green’s formula [14] yields〈 ∑
|α|=1

(−1)|α|D2αz, v

〉
L2(Ω)

= 〈−∆z, v 〉L2(Ω) =
∑
|α|=1

〈Dαz,Dαv 〉L2(Ω) −
∫
∂Ω
v ∂z∂n dS .

It follows, by comparing this with (3.4), that N1z = ∂z/∂n. Due to Proposition 3.3 for each
u ∈ L2(Ω) the element E∗1u is thus given as the unique weak solution z of

(3.7)

{
−∆z(x) + z(x) = u(x) , ∀x ∈ Ω ,
∂
∂nz(x) = 0 , ∀x ∈ ∂Ω .

If the boundary regularity ∂Ω ∈ C2 holds, then it follows that E∗1u = z ∈ H2(Ω) and,
thus, E∗1u is also a solution of (3.7); see, e.g., [14, Chapter 6.3, Theorem 4]. This applies in
particular to Ω = (a, b) ⊂ R. If the boundary ∂Ω is not C2, then it is still often possible to
derive regularity estimates for the weak solution of (3.7), which typically lead to estimates of
the form E∗1u = z ∈ Hs(Ω) for some s ∈ [1, 2]; see, e.g., [8, 15, 28, 31, 38].

When using the equivalent norm (2.5) on Hm(Ω) we obtain the following proposition.
PROPOSITION 3.5. Let m ∈ N, let the domain Ω ⊆ RN be bounded and satisfy the

weak cone condition, and let the boundary ∂Ω be sufficiently smooth. Furthermore, let
Hm(Ω) be equipped with the norm |||·|||Hm(Ω) defined in (2.5) and let 〈 ·, · 〉Hm(Ω) denote its
corresponding inner product given in (2.6). Then, there exist m linear differential operators
Nk of order k with m ≤ k ≤ 2m− 1 which are non-characteristic on ∂Ω, such that for each
u ∈ L2(Ω) the element E∗mu is the unique solution z of the variational problem associated to
the BVP

(3.8)

(−1)m
∑
|α|=m

D2αz(x) + z(x) = u(x) , ∀x ∈ Ω ,

N2m−1−jz(x) = 0 , ∀x ∈ ∂Ω , 0 ≤ j ≤ m− 1 .

Proof. This follows analogously to Proposition 3.3, now using the choice cα = 0 for all
multiindices 0 < |α| < m, as well as cα = 1 for all |α| = m and |α| = 0.

The commonly encountered special case N = 1 is considered in the following example.
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EXAMPLE 3.6. Let m ∈ N, let the domain Ω ⊂ R be bounded, let Hm(Ω) be equipped
with the norm (2.5), and let Em : Hm(Ω)→ L2(Ω) be the embedding operator. Then,

〈
(−1)mD2mz, v

〉
L2(Ω)

= 〈Dmz,Dmv 〉L2(Ω) +

m−1∑
j=0

(−1)m+j

∫
∂Ω

D2m−1−jzDjv n dS

and it follows, by comparing this with (3.4), that Nk = (−1)k+2−mDk. Hence, due to
Proposition 3.3, for each u ∈ L2(Ω) the element E∗mu is the unique weak solution z of{

(−1)mD2mz(x) + z(x) = u(x) , ∀x ∈ Ω ,

Djz(x) = 0 , ∀x ∈ ∂Ω , 0 ≤ j ≤ m− 1 .

Using partial integration it can be seen that E∗mu = z ∈ H2m(Ω); see also [5, 15, 31].
Furthermore, when using (2.4) as an equivalent norm on Hm

0 (Ω) we obtain the following
proposition.

PROPOSITION 3.7. Letm ∈ N and let the domain Ω ⊆ RN be bounded with a sufficiently
smooth boundary ∂Ω. Furthermore, let Hm

0 (Ω) be equipped with the equivalent seminorm
|·|Hm(Ω) defined in (2.4) and let 〈 ·, · 〉Hm(Ω) denote its corresponding inner product given in
(2.7). Then, for each u ∈ L2(Ω), the element E∗m,0u is the unique solution z ∈ Hm

0 (Ω) of the
variational problem associated to the generalized Dirichlet BVP

(3.9)

(−1)m
∑
|α|=m

D2αz(x) = u(x) , ∀x ∈ Ω ,

Dαz(x) = 0 , ∀x ∈ ∂Ω , 0 ≤ |α| ≤ m− 1 .

Furthermore, given the boundary regularity ∂Ω ∈ C2m, there holds E∗m,0u = z ∈ H2m(Ω).
Proof. The proof is analogous to the proof of Proposition 3.3, with the difference that now

the boundary integrals vanish due to the choice of Hm
0 (Ω) for the test space. The regularity

z ∈ H2m(Ω) follows from [5, Theorem 9.8].
Due to the BVP characterizations (3.5), (3.8), and (3.9), it follows that the adjoint em-

bedding operator E∗m can be efficiently computed numerically via the different available
methods for solving elliptic BVPs; see, e.g., [15, 22, 28, 31, 39]. Furthermore, the study of the
properties of solutions of these BVPs directly translates to properties of the adjoint embedding
operator E∗m. As we have seen, these include in particular regularity estimates in dependence
on the domain Ω, which indicate that for u ∈ L2(Ω) the element E∗mu typically belongs to a
Sobolev space with a higher order than m.

4. Characterizations via Fourier transforms. In this section, we consider the Bessel
potential spaces Hs(RN ) for arbitrary 0 ≤ s ∈ R and present some representations of the
adjoint embedding operator E∗s in terms of the Fourier transform. We start with the following
result generalized from [37, Lemma 3.1].

PROPOSITION 4.1. Let 0 ≤ s ∈ R, let Hs(RN ) be equipped with the norm ‖·‖Hs(RN )

defined in (2.10), and let 〈 ·, · 〉Hs(RN ) denote its corresponding inner product given in (2.11).
Then, for each u ∈ L2(RN ), the element E∗su is given by

(4.1) (E∗su)(x) = F−1

((
1 + 4π2 |·|2

)−s
Fu
)

(x) .
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Proof. Let 0 ≤ s ∈ R and let u ∈ L2(RN ) and v ∈ Hs(RN ) be arbitrary, but fixed. Then,
due to the definition (2.11) of the inner product 〈 ·, · 〉Hs(RN ), there holds

〈u, v 〉L2(RN ) =

∫
RN

(Fu)(ξ)(Fv)(ξ) dξ

=

∫
RN

(
1 + 4π2 |ξ|2

)s((
1 + 4π2 |ξ|2

)−s
(Fu)(ξ)

)
(Fv)(ξ) dξ ,

and, thus, again due to (2.11), that

〈u, v 〉L2(RN ) =

〈
F−1

((
1 + 4π2 |·|2

)−s
Fu
)
, v

〉
Hs(RN )

.

Comparing this with Definition 2.10 we find that

(E∗su)(x) = F−1

((
1 + 4π2 |·|2

)−s
Fu
)

(x) ,

which yields the assertion.
When using the equivalent norm |||·|||Hs(RN ) on Hs(RN ) we obtain the following propo-

sition.
PROPOSITION 4.2. Let 1 ≤ s ∈ R, let Hs(RN ) be equipped with the norm |||·|||Hs(RN )

defined in (2.12), and let 〈 ·, · 〉Hs(RN ) denote its corresponding inner product given in (2.14).
Then, for each u ∈ L2(RN ), the element E∗su is given by

(E∗su)(x) = F−1

((
1 + (2π |·|)2s

)−1

Fu
)

(x) .

Proof. The proof is completely analogous to the proof of Proposition 4.1.
In this context, we mention below the Bessel potential operator of order s, defined by [6].
DEFINITION 4.3. For all s ∈ R the Bessel potential operator (I −∆)−s/2 is defined by

(4.2) (I −∆)−s/2u(x) := F−1

((
1 + 4π2 |·|2

)−s/2
Fu
)

(x) .

It follows from the definition (2.9) of the Sobolev spaces Hs(RN ) that there holds

u ∈ Hs(RN ) ⇐⇒ (I −∆)s/2u ∈ L2(RN ) ,

which explains their alternative name of Bessel potential spaces. Furthermore, we have the
following expression of the adjoint embedding E∗s in terms of the Bessel potential.

PROPOSITION 4.4. Let 0 ≤ s ∈ R, let Hs(RN ) be equipped with the norm ‖·‖Hs(RN )

defined in (2.10), and let 〈 ·, · 〉Hs(RN ) denote its corresponding inner product given in (2.11).
Then, for each u ∈ L2(RN ), the element E∗su is given by

(4.3) E∗su = (I −∆)−su ,

where (I −∆)−s denotes the Bessel potential operator defined in (4.2).
Proof. The result follows by comparing the characterization (4.1) of the adjoint embedding

operator E∗s with the definition (4.2) of the Bessel potential operator (I −∆)−s.
The representation (4.3) of the adjoint embedding operator E∗s should be compared to its

BVP characterization given in Proposition 3.3. The representation (4.3) is also useful when
we consider characterizations via spatial filters in the next section.
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5. Characterizations via spatial filters. In the previous sections we considered charac-
terizations of E∗su as the solution of certain boundary value problems with right hand side u,
or via a dampening of the Fourier coefficients of u by suitable factors. These characterizations
indicate that the application of E∗s results in a smoothing or “smearing out” effect. We now
make this observation more precise by characterizingE∗s in terms of spatial filters with suitable
kernels. These results are closely related to Bessel potentials, which are considered in detail
in, e.g., [6].

PROPOSITION 5.1. Let 0 < s ∈ R, let Hs(RN ) be equipped with the norm ‖·‖Hs(RN )

defined in (2.10) and let 〈 ·, · 〉Hs(RN ) denote its corresponding inner product given in (2.11).
Then, for each u ∈ L2(RN ), the element E∗su is given by the convolution

(5.1) (E∗su)(x) = (G2s ∗ u)(x) ,

where the convolution kernel Gs : RN → R is defined by

(5.2) Gs(x) := F−1

((
1 + 4π2 |·|2

)−s/2)
(x) .

Proof. Let 0 ≤ s ∈ R and u ∈ L2(RN ) be arbitrary but fixed. Due to (4.1) there holds

(E∗su)(x) = F−1

((
1 + 4π2 |·|2

)−s
Fu
)

(x) .

Hence, using the convolution property (2.8), we obtain

(E∗su)(x) =

(
F−1

((
1 + 4π2 |·|2

)−s)
∗ u
)

(x)

and, thus, together with the definition (5.2) of Gs, we obtain

(E∗su)(x) = (G2s ∗ u)(x) ,

which yields the assertion.
The function Gs can be computed explicitly, as the following result from [6] shows.
PROPOSITION 5.2. For all 0 < s ∈ R the function Gs defined in (5.2) satisfies

(5.3) Gs(x) =
1

2
N+s−2

2 π
N
2 Γ
(
s
2

)KN−s
2

(|x|) |x|
s−N

2 ,

where Γ denotes the Gamma function and KN−s
2

denotes the modified Bessel function of the
third kind.

It was shown in [6] that, for all s > 0, the function Gs given in (5.3) is everywhere
positive and decreasing in |x|. Furthermore, Gs is an analytic function of |x| except at x = 0.
In addition, Gs is integrable and, thus, its Fourier transform exists, thereby justifying (5.2)
for all s > 0. However, note that Gs ∈ L2(RN ) if and only if s > N/2. In particular, note
that (5.2) implies that G0 formally equals the delta distribution, and, thus, (5.1) simplifies to
E∗0u = u as expected. Moreover, Gs is a Green’s function of the Bessel potential operator.
This can also be seen from (4.3) and (5.1), which yield

(I −∆)−su = E∗su = G2s ∗ u .

The asymptotic behaviour of the function Gs is summarized from [6] in the following proposi-
tion.
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PROPOSITION 5.3. Let the function Gs be defined as in (5.3).

Then, for x→ 0 :


Gs(x) ∼ Γ(N−s

2 )
2sπ

N
2 Γ( s

2 )
|x|s−N , s < N ,

Gs(x) ∼ 1

2N−1π
N
2 Γ(N

2 )
log 1
|x| , s = N ,

Gs(x) ∼ Γ( s−N
2 )

2Nπ
N
2 Γ( s

2 )
, s > N .

Furthermore, for all s > 0 and for |x| → ∞ there holds

Gs(x) ∼ 1

2
N+s−1

2 π
N−1

2 Γ( s2 )
|x|

s−N−1
2 e−|x| .

For integer values of s, simpler forms of Gs not involving Bessel functions can often be
found, e.g., with the help of computer algebra tools. Here, we provide the following example.

EXAMPLE 5.4. For N = 1 and Gs defined as in (5.3) it follows that

G2(x) =
1

2
e−|x| and G4(x) =

1

4
e−|x|(|x|+ 1) .

Hence, if E1 : H1(R)→ L2(R) denotes the embedding operator, then there holds

(E∗1u)(x) = (G2 ∗ u)(x) =
1

2

∫
R
e−|x−y|u(y) dy , ∀u ∈ L2(R) ,

and analogously for E2 : H2(R)→ L2(R) it follows that

(E∗2u)(x) = (G4 ∗ u)(x) =
1

4

∫
R
e−|x−y|(|x− y|+ 1)u(y) dy , ∀u ∈ L2(R) .

Thus, we see that the application of E∗s basically acts as a smoothing of the function.

6. Characterizations via wavelet transforms. In this section, we consider some repre-
sentations of the adjoint embedding operator E∗s in terms of wavelet transforms. For a detailed
introduction and overview of the theory of wavelets we refer to the standard works [9, 29].
Here we only briefly review some relevant definitions and results, starting with the following
definition adapted from [29].

DEFINITION 6.1. Let ψ ∈ L∞(R) and let ψj,k(x) := 2j/2ψ(2jx − k) for all j, k ∈ Z.
Then, ψ is called a (basic) wavelet of class m ∈ N0 if and only if the following conditions
hold.

1. For all 0 ≤ |α| ≤ m there holds Dαψ ∈ L∞(R).
2. For all 0 ≤ |α| ≤ m the derivatives Dαψ decrease rapidly as x→ ±∞.
3. For all 0 ≤ n ≤ m there holds

∫∞
−∞ xnψ(x) dx = 0.

4. The set {ψj,k}j,k∈Z forms an orthonormal basis of L2(R).
The function ψ is also called the mother wavelet and the ψj,k are called wavelets.

The above definition including regularity and orthonormality conditions is specific to
wavelets of class m. In general, wavelets are defined as families of functions ψj,k which are
shifted and scaled versions of a mother wavelet ψ and enjoy some type of basis property, but
not necessarily orthonormality. This definition can be generalized to higher dimensions in
different ways, e.g., for N = 2, one could use the tensor products

ψj1,j2,k1,k2(x, y) := ψj1,k1(x)ψj2,k2(y) = 2(j1+j2)/2ψ(2j1x− k1)ψ(2j2x− k2)
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and consider the wavelet family {ψj1,j2,k1,k2}j1,j2,k1,k2∈Z, and similarly for all N ≥ 2. Here,
we use the more common generalization introduced below, where instead of multiple dilation
factors jn only a single factor j, but multiple basic wavelets ψε, are used.

DEFINITION 6.2. For N ∈ N and for all j ∈ Z let the sets Γj , Λj , and Λ be defined by

(6.1) Γj := 2−jZN , Λj := Γj+1 \ Γj , and Λ :=

⋃
j∈Z

Γj

 \ {(0, . . . , 0)} .

Furthermore, let the setM consisting of (2N − 1) elements ε be defined by

M :=
{
ε = (ε1 , . . . , εN ) ∈ {0, 1}N | ε 6= (0, . . . , 0)

}
,

and, for each ε ∈M, let ψε be a basic wavelet. Then, for each λ ∈ Λ we define

(6.2) ψλ(x) := 2Nj/2ψε(2jx− k) ,

where j ∈ Z, k ∈ ZN , and ε ∈M are uniquely defined via λ = 2−jk + 2−j−1ε ∈ Λ.
The theory of wavelets is closely related to the concept of a multiresolution analysis.
DEFINITION 6.3. A family {Vj}j∈Z of closed linear subspaces Vj of L2(RN ) is called a

multiresolution approximation or multiresolution analysis of L2(RN ), if and only if
1. For all j ∈ Z there holds

Vj ⊂ Vj+1 ,
⋂
j∈Z

Vj = {0} , and
⋃
j∈Z

Vj = L2(RN ) .

2. For all u ∈ L2(RN ), all j ∈ Z, and all k ∈ ZN , there holds

u(x) ∈ Vj ⇐⇒ u(2x) ∈ Vj+1 and u(x) ∈ V0 ⇐⇒ u(x− k) ∈ V0 .

3. There exists φ ∈ V0 such that {φ(x− k)}k∈ZN is an orthonormal basis of V0.
Furthermore, the multiresolution analysis {Vj}j∈Z is called r-regular, if for each m ∈ N there
exists a constant Cm > 0 such that for all 0 ≤ |α| ≤ r there holds

|Dαφ(x)| ≤ Cm (1 + |x|)−m , ∀x ∈ RN .

The function φ is also called scaling function or father wavelet. Note that, instead of
orthonormality, one could also assume {φ(x− k)}k∈ZN to be a Riesz basis. Since wavelet
families are often linked to a multiresolution analysis, we now formulate the following
definition.

DEFINITION 6.4. Let {ψλ}λ∈Λ be a wavelet family as defined in (6.2) and let {Vj}j∈Z be
an r-regular multiresolution analysis for L2(RN ) with scaling function φ. Furthermore, for
each j ∈ Z, let Wj denote the orthogonal complement of Vj in Vj+1, i.e., Vj+1 = Vj ⊕Wj .
Moreover, for all λ ∈ Γj let φλ(x) := 2Njφ(2jx− k) and assume that

1. The set {ψλ}λ∈Λj
forms an orthonormal basis of Wj .

2. The set {φλ}λ∈Γj
forms an orthonormal basis of Vj .

Then, we say that {ψλ}λ∈Λ corresponds to the r-regular multiresolution analysis {Vj}j∈Z.
It can be seen from the definition of the subspaces Wj that there holds

L2(RN ) =
⊕
j∈Z

Wj = V0

∞⊕
j=0

Wj .
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Hence, it follows that both the wavelet families {ψλ}λ∈Λ and {φλ}λ∈Γ0
∪ {ψλ}j≥0 ,λ∈Γj

form an orthonormal basis of L2(RN ). Hence, for each function u ∈ L2(RN ) there holds

(6.3) u =
∑
λ∈Λ

〈u, ψλ 〉L2(RN ) ψλ =
∑
λ∈Γ0

〈u, φλ 〉L2(RN ) φλ+
∑
j≥0

∑
λ∈Λj

〈u, ψλ 〉L2(RN ) ψλ .

These expansions can also be used to define equivalent norms on Hs(RN ), as the following
theorem adapted from [9, 29] shows.

THEOREM 6.5. Let 0 ≤ s ∈ R, let Hs(RN ) be equipped with the norm ‖·‖Hs(RN )

defined in (2.10) and let 〈 ·, · 〉Hs(RN ) denote its corresponding inner product given in (2.11).
Furthermore, let the orthonormal wavelet family {ψλ}λ∈Λ as defined in (6.2) correspond to
an r-regular multiresolution analysis of L2(RN ) with s < r and scaling function φ. Then, an
equivalent norm for Hs(RN ) is given by

‖u‖Hs(RN ) :=

∑
j<0

∑
λ∈Λj

∣∣∣〈u, ψλ 〉L2(RN )

∣∣∣2 +
∑
j≥0

∑
λ∈Λj

22js
∣∣∣〈u, ψλ 〉L2(RN )

∣∣∣2
1/2

(6.4)

=

∑
λ∈Γ0

∣∣∣〈u, φλ 〉L2(RN )

∣∣∣2 +
∑
j≥0

∑
λ∈Λj

22js
∣∣∣〈u, ψλ 〉L2(RN )

∣∣∣2
1/2

.(6.5)

Proof. As stated above, a proof of this theorem can be found in, e.g., [29]. Note that the
equivalence of the expressions (6.4) and (6.5) follows from the fact that∑

j<0

∑
λ∈Λj

|〈u, ψλ 〉|2L2(RN ) =
∑
λ∈Γ0

∣∣∣〈u, φλ 〉L2(RN )

∣∣∣2 ,
which is a consequence of the definition of the subspaces Vj and Wj .

The norm ‖·‖Hs(RN ) defined in (6.4) is induced by the inner product

〈u, v 〉Hs(RN ) :=
∑
j<0

∑
λ∈Λj

〈u, ψλ 〉L2(RN ) 〈 v, ψλ 〉L2(RN )

+
∑
j≥0

∑
λ∈Λj

22js 〈u, ψλ 〉L2(RN ) 〈 v, ψλ 〉L2(RN ) ,
(6.6)

and its equivalent version (6.5) is induced by the inner product

〈u, v 〉Hs(RN ) :=
∑
λ∈Γ0

〈u, φλ 〉L2(RN ) 〈 v, φλ 〉L2(RN )

+
∑
j≥0

∑
λ∈Λj

22js 〈u, ψλ 〉L2(RN ) 〈 v, ψλ 〉L2(RN ) .
(6.7)

When using the equivalent norm (6.4) on Hs(RN ), we obtain the following representation of
E∗s , generalizing the one-dimensional case N = 1 previously considered in [36, 37].

PROPOSITION 6.6. Let 0 ≤ s ∈ R, let Hs(RN ) be equipped with the norm ‖·‖Hs(RN )

defined in (6.4) and let 〈 ·, · 〉Hs(RN ) denote its corresponding inner product given in (6.6).
Furthermore, let the orthonormal wavelet family {ψλ}λ∈Λ defined in (6.2) correspond to a
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r-regular multiresolution analysis of L2(RN ) with s < r and with a scaling function φ. Then,
for each u ∈ L2(RN ), the element E∗su is given by

E∗su =
∑
j<0

∑
λ∈Λj

〈u, ψλ 〉L2(RN ) ψλ +
∑
j≥0

∑
λ∈Λj

2−2js 〈u, ψλ 〉L2(RN ) ψλ .

Moreover, if instead of (6.4) the expression (6.5) is used for the equivalent norm ‖·‖Hs(Ω) on
Hs(RN ) and if 〈 ·, · 〉Hs(RN ) denotes is corresponding inner product given in (6.7), then

E∗su =
∑
λ∈Γ0

〈u, φλ 〉L2(RN ) φλ +
∑
j≥0

∑
λ∈Λj

2−2js 〈u, ψλ 〉L2(RN ) ψλ .

Proof. Let 0 ≤ s ∈ R and let u ∈ L2(RN ) be arbitrary, but fixed. Due to Definition 2.10,
we know that the adjoint embedding E∗su is uniquely characterized by

〈E∗su, v 〉Hs(Ω) = 〈u, v 〉L2(Ω) , ∀v ∈ Hs(Ω) .

Due to the definition (6.6) of the inner product 〈 ·, · 〉Hs(RN ) this is equivalent to∑
j<0

∑
λ∈Λj

〈E∗su, ψλ 〉L2(RN ) 〈 v, ψλ 〉L2(RN ) +
∑
j≥0

∑
λ∈Λj

22js 〈E∗su, ψλ 〉L2(RN ) 〈 v, ψλ 〉L2(RN )

=
∑
j<0

∑
λ∈Λj

〈u, ψλ 〉L2(RN ) 〈 v, ψλ 〉L2(RN ) +
∑
j≥0

∑
λ∈Λj

〈u, ψλ 〉L2(RN ) 〈 v, ψλ 〉L2(RN ) ,

for all v ∈ Hs(Ω). Due to the orthonormality of the functions ψλ, it thus follows that

〈E∗su, ψλ 〉L2(RN ) =

{
〈u, ψλ 〉L2(RN ) , j < 0 , λ ∈ Λj ,

2−2js 〈u, ψλ 〉L2(RN ) , j ≥ 0 , λ ∈ Λj .

Hence, together with the reconstruction formula (6.3), we obtain

E∗su =
∑
j<0

∑
λ∈Λj

〈u, ψλ 〉L2(RN ) ψλ +
∑
j≥0

∑
λ∈Λj

2−2js 〈u, ψλ 〉L2(RN ) ψλ ,

which yields the first part of the assertion. The second part follows analogously.
We end this section with an example in the one-dimensional setting; see also [36, 37].
EXAMPLE 6.7. Consider the case N = 1, let ψ be a mother wavelet and let the wavelets

ψj,k(x) = 2jψ(2jx− k) be such that {ψj,k}j,k∈Z forms an orthonormal basis of L2(R). We
now want to characterize the adjoint E∗s of the embedding Es : Hs(R)→ L2(R) using these
wavelets by invoking Proposition 6.6. We write the wavelet family {ψj,k}j,k∈Z in the form
{ψλ}λ∈Λ as defined in (6.2). This can be done via

ψλ(x) = ψj,k(x) = 2j/2ψ(2jx− k) ,

using the relation λ = 2−jk + 2−j−1 ∈ Λ with Λ, as defined in (6.1). Furthermore, since
N = 1, it follows thatM = {1}, that Γj = 2−jZ, and, thus, Λj = 2−j(Z + 1/2). Hence,

λ = 2−j(k + 2−1) ∈ Λj ⇐⇒ k ∈ Z , ∀ j ∈ Z .

Next, assume that {ψj,k}j,k∈Z corresponds to an r-regular multiresolution analysis of L2(R)
with r > s. Furthermore, let φ denote the scaling function of the multiresolution analysis and
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let φ0,k(x) := φ(x − k). Due to Proposition 6.6, if Hs(R) is equipped with the norm (6.4)
and inner product (6.6), then, for all u ∈ L2(R), there holds

E∗su =
∑
j<0

∑
k∈Z
〈u, ψj,k 〉L2(R) ψj,k +

∑
j≥0

∑
k∈Z

2−2js 〈u, ψj,k 〉L2(R) ψj,k .

Similarly, if Hs(R) is equipped with the norm (6.5) and inner product (6.7), then

E∗su =
∑
k∈Z
〈u, φ0,k 〉L2(R) φ0,k +

∑
j≥0

∑
k∈Z

2−2js 〈u, ψj,k 〉L2(R) ψj,k .

Both representations can be efficiently implemented using the fast wavelet transform [9].

7. Characterizations via Fourier series. In this section, we consider representations
of the adjoint embedding operator E∗s in terms of Fourier series, generalizing and extending
results from [37]. Hereby, we restrict ourselves to Ω = (0, 1)N , but note that the presented
results can be generalized to Ω being an arbitrary open hyper-rectangle.

First of all, since the set {ek}k∈ZN with ek(x) := exp(2πi k · x) forms an orthonormal
basis of L2(Ω), it follows that every u ∈ L2(Ω) can be expanded in the Fourier series

(7.1) u(x) =
∑
k∈ZN

ukek(x) , where uk := 〈u, ek 〉L2(Ω) .

The Fourier coefficients uk can be used to characterize the Hm(Ω)-norm, as we see in
PROPOSITION 7.1. Let m ∈ N and let Hm(Ω) be equipped with the norm ‖·‖Hm(Ω)

defined in (2.2). Then, for each u ∈ L2(Ω) there holds

‖u‖Hm(Ω) =

∑
k∈ZN

∑
0≤|α|≤m

(2πk)
2α |uk|2

1/2

.

Furthermore, an equivalent norm for Hm(Ω) is given by

(7.2) ‖u‖Hm(Ω) :=

(∑
k∈ZN

(1 + 4π2 |k|2)m |uk|2
)1/2

.

Proof. Let m ∈ N and u ∈ Hm(Ω) be arbitrary, but fixed and let uk denote its Fourier
coefficients as defined in (7.1). Then, for each multiindex α, it follows from (7.1) that

Dαu =
∑
k∈ZN

ukD
αek =

∑
k∈ZN

uk (2πik)
α
ek

and, thus, the definition (2.2) of the norm ‖·‖Hm(Ω) implies that

‖u‖2Hm(Ω) =
∑

0≤|α|≤m

‖Dαu‖2L2(Ω) =
∑

0≤|α|≤m

∥∥∥∥∥ ∑
k∈ZN

uk (2πik)
α
ek

∥∥∥∥∥
2

L2(Ω)

.

Hence, together with the orthonormality of the functions ek, we find that

(7.3) ‖u‖2Hm(Ω) =
∑

0≤|α|≤m

∑
k∈ZN

(2πk)
2α |uk|2 ,
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which yields the first part of the assertion. Concerning the second part, note that, since there
exist constants C2 > C1 > 0 such that for all k ∈ ZN , there holds (see [28])

C1(1 + 4π2 |k|2)m ≤
∑

0≤|α|≤m

(2πk)
2α ≤ C2(1 + 4π2 |k|2)m ,

it follows, together with (7.3), that

C1

∑
k∈ZN

(1 + 4π2 |k|2)m |uk|2 ≤ ‖u‖2Hm(Ω) ≤ C2

∑
k∈ZN

(1 + 4π2 |k|2)m |uk|2 ,

which establishes the equivalence of norms and, thus, concludes the proof.
The equivalent norm ‖·‖Hm(Ω) defined in (7.2) is induced by the inner product

(7.4) 〈u, v 〉Hm(Ω) :=
∑
k∈ZN

(1 + 4π2 |k|2)mukvk ,

where uk and vk denote the Fourier coefficients of u and v, respectively. With this, we obtain
the following result.

PROPOSITION 7.2. Let m ∈ N, let Hm(Ω) be equipped with the norm ‖·‖Hm(Ω) defined
in (7.2) and let 〈 ·, · 〉Hm(Ω) denote its corresponding inner product given in (7.4). Then, for
each u ∈ L2(Ω), the element E∗mu is given by

(E∗mu)(x) =
∑
k∈ZN

(1 + 4π2 |k|2)−mukek(x) ,

where ek(x) = exp(2πik · x) and uk = 〈u, ek 〉L2(Ω) are the Fourier coefficients of u.
Proof. Let m ∈ N, let u ∈ L2(Ω), and let uk denote the Fourier coefficients of u. Then,

from the definition (7.4) of the inner product 〈 ·, · 〉Hm(Ω) it follows that

〈u, v 〉L2(Ω) =
∑
k∈ZN

ukvk =
∑
k∈ZN

(1 + 4π2 |k|2)m
(

(1 + 4π2 |k|2)−muk

)
vk ,

for all v ∈ Hm(Ω) and with vk denoting the Fourier coefficients of v. Hence, again using the
definition (7.4) of ‖·‖Hm(Ω), we find that the Fourier coefficients of E∗mu satisfy

(E∗mu)k = (1 + 4π2 |k|2)−muk , ∀ k ∈ ZN .

Using the reconstruction formula (7.1) we find that

(E∗mu)(x) =
∑
k∈ZN

(1 + 4π2 |k|2)−mukek(x)

which yields the assertion.
For a general 0 ≤ s ∈ R, it is possible to generalize the expression (7.2) by defining

(7.5) ‖u‖Hs(Ω) :=
∑
k∈ZN

(
1 + 4π2 |k|2

)−s
|uk|2 .

It can be shown (see [30]) that (7.5) provides an equivalent norm for the Sobolev space

H̃s(Ω) :=
{
u ∈ Hs(RN ) | supp(u) ⊂ Ω

}
,
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which is typically equipped with the restriction of the inner product (2.11); see [28]. Hence,
the results of Proposition 7.2 also apply to Ẽs : H̃s(Ω)→ L2(Ω) and we obtain

(Ẽ∗su)(x) =
∑
k∈ZN

(1 + 4π2 |k|2)−sukek(x) .

A similar result also holds for periodic Sobolev spaces, for which we now provide a definition.
DEFINITION 7.3. Let N ∈ N and let TN := RN/ZN denote the unit torus in dimension

N . Then, for 0 ≤ s ∈ R, the periodic Sobolev space Hs(TN ) is defined by

Hs(TN ) :=
{
u : TN → C

∣∣ ‖·‖Hs(TN ) <∞
}
,

where the norm ‖·‖Hs(TN ) is defined as in (7.5). Furthermore, let L2(TN ) := H0(TN ).
As before, the norm ‖·‖Hs(TN ) defined in (7.5) is induced by the inner product

(7.6) 〈u, v 〉Hs(TN ) :=
∑
k∈ZN

(1 + 4π2 |k|2)−sukvk .

Hence, we obtain the following characterization of E∗s already shown for N = 1 in [37].
PROPOSITION 7.4. Let 0 ≤ s ∈ R, let Hs(TN ) be equipped with the norm ‖·‖Hs(TN )

defined in (7.5) and let 〈 ·, · 〉Hs(TN ) denote its corresponding inner product given in (7.6).
Then, for the embedding Es : Hs(TN )→ L2(TN ) and all u ∈ L2(TN ), there holds

(E∗su)(x) =
∑
k∈ZN

(1 + 4π2 |k|2)−sukek(x) ,

where ek(x) = exp(2πik · x), and uk = 〈u, ek 〉L2(Ω) are the Fourier coefficients of u.
Proof. The proof is analogous to the proof of Proposition 7.2; see also [37].
For u ∈ L2(TN ) consider again the Fourier coefficients uk defined in (7.1), i.e.,

uk = 〈u, ek 〉L2(Ω) =

∫
(0,1)N

u(x)e−2πik·x dx ,

and note that if the integral above is approximated by the trapezoidal rule, then the Fourier
coefficients uk can be efficiently computed using the fast Fourier transform.

8. Singular value and frame decompositions. In this section, we consider various
singular value decompositions (SVDs) and frame decompositions (FDs) of the embedding
operator Es, which in turn lead to different representations of the adjoint embedding E∗s .
Some of these SVDs directly relate to representations of E∗s given in previous sections, while
others are connected to eigenvalues and eigenfunctions of certain differential operators. We
start by recalling the following definition.

DEFINITION 8.1. Let A : X → Y be a bounded and compact linear operator between
Hilbert spaces X and Y . Furthermore, let

{
σ2
k

}
k∈N be the non-zero eigenvalues of A∗A

listed in decreasing order including multiplicity and let σk > 0. Moreover, let {vk}k∈N be a
corresponding complete orthonormal system of eigenfunctions and let {uk}k∈N be defined via
uk := (1/σk)Avk. Then, (σk, vk, uk)k∈N is called a singular system of A.

If A : X → Y has the singular system (σk, vk, uk)k∈N, then one obtains the SVD

Av =
∑
k∈N

σk 〈 v, vk 〉X uk , ∀ v ∈ X ,
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which is a common tool in the analysis and solution of integral equations and linear inverse
problems; for details see, e.g., [12, 13, 27]. Here, we are interested in SVDs of the embedding
operator Es and the corresponding representations of E∗s . For this, note first that if Ω ⊂ RN
is a bounded domain with a Lipschitz continuous boundary and m ∈ N, then, as noted in
Section 2, the embedding Em : Hm(Ω)→ L2(Ω) is compact and, thus, has a singular system
(σk, vk, uk)k∈N. Hence, we obtain the SVD

(8.1) Emv =
∑
k∈N

σk 〈 v, vk 〉Hm(Ω) uk , and E∗mu =
∑
k∈N

σk 〈u, uk 〉L2(Ω) vk ,

for all u ∈ L2(Ω) and v ∈ Hm(Ω). Furthermore, for all v ∈ D((E∗m)−1/2) = Hm(Ω),

(E∗m)−1/2v =
∑
k∈N

σ−1
k 〈 v, vk 〉Hm(Ω) vk .

Note that the singular system (σk, vk, uk)k∈N implicitly depends on the inner products on
Hm(Ω) and L2(Ω). Hence, in general, every choice of equivalent norm and corresponding
inner product on these spaces results in a different singular system for Em, and, thus, in a
different SVD. Furthermore, note that for Ω = RN the embedding operator Es is not compact
(see, e.g., [3]) and, thus, the theory of SVDs is not directly applicable. However, there may
still exist singular value-type decompositions (σk, vk, uk)k∈N which essentially satisfy the
same properties as the SVD and, thus, also lead to the same representation of E∗s as in (8.1).
These can also be understood within the more general class of frame decompositions, which
essentially weaken the orthogonality assumptions on the singular functions {uk}k∈N and
{vk}k∈N; see, e.g., [10, 19, 20]. In fact, the representations of the adjoint embedding E∗s ,
based on Fourier series and wavelets presented in the previous sections, imply the following
result on singular value(-type) decompositions of Es.

PROPOSITION 8.2. Let ek(x) := exp(2πi k · x), let 0 ≤ s ∈ R, and let the orthonormal
wavelet family {ψλ}λ∈Λ corresponding to an r-regular multiresolution analysis of L2(RN )
with s < r and with a scaling function φ be as in Proposition 6.6. Then, there holds

1. If Hs(RN ) is equipped with the inner product (6.6), then

{σk}k∈N := {1}j<0,λ∈Λj
∪
{

2−js
}
j≥0,λ∈Λj

, {uk}k∈N := {ψλ}j∈Z,λ∈Λj
,

{vk}k∈N := {ψλ}j<0,λ∈Λj
∪
{

2−jsψλ
}
j≥0,λ∈Λj

,

defines a singular value-type decomposition of Es : Hs(RN )→ L2(RN ).
2. If Hs(RN ) is equipped with the inner product (6.7), then

{σk}k∈N := {1}j<0,λ∈Λj
∪
{

2−js
}
j≥0,λ∈Λj

,

{uk}k∈N := {φλ}λ∈Γ0
∪ {ψλ}j≥0,λ∈Λj

,

{vk}k∈N := {φλ}λ∈Γ0
∪
{

2−jsψλ
}
j≥0,λ∈Λj

,

defines a singular value-type decomposition of Es : Hs(RN )→ L2(RN ).
3. If Ω = (0, 1)N and Hm(Ω) is equipped with the inner product (7.4), then

σk := (1 + 4π2 |k|2)−m/2 , vk := (1 + 4π2 |k|2)−m/2ek , uk := ek ,

gives an SVD of Em : Hm(Ω)→ L2(Ω) for all m ∈ N. Similarly, the choice

σk := (1 + 4π2 |k|2)−s/2 , vk := (1 + 4π2 |k|2)−s/2ek , uk := ek ,

yields an SVD for both Es : H̃s(Ω)→ L2(Ω) and Es : Hs(TN )→ L2(TN ), given
that the inner product (7.6) is used on the spaces H̃s(Ω) and Hs(TN ), respectively.
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Proof. The first and second statements follow directly from Proposition 6.6, while the
third statement is an immediate consequence of Proposition 7.2 and Proposition 7.4.

Next, we consider a class of decompositions of the adjoint embedding E∗s resulting from
its BVP characterization given in Proposition 3.7. We have the following general

PROPOSITION 8.3. Let m ∈ N and let the domain Ω ⊆ RN have finite width; see
Definition 2.3. Furthermore, let Hm

0 (Ω) be equipped with the equivalent seminorm |·|Hm(Ω)

defined in (2.4) and let 〈 ·, · 〉Hm(Ω) denote its corresponding inner product given in (2.7).
Moreover, assume that

(8.2) B : H2m(Ω) ∩Hm
0 (Ω)→ L2(Ω) , z 7→ (−1)m

∑
|α|=m

D2αz

has a complete orthonormal eigensystem (λk, uk)k∈N and let Em,0 : Hm
0 (Ω) → L2(Ω)

denote the embedding operator. Then, for each u ∈ L2(Ω), there holds

(8.3) E∗m,0u = B−1u =
∑
k∈N

1

λk
〈u, uk 〉L2(Ω) uk .

Proof. Let m ∈ N and let the differential operator B be defined as in (8.2). Note
that, for all u ∈ L2(Ω), there holds z = B−1u if and only if z ∈ H2m(Ω) satisfies the
BVP (3.9). Hence, it also satisfies the weak problem associated to this BVP and, thus,
z = B−1u = E∗m,0u. Now if (λk, uk)k∈N denotes an eigensystem of B, then B−1 can be
expressed as in (8.3), which yields the assertion.

In the next example we apply the above proposition to the casem = 1 and certain domains
Ω, for which eigensystems of −∆|H1

0 (Ω) are known explicitly; see, e.g., [25].
EXAMPLE 8.4. We consider the embedding operator E1,0 : Hm

0 (Ω) → L2(Ω) for
three domains Ω ⊂ R2 commonly appearing in different applications such as tomography or
astronomy. Due to Proposition 8.3, we can characterize E∗1,0 via eigenvalues λ of{

−∆u(x) = λu(x) , ∀x ∈ Ω ,

u(x) = 0 , ∀x ∈ ∂Ω .

Summarizing results found in, e.g., [25] we obtain the following orthogonal eigensystems
1. For Ω = (0, a)× (0, b) ⊂ R2 an eigensystem (λm,n, um,n)m,n∈N is given by

λm,n = π2

((m
a

)2

+
(n
b

)2
)
, um,n(x) = sin

(mπx
a

)
sin
(nπy

b

)
.

2. For Ω =
{
x ∈ R2 | |x| < a

}
an eigensystem (λm,n, um,n)m∈N0 ,n∈N is given by

λm,n =

(
jm,n
a

)2

, um,n(r, θ) = Jm

(
jm,nr

a

)
(A cos (mθ) +B sin (mθ)) ,

where (r, θ) are polar coordinates and jm,n is the nth zero of themth Bessel function,
i.e., Jm(jm,n) = 0. Tables of these zeros can be found in, e.g., [1]. Note that
asymptotically as n→∞ there holds jm,n ∼ (n+m/2− 1/4)π.

3. For Ω =
{
x ∈ R2 | a < |x| < b

}
an eigensystem (λm,n, um,n)m∈N0 ,n∈N is given

by

um,n =

(
Ym(km,n)Jm

(
km,nr

a

)
− Jm(km,n)Ym

(
km,nr

a

))
(A cos (mθ) +B sin (mθ)) ,

λm,n =(km,n/a)2 ,
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where Ym is the mth Bessel function of the 2nd kind, and km,n is the nth root of

Ym(k)Jm

(
kb

a

)
− Jm(k)Ym

(
kb

a

)
= 0 .

Tables with numerical values of these roots km,n can be found in, e.g., [21].
For each of these cases, after normalizing the eigenfunctions um,n Proposition 8.3 yields

E∗1,0u =
∑
m,n

1

λm,n
〈u, um,n 〉L2(Ω) um,n ,

where the sum ranges over all indices m,n for which the eigensystems are defined.

9. Representation in discrete settings. In this section, we consider the question of how
the adjoint embedding operator E∗s can be properly represented in finite dimensions. For this,
we consider the following setting

• Xm := span {φ1, . . . , φm} is a finite dimensional linear subspace of Hs(Ω).
• Yn := span {ψ1, . . . , ψn} is a finite dimensional linear subspace of L2(Ω).
• The functions {φk}k=1,...,m and {ψk}k=1,...,n are linearly independent.
• Pm and Qn are the orthogonal projectors onto Xm and Yn, respectively.

Within this finite dimensional setting, we are now interested in the operators

(9.1) Esm,n := QnEsPm and (Esm,n)∗ = PmE
∗
sQn .

These can be characterized via certain matrix-vector multiplications, as we now see in the
following proposition.

PROPOSITION 9.1. Let 0 ≤ s ∈ R, let Es : Hs(Ω) → L2(Ω) denote the embedding
operator, and let Esm,n be defined as in (9.1). Furthermore, let u ∈ L2(Ω) and define

HXm
:=
(
〈φj , φk 〉Hs(Ω)

)m,m
k,j=1

, HYn
:=
(
〈ψj , ψk 〉L2(Ω)

)n,n
k,j=1

,

u :=
(
〈u, ψj 〉L2(Ω)

)n
j=1

, Mm,n :=
(
〈ψj , φk 〉L2(Ω)

)m,n
k,j=1

.

Then, the element (Esm,n)∗u is given by

(Esm,n)∗u =

m∑
k=1

zkφk , where z = (zk)mk=1 := H−1
Xm

Mm,nH−1
Yn

u .

Proof. Due to (9.1), for all u ∈ L2(Ω) there holds (Esm,n)∗u ∈ Xm and, thus,

(Esm,n)∗u =

m∑
k=1

zkφk , where z = (zk)mk=1 = H−1
Xm

(〈
(Esm,n)∗u, φk

〉
Hs(Ω)

)m
k=1

.

Now since, due to the definition (9.1) of Esm,n, there holds〈
(Esm,n)∗u, φk

〉
Hs(Ω)

= 〈PmE∗sQnu, φk 〉Hs(Ω) = 〈Qnu, φk 〉L2(Ω) ,

it follows that

(9.2) z = H−1
Xm

(
〈Qnu, φk 〉L2(Ω)

)m
k=1

.
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Next, since Qnu ∈ Yn, it follows that

Qnu =

n∑
j=1

vjψj , where v = (vk)nj=1 = H−1
Yn

u

and, thus, there holds(
〈Qnu, φk 〉L2(Ω)

)m
k=1

=

 n∑
j=1

vj 〈ψj , φk 〉L2(Ω)

m

k=1

= Mm,nv .

Inserting this into (9.2) yields

z = H−1
Xm

(
〈Qnu, φk 〉L2(Ω)

)m
k=1

= H−1
Xm

Mm,nH−1
Yn

u ,

which concludes the proof.
In the above proposition, H−1

Yn
u corresponds to the projection of u onto Yn, the application

of Mm,n corresponds to a basis transformation, and the application of H−1
Xm

corresponds to the
projection onto Xm. This last projection essentially represents the adjoint embedding operator
E∗s in the discrete setting, which can also be seen from the fact that HXm

is also the stiffness
matrix of the variational problem (3.1) over Xm.

10. Applications in inverse problems. In this section, we consider the application of
our theoretical considerations from the previous sections to the solution of (nonlinear) inverse
problems in the standard form

(10.1) F (u) = y ,

where the operator F : D(F ) ⊆ X → Y maps between two Hilbert spaces X and Y . A
typical setting appearing, e.g., in tomography or in parameter estimation problems is

F : Hs(Ω)→ L2(Ω′) ,

where s ∈ R and Ω,Ω′ ⊆ RN , for some N ∈ N. In many situations, it is possible to write
F = G ◦ Es, where G : L2(Ω) → L2(Ω′) and Es : Hs(Ω) → L2(Ω). One can interpret
this as G encoding the behaviour or “physics” of F and Es encoding the desired or expected
smoothness of a solution of (10.1), relating to the definition space Hs(Ω) of F . A good
example is the Radon transform [27, 30], which in 2D is given by

(Ru)(s, ϕ) :=

∫
R
u(sω(ϕ) + tω(ϕ)⊥) dt ,(10.2)

where ω(ϕ) = (cos(ϕ), sin(ϕ))T for ϕ ∈ [0, 2π) and s ∈ R. The classic X-ray tomography
problem consists of determining a density function u from sinogram measurements y connected
via Ru = y. In the simplest case, defining Ω := {x ∈ R2 | |x| ≤ 1} and Ω′ := R× [0, 2π),
one considers R : L2(Ω)→ L2(Ω′). However, if one is interested in reconstructions with a
higher smoothness, one can change the definition space to Hs(Ω) for some s > 0, which is
mathematically equivalent to defining A := REs and instead of Ru = y consider Au = y.
While the “physics” of the problem stays the same, namely line-integration according to (10.2),
the resulting problems and in general also the reconstructions obtained using regularization
methods are different. This is also underlined by the fact that for many regularization methods
Rα for solving linear inverse problems of the form Au = y it can be shown that there holds
R(Rα) = R(A∗). Now given a decomposition of the form A = G ◦ Es it follows that
A∗ = E∗s ◦ G∗, and, thus, there holds R(Rα) ⊂ R(E∗s ). This means that the assumed
underlying smoothness of the solution is directly encoded into the reconstruction method via
the use of E∗s .
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10.1. Application in iterative regularization. The embedding operator Es not only
plays a role in the proper definition of inverse problems, but it is also crucial in their solution.
This can be seen very clearly by considering Landweber iteration, which, besides Tikhonov
regularization, is one of the most well-known approaches for solving inverse problems [13, 23,
26]. It is defined via

(10.3) uδk+1 = uδk + F ′(uδk)∗
(
yδ − F (uδk)

)
,

where F ′(·) is the Fréchet derivative of F and yδ denotes a noisy version of y. Here, the
embedding operator Es, and in particular its adjoint E∗s , enter implicitly via F ′(uδk)∗, which
depends on the definition and image space of F . This becomes apparent when considering the
case F = G ◦ Es, since then F ′(u)h = G′(Es(u))Esh and, thus,

(10.4) uδk+1 = uδk + E∗sG
′(uδk)∗

(
yδ −G(uδk)

)
.

Hence, every iteration step requires the evaluation of the operator E∗s . The same is true for
most other iterative regularization methods such as the Levenberg-Marquart or the iteratively
regularized Gauss-Newton method [23], since they commonly require at least one application
of F ′(·)∗ per iteration. Furthermore, recall from Section 3 that for u ∈ L2(Ω) the elementE∗su
typically belongs to a Sobolev space with a higher order than s. Hence, iterative regularization
methods typically lead to approximations with a higher regularity than indicated by their
definition spaces.

On the other hand, a popular modification of Landweber iteration (10.3) known as
(preconditioned) Landweber iteration in Hilbert scales [11, 13, 23, 35] is defined via

uδk+1 = uδk + L−2aF ′(uδk)∗
(
yδ − F (uδk)

)
,

for some a ∈ R and with L as in Section 2.3. Depending on the problem, and in particular
on the expected smoothness of the solution, both positive and negative values of a can be
beneficial [11, 35]. Considering again the case F = G ◦ Es, the method reads

uδk+1 = uδk + L−2aE∗sG
′((uδk)∗

(
yδ − F ((uδk)

)
.

Hence, for the choice a = 1 and with L = (E∗s )−1/2 we obtain the iteration

xδk+1 = xδk +G′(xδk)∗
(
yδ −G(xδk)

)
.

Landweber iteration is often used implicitly in this form when “first discretize then regularize”
approaches are used, or when the method is employed without a previous study of the mapping
properties of the operator F . While the theory of Landweber iteration in Hilbert scales provides
this with some theoretical basis, it should be noted that this approach is only valid under
restrictive assumptions on the solution and the operator F . Hence, in general, E∗s does not
disappear from Landweber iteration.

10.2. Application in variational regularization. The operator E∗s also features promi-
nently in variational regularization methods for solving (10.1), for example in the minimization
of the nonlinear Tikhonov functional

(10.5) Tα(u) :=
∥∥F (u)− yδ

∥∥2

L2(Ω)
+ α ‖u‖2Hs(Ω) .

For nonlinear operators F , iterative optimization methods are typically used to minimize
Tα(u). Since these methods commonly involve the operator F ′(·)∗, in case that F = G ◦ Es
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they thus also explicitly require the application of E∗s . Moreover, using (2.16) we find that the
Tikhonov functional (10.5) can be rewritten as

Tα(u) =
∥∥F (u)− yδ

∥∥2

L2(Ω)
+ α

∥∥∥(E∗s )−1/2u
∥∥∥2

L2(Ω)
,

making the involvement of E∗s even more explicit. In case that F = A is linear, the minimizer
of the above functional is the solution of the linear operator equation

(10.6) (A∗A+ α(E∗s )−1)u = A∗yδ ,

and, thus, also a solution of

(10.7) (E∗sA
∗A+ αI)u = E∗sA

∗yδ .

This equation can either be solved directly or iteratively, which in both cases requires the
(efficient) application of E∗s . Furthermore, note that rearranging (10.7) yields

u =
1

α
E∗s
(
A∗yδ −A∗Au

)
.

Thus, a minimizer u of the Tikhonov functional is in the range ofE∗s . Hence, as for Landweber
iteration, Tikhonov regularization yields an approximate solution of (10.1) which in general
has a higher regularity than indicated by the definition space Hs(Ω).

10.3. Application in the discrete setting. Next, we return to the discrete setting of
Section 9, and consider a general nonlinear operator F : Hs(Ω)→ L2(Ω). With Pm and Qn
again denoting the orthogonal projectors onto the finite dimensional subspaces Xm and Yn,
we define Fm,n(u) := QnF (Pmu). Our aim is now to consider both Tikhonov regularization
and Landweber iteration in this discrete setting (see [13, 33]) and to identify the influence of
E∗s . We define

v(u) :=

〈F ( m∑
l=1

ulφl

)
, ψj

〉
L2(Ω)

n

j=1

yδ :=
(〈
yδ, ψj

〉
L2(Ω)

)n
j=1

,

A(u) :=

〈ψj , F ′( m∑
l=1

ulφl

)
φk

〉
L2(Ω)

n,m

k,j=1

.

Using this, the discrete version of nonlinear Landweber iteration (10.3) takes the form

uδk+1 = uδk + H−1
Xm

A(uδk)H−1
Yn

(yδ − v(uδk)) .

If F = A is a linear operator, then this iteration can be written as

(10.8) uδk+1 = uδk + H−1
Xm

AHH−1
Yn

(yδ − Auδk) ,

where the superscript H denotes the conjugate transpose and

A :=
(
〈Aφj , ψk 〉L2(Ω)

)n,m
k,j=1

.

Similarly, the discrete version of the Tikhonov functional (10.5) is given by

Tα(u) =
(
v(u)− yδ

)H
HYn

(
v(u)− yδ

)
+ αuHHXm

u
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FIG. 10.1. Functions u (left) and E∗1u (right) computed via solving the BVP (3.7).

and, thus, if F = A is linear, the minimizer of this functional satisfies the linear system

(10.9)
(

AHHYnA + αHXm

)
u = AHHYnyδ .

Comparing (10.8) and (10.9) to their continuous counterparts (10.3) and (10.6), respec-
tively, we see that the application of the adjoint embedding E∗s basically corresponds to the
inversion of the stiffness matrix HXm ; compare with Sections 3 and 9. Furthermore, the
application of H−1

Xm
is often the most computationally expensive part of an implementation of

Landweber iteration or Tikhonov regularization. However, since it essentially corresponds
to the application of the adjoint embedding operator E∗s , it can be replaced by one of the
characterizations considered above, followed by a projection ontoXm. This can be particularly
useful if F = G ◦ Es as before. Alternatively, since

E∗su = E∗s

(
n∑
k=1

ukψk

)
=

n∑
k=1

ukE
∗
sψk , ∀u ∈ Yn ,

it can also be beneficial to precompute the functions E∗sψk and then to reuse them when
required. In fact, it is even possible to choose φk := E∗sψk, in which case the numerical
computations necessary for Landweber iteration decrease significantly; see, e.g., [17, 34].

10.4. Numerical example: application of adjoint embedding. In this section, we
give an example of the numerical evaluation of the adjoint embedding operator E∗su for a
specific choice of s and u. In particular, we consider E1 : H1(Ω) → L2(Ω), where H1(Ω)
is equipped with the norm (2.2) corresponding to the inner product (2.3), i.e., we revisit
Example 3.4. Furthermore, we select a circular domain Ω := {(r, θ) ∈ [0, 1)× [0, 2π]} ⊂ R2

(in polar coordinates) and the function u depicted in the left panel of Figure 10.4. Following
Example 3.4, the element E∗1u is given as the unique (weak) solution of (3.7), which we
compute numerically using the same finite element discretization as described in [18]. Note
that this directly corresponds to the representation in the discrete setting described in Section 9,
with the spaces Xm and Yn spanned by the respective finite element basis functions. The
resulting function E∗1u is depicted in the right panel of Figure 10.4 and basically amounts
to a smoothed-out version of the function u. This matches well with our observations from
Sections 4 and 5 on Fourier characterizations and spatial filter representations of the adjoint
embedding.

10.5. Numerical example: inverting the Radon transform. Finally, we provide a
numerical example demonstrating the application of the adjoint embedding operator E∗s for the
solution of an ill-posed inverse problem. In particular, we consider the inversion of the Radon
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Shepp-Logan phantom Landweber Reconstruction Landweber + Embedding

Smooth phantom Landweber Reconstruction Landweber + Embedding
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FIG. 10.2. Ground truths (left) and reconstructions using Landweber iteration (10.4) both without embedding,
i.e., s = 0 (middle), and with embedding, i.e., with s = 0.5 (right), for the Shepp-Logan phantom (top) as well as a
smooth phantom (bottom).

transform (10.2) as it appears for example in computerized tomography. For simulating the
Radon transform, we use the AIR Tools II toolbox [16], which provides a matrix representation
of R : L2(Ω)→ L2(Ω′) based on a piecewise-constant discretization of the unknown density
function u on a uniform N ×N pixel grid. In our tests, we choose N = 201, as well as 300
parallel lines s and 180 uniformly spaced angles ϕ. As our ground truth densities u, we use
both the Shepp-Logan phantom as well as a smooth phantom available in the toolbox (see
the left panels of Figure 10.2), and we add 10% uniformly distributed relative noise to the
corresponding sinograms y.

For reconstruction, we apply standard Landweber iteration (10.4), both without embedding
(s = 0) and with embedding (s = 0.5). The Fourier representation (4.1) is used to compute
E∗s in each iteration. Note that the case s = 0 corresponds to classic Landweber iteration
for R : L2(Ω) → L2(Ω′), while the case s = 0.5 corresponds to the setting, discussed in
Section 10, A = R ◦ Es : Hs(Ω)→ L2(Ω′). The iteration is stopped with the discrepancy
principle using the canonical choice τ = 1.01. The corresponding results, computed using
Matlab 2022a on a standard notebook computer, are depicted in Figure 10.2. As expected, the
reconstructions obtained with embedding (s = 0.5) are much smoother than those without
it (s = 0), since the adjoint E∗s smooths-out the Landweber iterates; see Section 10.4.
Consequently, also the background noise in the reconstructions is dampened considerably. For
the Shepp-Logan phantom, both the L2(Ω) and Hs(Ω) reconstruction errors are comparable,
which is expected given that the phantom itself is not smooth. However, for the smooth
phantom the relative Hs(Ω) error is about 25% smaller when the adjoint embedding is used
in the reconstruction. This indicates that, as expected, the use of the (adjoint) embedding
operator is in particular beneficial if the ground truth itself is smooth.

11. Conclusion. In this paper, we considered some properties and different representa-
tions of the adjointE∗s of the Sobolev embedding operatorEs, which is commonly encountered
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in inverse problems. In particular, we investigated variational representations and connections
to boundary value problems, Fourier and wavelet representations, as well as connections to
spatial filters. Furthermore, we considered representations in terms of Fourier series, sin-
gular value decompositions, and frame decompositions, as well as representations in finite
dimensional settings. Finally, we discussed the use of adjoint embedding operators for solving
inverse problems and provided two illustrative numerical examples.
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