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PRECONDITIONED CHEBYSHEV BICG METHOD
FOR PARAMETERIZED LINEAR SYSTEMS∗

SIOBHÁN CORRENTY†, ELIAS JARLEBRING†, AND DANIEL B. SZYLD‡

Abstract. We consider the problem of approximating the solution to A(µ)x(µ) = b for many different values
of the parameter µ. Here, A(µ) is large, sparse, and nonsingular with a nonlinear dependence on µ. Our method is
based on a companion linearization derived from an accurate Chebyshev interpolation ofA(µ) on the interval [−a, a],
a ∈ R+, inspired by Effenberger and Kressner [BIT, 52 (2012), pp. 933–951]. The solution to the linearization is
approximated in a preconditioned BiCG setting for shifted systems, as proposed in Ahmad et al. [SIAM J. Matrix Anal.
Appl., 38 (2017), pp. 401–424], where the Krylov basis matrix is formed once. This process leads to a short-term
recurrence method, where one execution of the algorithm produces the approximation of x(µ) for many different
values of the parameter µ ∈ [−a, a] simultaneously. In particular, this work proposes one algorithm which applies a
shift-and-invert preconditioner exactly as well as an algorithm which applies the preconditioner inexactly based on the
work by Vogel [Appl. Math. Comput., 188 (2007), pp. 226–233]. The competitiveness of the algorithms is illustrated
with large-scale problems arising from a finite element discretization of a Helmholtz equation with a parameterized
material coefficient. The software used in the simulations is publicly available online, and thus all our experiments are
reproducible.
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1. Introduction. In this work, we propose a new approach for computing an efficient
approximation of the solution to the parameterized linear system given by

A(µ)x(µ) = b(1.1)

for many values of the parameter µ simultaneously. Here, A(µ) ∈ Rn×n is assumed nonsin-
gular, nonlinear in µ ∈ [−a, a], a ∈ R+, and b ∈ Rn. Specifically, our method finds accurate
approximations of x(µ) for µ in a specified region of the interval [−a, a]. Parameterized linear
systems have been studied previously, for example in [24, 29], where these systems arise in
the context of Tikhonov regularization for ill-posed problems, as well as in [31], where the
solution was approximated by a tensor of low rank, and in [26], where the right-hand side
vector also depended on the parameter.

We assume further that A(µ) in (1.1) is large and sparse and can be expressed as the sum
of products of matrices and functions, i.e.,

A(µ) = C1f1(µ) + · · ·+ Cnf
fnf

(µ),(1.2)

where nf � n. Our method requires an approximation of A(µ) via a Chebyshev interpolation.
In this way, we compute P (µ) ≈ A(µ), where

P (µ) = P0τ0(µ) + . . .+ Pdτd(µ)(1.3)

with P` ∈ Rn×n and τ`(µ) the recursively defined Chebyshev polynomials on the interval
[−a, a]. The matrix P (µ) is assumed nonsingular throughout this work, and we assume that d,
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the truncation parameter in the Chebyshev approximation (1.3), is large enough such that the
error introduced by the Chebyshev interpolation is small.

We present a preconditioned short-term recurrence Krylov subspace method to approxi-
mate the solution to

P (µ)x̃(µ) = b,(1.4)

where x̃(µ) ≈ x(µ). In practice, our method approximates the solution to a companion
linearization of the form

(K − µM)u(µ) = b̃,(1.5)

with coefficient matricesK,M ∈ Rdn×dn and a constant vector b̃ ∈ Rdn. The solution to (1.4)
and the companion linearization are equivalent in a certain sense, as shown in Section 2. Here,
the bases for two Krylov subspaces are generated via a Lanczos biorthogonalization procedure
as in the biconjugate gradient (BiCG) method [19, 33]. Specifically, the method incorporates
shift-and-invert preconditioners of the form (K−σM)−1 and (K−σM)−T , for σ ∈ (−a, a),
to accelerate convergence for solutions corresponding to values of µ close to the chosen
target σ. Additionally, the use of such preconditioners leads to a shifted linear system, and
shift- and scaling-invariance properties of Krylov subspaces are exploited. In this way, we reuse
one Krylov subspace basis matrix to determine approximations of (1.1) for many different
values of µ.

We propose two variants of our method. The first variant considers an exact application of
the preconditioner in a BiCG setting for shifted systems, inspired by [1]. The second variant
incorporates an approximate application of the preconditioners in an inexact BiCG setting for
shifted systems, based on the prior works [41, 51]. We prove a bound for the residual of the
second variant, and the bound is efficient to compute.

The first variant is appropriate only when an LU decomposition of a matrix of dimension
n × n is feasible, whereas the inexact variant has the potential to solve a wider variety of
large-scale problems. While the second variant is based on the first variant, the first variant
may be useful in itself in cases where the exact LU decomposition is computable, as discussed
in Section 8. Numerical simulations from time-delay systems and a parameterized Helmholtz
equation show the performance of our proposed algorithms. Note that the BiCG method with
right preconditioning is used throughout this work. A left preconditioned setting would have
been possible with the first variant but not the second, as inexact preconditioning requires right
preconditioning.

This paper is organized as follows. In Section 2 we present the Chebyshev linearization,
and, in Section 3, we describe how an equivalent shifted linear system is obtained. This section
also provides preliminaries for the method BiCG for shifted systems. Section 4 shows how
the preconditioners are implemented in an efficient manner, and, in Section 5, we derive the
preconditioned Chebyshev BiCG method for parameterized linear systems. Section 6 provides
a numerical example from a discretized Helmholtz equation, and Section 7 utilizes our method
for computing the transfer function from a time-delay system. In Section 8 we derive the
inexact variant of the method. Furthermore, we prove a bound for the residual produced by
iterates of the inexact method. This section also highlights the performance of our approach
for solving large-scale parameterized systems effectively. Conclusions are given in Section 9.

2. Linearization. We consider a technique called companion linearization, used in prior
works on polynomial eigenvalue problems [34], as well as in works for parameterized linear
systems; see, e.g., [26]. Our proposed linearization is of the form (1.5). The solution to (1.5)
and x̃(µ) in (1.4) with P (µ) (1.3) are equivalent in a certain sense, described as follows.
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On the interval [−a, a], the Chebyshev polynomials are defined by the well-known three-
term recurrence

τ0(µ) := 1,

τ1(µ) :=
1

a
µ,

τ`+1(µ) :=
2

a
µτ`(µ)− τ`−1(µ),

(2.1)

and the interpolation condition

P (µ∗` ) = A(µ∗` ), ` = 1, . . . , d,(2.2)

holds, where µ∗` are the d roots of the degree d polynomial τd. The companion linearization,
adapted from the work [15] and utilized here, is given by





0 I
I 0 I

I 0 I
. . .
I 0 I

P0 P1 · · · Pd−3 (−Pd+Pd−2) Pd−1


− µ

a



I
2I

2I
. . .

2I
−2Pd







u0(µ)
u1(µ)
u2(µ)

...
ud−2(µ)
ud−1(µ)


=



0
0
0
...
0
b


.

(2.3)

Specifically, u`(µ) := τ`(µ)x̃(µ) ∈ Rn, for ` = 0, . . . , d − 1, where x̃(µ) is the unique
solution in (1.4) and

b̃ :=
[
0 0 0 · · · 0 b

]T ∈ Rdn.(2.4)

In this way, (2.3) is of the form described in (1.5), where we have made the substitution

Pdud(µ) = Pd

(
2

a
µud−1(µ)− ud−2(µ)

)
(2.5)

in the last block row, using the recurrence relation (2.1). Note that sinceA(µ) is as in (1.2), the
coefficient matrices P` used in the linearization can be computed efficiently using a discrete
cosine transform [47] of the scalar functions fi, i = 1, . . . , nf . Specifically, we compute
P` = C1p

1
` + . . .+Cnf

p
nf

` , for ` = 0, . . . , d, where the ith function in (1.2) is approximated
by a degree-d polynomial, i.e., fi(µ) ≈ pi0τ0(µ) + . . . + pidτd(µ). The interpolations are
performed using Chebfun [13] in Matlab, and the coefficients pi` smaller in magnitude than
10−16 are set to zero.

Thus, we can consider highly accurate interpolations of A(µ) without substantial compu-
tation. The following theorem describes the equivalence of the solutions of the approximation
in (1.4) and the system (2.3), where the parameter µ appears only linearly.

THEOREM 2.1. Let A(µ) be as in (1.1) with parameter µ ∈ R and P (µ) as in (1.3) such
that (1.4) has a unique solution x̃(µ). Then the linear system (2.3) has a unique solution of
the form u(µ) =

[
u0(µ), . . . , ud−1(µ)

]T
with

u`(µ) := τ`(µ)x̃(µ), ` = 0, . . . , d− 1.(2.6)

Proof. Consider the first d − 1 block rows of (2.3). An induction using the three-
term recurrence of the Chebyshev polynomials on the interval [−a, a] as in (2.1) implies
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u`(µ) = τ`(µ)z̃, ` = 0, . . . , d− 1, for z̃ ∈ Rn. Inserting this parameterized solution into the
last block row of (2.3) gives(
P0τ0(µ) + · · ·+ Pd−3τd−3(µ) + (−Pd + Pd−2)τd−2(µ) +

2

a
µPdτd−1(µ)

)
z̃ = P (µ)z̃

= b,

due to (1.3). Note the substitution Pdτd(µ)z̃ = Pd
(
(2µ/a)τd−1(µ)− τd−2(µ)

)
z̃, analogous

to the relation (2.5). Thus, z̃ = x̃(µ), and the solution (2.6) to the linear system (2.3) is unique
since x̃(µ) is unique.

REMARK 2.2 (Interpolation coefficients). The linearization (2.3) can be generated from
evaluations of fi as in (1.2) at the Chebyshev nodes µ∗` described in (2.2). In this way, we do
not explicitly require the functions fi in order to carry out the linearization.

3. Preliminaries for the Chebyshev BiCG method with exact preconditioning. We
consider a preconditioned short-term recurrence method where two Krylov subspaces are
generated via a Lanczos biorthogonalization procedure as in the method BiCG. The biorthogo-
nalization process requires the action of the system matrix, as well as its adjoint. Additionally,
our setting uses the shift-and-invert preconditioner (K − σM)−1, for σ ∈ (−a, a), and the
corresponding adjoint preconditioner (K − σM)−T . Some preliminaries are described here
as preparation, and the strategy for the application of the preconditioners is shown in Section 4.
The proposed method, Algorithm 1, is derived and presented in Section 5, and numerical
simulations follow in Section 6 and Section 7.

Our right preconditioned system is of the form

(K − µM)(K − σM)−1ũ(µ) = b̃(3.1a)

⇐⇒ (K − µM + σM − σM)(K − σM)−1ũ(µ) = b̃(3.1b)

⇐⇒
(
I + (−µ+ σ)M(K − σM)−1

)
ũ(µ) = b̃,(3.1c)

where ũ(µ) = (K − σM)u(µ) and

(K − µM)(K − σM)−1 ≈ I,(3.2)

for µ ≈ σ. The parameter σ in the preconditioners is chosen based on the values of µ we are
interested in and, thus, can be seen as a target parameter. Specifically, we chose σ such that
we approximate (1.1) for many different values of µ in a neighborhood of σ.

Krylov methods have been developed to approximate the solution to shifted linear systems
of the same form as (3.1c) in many prior works. See, for example, [6, 20, 23], as well as [5],
where multiple shift-and-invert preconditioners were incorporated to build a rich search space
in a GMRES framework, and [40, 46], where Krylov recycling techniques were utilized to
solve shifted linear systems. Additionally, in [7], preconditioned Krylov subspace methods
were considered for the time-harmonic elastic wave equation. Specifically, the solution to
an equivalent linearized system was approximated, and shift-and-invert preconditioners with
complex linear shifts were considered.

The formulation (3.1c) allows us to take advantage of the shift- and scaling-invariance
properties of Krylov subspaces. More concretely, at the jth iteration of our proposed BiCG
method Algorithm 1, we seek approximations of ũ(µ) in (3.1) from the Krylov subspace
defined by

Kj := span
{
b̃,M(K − σM)−1b̃, . . . ,

(
M(K − σM)−1

)j−1
b̃
}
.(3.3)
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Here, Kj = K̃j , where Kj = Kj(M(K − σM)−1, b̃), and K̃j is the Krylov subspace
of dimension j generated from the system matrix in (3.1c) and the vector b̃. In this way,
approximating the solution to (3.1) for many values of µ in a BiCG setting requires just one
basis matrix for Kj and, analogously, one basis matrix for the Krylov subspace Lj , defined by

Lj := span
{
c̃,
(
M(K − σM)−1

)T
c̃, . . . ,

((
M(K − σM)−1

)T)j−1
c̃

}
,(3.4)

for b̃T c̃ 6= 0, c̃ ∈ Rdn. Equivalently, we use one basis matrix for (3.3) to approximate solutions
to (1.1) for many values of µ, as described in Section 2. To our knowledge, this is the first
time a Chebyshev linearization has been combined with a Krylov subspace method to obtain
approximate solutions to parameterized linear systems.

In particular, after j iterations, the Lanczos biorthogonalization generates matrices Vj ,
Wj ∈ Rdn×j , Tj ∈ Rj×j , and T j , T̄

T
j ∈ R(j+1)×j such that the relations

(3.5)
M(K − σM)−1Vj = Vj Tj + βjvj+1e

T
j = Vj+1 T j ,(

M(K − σM)−1
)T
Wj = WjT

T
j + γjwj+1e

T
j = Wj+1T̄

T
j

hold, where the columns of Vj span the subspace (3.3). Analogously, the columns of Wj span
the subspace (3.4), and the biorthogonalization procedure gives the relation

WT
j Vj = Ij ,(3.6)

where Ij ∈ Rj×j is the identity matrix of dimension j × j and ej is the jth column of Ij .
Here, the square matrix Tj has the form

Tj :=


α1 γ1

β1
. . . . . .
. . . . . . γj−1

βj−1 αj

 ∈ Rj×j ,(3.7)

and the tridiagonal Hessenberg matrices T j and T̄Tj are given by

T j :=


α1 γ1

β1
. . . . . .
. . . . . . γj−1

βj−1 αj
βj

 , T̄Tj :=


α1 β1

γ1
. . . . . .
. . . . . . βj−1

γj−1 αj
γj

 .(3.8)

Note that only the j×j principal submatrices of T j and T̄Tj are the transpose of each other. An
advantage of the Lanczos biorthogonalization procedure is the so-called short-term recurrence
of the Krylov basis vectors, i.e., that the matrices T j and T̄Tj in (3.5) are tridiagonal. In this
way, the basis vectors are computed recursively at each iteration of the algorithm. This choice
of method is different from those in the previous works [11, 28] for parameterized systems
based on companion linearization. The resulting linear systems in these works were solved in
a GMRES setting, and they used a Gram-Schmidt orthogonalization process, i.e., a long-term
recurrence.

The residual of the ith iterate generated from a BiCG procedure applied to the shifted
preconditioned linear system (3.1), denoted r̃i, is orthogonal to the subspace Li as in (3.4),
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and r̃i is an element of the Krylov subspace Ki+1 as in (3.3). As established in [22], r̃i is
colinear to the residual vector of the ith iterate resulting from the BiCG method applied to the
so-called seed system given by

M(K − σM)−1usd = b̃,(3.9)

denoted ri. This is described entirely in Section 5 and used to derive Algorithm 1. Analogously,
we denote the adjoint seed system by

(K − σM)−TMTwsd = c̃.(3.10)

Approximates of (1.1) corresponding to each µ in an interval can be obtained with little
extra computation using the exact algorithm described in Section 5, and this method is based
on the colinearity of ri and r̃i. Here, the accuracy of the approximations depends on the
dimension j of the Krylov subspace from which these approximates originate. Additionally,
the basis matrix for the Krylov subspace does not need to be stored if the values of µ are
determined in advance. Our method offers a computational advantage over solving each
parameterized system individually when we are interested in the solution to many different
parameterized systems.

4. An efficient application of a shift-and-invert preconditioner. Utilizing precondi-
tioning in the context of Krylov subspace methods can lead to methods that are more efficient
overall. This strategy is only suitable when the action of the preconditioner is cheap to apply.
Our proposed method incorporates well-established shift-and-invert preconditioning. As
we consider a BiCG setting, we require an efficient application of the preconditioner and
its adjoint, i.e., we consider applying the action of (K − σM)−1 as well as the action of
(K − σM)−T , σ ∈ (−a, a).

These preconditioners are effective for solving shifted systems of the form (1.5) when the
target parameter σ is chosen close to the values of µ of interest. This is due to the relation (3.2).
The BiCG method tends to experience fast converge when applied to linear systems of this
form. In the following, we show how the structure can be exploited such that the action of
these preconditioners can be computed efficiently.

Consider approximating the solution to the system (1.5), incorporating right precondition-
ing with the shift-and-invert preconditioner (K − σM)−1. The resulting linear system is of
the form in (3.1), expressed equivalently as

(−µ+ σ)

(
1

(−µ+ σ)
I +M(K − σM)−1

)
ũ(µ) = b̃.(4.1)

Note that the formulation in (4.1) was chosen in order to match the notation in the Exact
Algorithm 1, presented in Section 5. Specifically, the scalar 1/(−µ+σ) is the coefficient of the
identity matrix. This work considers a BiCG setting, and the linear system (4.1) incorporates
a shift with a scalar multiple of the identity matrix. Equivalent to (3.5), the shifted relations

Vj + (−µ+ σ)M(K − σM)−1Vj = Vj+1(Ij + (−µ+ σ)T j),

Wj + (−µ+ σ)
(
M(K − σM)−1

)T
Wj = Wj+1(Ij + (−µ+ σ)T̄Tj ),

(4.2)

hold, where the matrix Ij ∈ R(j+1)×j is an identity matrix of dimension j × j with an extra
row of zeros, i.e., Vj+1Ij = Vj . Note that the matrix Vj is also a basis for the Krylov subspace
generated by the matrix in (4.1) and the vector b̃ by the shift- and scaling-invariance properties
of Krylov subspaces described in Section 3.
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Approximating the solution to (4.1) in our setting requires a basis for the Krylov sub-
spaces (3.3) and (3.4), obtained from a multiplication with the matrices in (3.9) and (3.10)
at each iteration of the Lanczos biorthogonalization. The action of the matrices M and MT

require one matrix-vector multiplication of size n × n for each product. Additionally, an
efficient application of the preconditioner (K − σM)−1 can be performed via a block LU
decomposition of the matrix (K − σM)Π, where Π is a permutation matrix, as described
in [3, 30]. This process leads directly to an efficient application of (K − σM)−T . The
procedure is described as follows.

Let a permutation of the block columns of the matrix (K − σM) in (2.3) be given by

(K − σM)Π =



I −σa I
− 2σ

a I I I
I − 2σ

a I I
. . .
I − 2σ

a I I
P1 · · · Pd−3 (−Pd + Pd+2) (Pd−1 + 2σ

a Pd) P0


,

(4.3)

where Π :=

[
In

I(d−1)n

]
∈ Rdn×dn is an orthogonal matrix, and let LσUσ = (K−σM)Π

be a block LU decomposition, with

Lσ :=



I
− 2σ

a I I
I − 2σ

a I I
. . .
I − 2σ

a I I
P1 · · · Pd−3 (−Pd + Pd+2) (Pd−1 + 2σ

a Pd) P (σ)


and

Uσ :=



I −τ1(σ)I
I −τ2(σ)I

I −τ3(σ)I
. . .

...
I −τd−1(σ)I

I


.

The matrix U−1σ is identical to Uσ, except for a sign change in the first d − 1 blocks in the
last block column. Applying L−1σ to a vector amounts to recursively calculating the first d− 1
block elements, in addition to one linear solve with the system matrix P (σ) ∈ Rn×n when
computing the last block row. This process of applying L−1σ is equivalent to applying Gaussian
elimination on a lower block triangular system.

Thus, the action of the preconditioner (K − σM)−1 applied to a vector y ∈ Rdn is given
by

(K − σM)−1y = ΠU−1σ L−1σ y,(4.4)

i.e., the preconditioner in (3.1) can be applied without computing or storing the large matrices
K and M or L−1σ and U−1σ . Note that the action of P (σ)−1 in the application of L−1σ can
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be done, for example, via one LU decomposition of P (σ) performed before the start of the
algorithm, as it is considered in Algorithm 1 in Section 5. Alternatively, we can apply the
action of P (σ)−1 approximately via an iterative method, as considered in Algorithm 2 and
presented in Section 8.

The action of the adjoint preconditioner (K − σM)−T can be applied in an analogous
way, i.e.,

(K − σM)−T y = L−Tσ U−Tσ ΠT y,(4.5)

which does not require the storage of the matrices K and M or the triangular matrices L−Tσ
and U−Tσ . Additionally, the LU factorization of P (σ) required in Algorithm 1 can be reused
in the application of the adjoint preconditioner. Thus, the shift-and-invert preconditioner
(K − σM)−1 is suitable in a BiCG setting.

5. Derivation of the Preconditioned Chebyshev BiCG method for parameterized
linear systems. In [22] a BiCG algorithm was derived in order to solve a seed system of
the form (3.9), as well as a shifted system of the form (4.1), without requiring additional
matrix-vector products for the iterates of the shifted system. Additionally, in [1], a multishift
BiCG algorithm with polynomial preconditioning was proposed to approximate the solutions
for a family of shifted systems simultaneously. Such approaches are far less costly than solving
each system of interest individually in a BiCG setting, without degrading convergence in
general.

We summarize below a derivation of the original algorithm from [22], adapted to our
shifted system stemming from a companion linearization formed from a Chebyshev inter-
polation as in (1.5). The method is based on the observation that the residual vectors of the
seed system can be used to generate a basis for the Krylov subspace (3.3). The description
which follows serves to clarify the steps in Algorithm 1, which we will refer to as the Exact
Algorithm 1 or the exact algorithm.

Lines 1–8 of the Exact Algorithm 1 correspond to a variant of the standard BiCG method.
This implementation is based on a Lanczos biorthogonalization, applied to the seed sys-
tem (3.9). The coupled two-term recurrence formulation used here is based on an implicitly
formed LU decomposition of the tridiagonal matrix Tj as in (3.5); see [42] for a detailed
description. The search direction vectors in this formulation are updated as

v∗i+1 = ri − βiv∗i , w∗i+1 = si − β̄iw∗i ,(5.1)

where the residual vectors

ri := b̃−M(K − σM)−1usdi , si := c̃− (K − σM)−TMTwsdi(5.2)

are updated recursively (see line 7 of the algorithm), and usdi , w
sd
i ∈ Rdn are approximations

of the seed system and adjoint seed systems given in (3.9) and (3.10), respectively, with
usd0 := 0, wsd0 := 0. The search directions have the property (w∗i )TM(K − σM)−1v∗j = 0,
for i 6= j, and the residual vectors are orthogonal, i.e., sTi rj = 0, for i 6= j. The approximate
solution to the seed system is updated in line 8 as

usdi+1 = usdi + αiv
∗
i+1.(5.3)

Let ũi(µ) ∈ Rdn be the ith approximate solution to the shifted preconditioned linear
system (4.1), obtained from the BiCG method. Since usdi , ũi(µ) are elements of the Krylov
subspace Ki as in (3.3), we can express these approximate solutions as

usdi = pi−1
(
M(K − σM)−1

)
b̃, ũi(µ) = p̃i−1

(
1

(−µ+ σ)
I +M(K − σM)−1

)
b̃,
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for i = 1, 2, . . ., where pi−1, p̃i−1 are polynomials of degree less than or equal to i − 1.
Similarly, the residual ri in (5.2) and the residual of the ith iterate obtained from the BiCG
algorithm applied to the shifted system, denoted r̃i, can be expressed as

ri = qi
(
M(K − σM)−1

)
b̃, r̃i = q̃i

(
1

(−µ+ σ)
I +M(K − σM)−1

)
b̃,(5.4)

where qi(t) := 1− tpi−1(t), q̃i(t) := 1− tp̃i−1(t), and

qi(0) = q̃i(0) = 1.(5.5)

Here the polynomials qi and q̃i are of degree less than or equal to i. The following lemma
characterizes the relation between ri and r̃i, originally established in [22].

LEMMA 5.1. Let ri and r̃i as in (5.4) be the residuals at iteration i resulting from the
BiCG method applied to (3.9) and (4.1), respectively. Then, there exists ζi ∈ R such that
ri = ζir̃i, i.e., ri and r̃i are colinear for i = 1, . . . , j.

We omit the proof of Lemma 5.1 as it is analogous to the proof of [22, Theorem 1]. Briefly,
the result is shown by noting the shift-invariance of Krylov subspaces as well as the property
of the residual of the BiCG iterates: ri, r̃i ∈ (Li)⊥ ∩ Ki+1 =: Ji, where Li is as in (3.4) and
Ki+1 is as in (3.3). The biorthogonality condition (3.6) implies that the dimension of Ji is 1,
and the result follows.

By Lemma 5.1, the relation between the residual of the shifted system and the seed system
is given by

r̃i =
1

ζi
ri,(5.6)

or, equivalently, with residual polynomials,

r̃i = q̃i

(
1

−µ+ σ
I +M(K − σM)−1

)
b̃ =

1

ζi
qi
(
M(K − σM)−1

)
b̃.(5.7)

The equality in (5.7) can be expressed as a function of t, i.e.,

q̃i (1/(−µ+ σ) + t) = (1/ζi)qi(t),

and, paired with the equality in (5.5), gives

ζi = qi

(
−1

−µ+ σ

)
.(5.8)

Note that the above gives an exact expression for the colinearity coefficient ζi in Lemma 5.1,
completely determined from the residual of the seed system. Thus, from (5.6) and (5.8), we
can express the ith residual resulting from the BiCG method applied to the shifted system via
the residual of the ith iterate obtained from the BiCG procedure applied to the seed system.
In other words, we can obtain the residual vectors corresponding to many different shifted
systems from one execution of the algorithm and, as a result, update the search vectors in (5.1)
to approximate the solution to many shifted systems as in (5.3).

The derivation which follows serves to clarify lines 9–14 of the Exact Algorithm 1, where
our algorithm is applied to (4.1) for a set of shifts {µl}, l = 1, . . . , k. In the algorithm, we
denote the particular ζi for each shift µl as ζi(µl) but use the notation ζi := ζi(µ) here for
simplicity.
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The residual of the BiCG iterates applied to the seed system satisfy the following three-
term recursion:

ri+1 = −αiM(K − σM)−1ri +
βiαi
αi−1

ri−1 +

(
1− βiαi

αi−1

)
ri,(5.9)

where we have inserted the update formula v∗i+1 = ri − βiv∗i from line 3 of the algorithm into
the computation in line 7, i.e.,

ri = ri−1 − αi−1M(K − σM)−1v∗i

= ri−1 − αi−1M(K − σM)−1
(

1

βi
(ri − v∗i+1)

)
= ri−1 −

αi−1
βi

M(K − σM)−1ri +
αi−1
βiαi

(ri − ri+1)

and used the recursive update formula M(K − σM)−1v∗i+1 = (1/αi)(ri − ri+1) in the last
equality. The relation (5.9) can be expressed with the residual polynomial from (5.4) as

qi+1(t) = −αitqi(t) +
βiαi
αi−1

qi−1(t) +

(
1− βiαi

αi−1

)
qi(t).(5.10)

Specifically, taking t = −1/(−µ+ σ) in (5.10) and using the equality in (5.8), gives

ζi+1 =

(
1− αi

( −1

−µ+ σ

)
− βiαi
αi−1

)
ζi +

βiαi
αi−1

ζi−1,(5.11)

i.e., a recurrence for the colinearity coefficients in Lemma 5.1, incorporated in line 10 of the
algorithm. Thus, from (5.6), (5.9), and (5.11), the three-term recurrence of the residual vectors
resulting from the BiCG method applied to the shifted system is given by

r̃i+1 =
1

ζi+1

(
−ζiαiM(K − σM)−1r̃i + ζi−1

( βiαi
αi−1

)
r̃i−1 + ζi

(
1− βiαi

αi−1

)
r̃i

)
= − ζiαi

ζi+1

(
1

−µ+ σ
I +M(K − σM)−1

)
r̃i +

ζi−1
ζi+1

(
βiαi
αi−1

)
r̃i−1

+

(
1− ζi−1

ζi+1

( βiαi
αi−1

))
r̃i,

where we have used the relation (5.11) to obtain the third term of the summation in the last
equality. Equivalently, we can express the (i+ 1)st residual generated from approximating the
solution to (4.1) with the BiCG method through the recurrence

r̃i+1 = −α̃i
(

1

−µ+ σ
I +M(K − σM)−1

)
r̃i +

β̃iα̃i
α̃i−1

r̃i−1 +

(
1− β̃iα̃i

α̃i−1

)
r̃i,

where the coefficients α̃i and β̃i are defined as

α̃i := −αi
(

ζi
ζi+1

)
, β̃i :=

(
αi
α̃i

)(
α̃i−1
αi−1

)
ζi−1
ζi+1

βi =

(
ζi−1
ζi

)2

βi(5.12)

and are updated in line 11 of the algorithm. Note that initializing with parameters ζ0 = ζ1 = 1
in (5.11) ensures that the formulation described above holds for the corresponding seed system
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(cf. (5.9)). Analogous to (5.1), we compute the search vectors for solving the shifted systems
as

ṽi+1 =
1

ζi
ri − β̃iṽi,(5.13)

in line 12 and update the approximation of each shifted preconditioned system in line 13 as

ũi+1(µ) = ũi(µ) + α̃iṽi+1,(5.14)

i.e., the shifted equivalent of the update described in (5.3). Lines 15–25 of the algorithm
ensure that the approximations x̃j(µl) to the linear system (1.1) from the Krylov subspace of
dimension j have relative residual norm below a certain tolerance tol, for l = 1, . . . , k.

The Exact Algorithm 1 applies the shift-and-invert preconditioners (K − σM)−1 and
(K − σM)−T via a block LU decomposition as described in Section 4. Note that for each
update of the solution to the seed system, only some additional scalar operations and vector
additions are required to update the approximations of ũ(µl) as in (4.1) for each µl. This is
due to the colinearity of the residuals ri and r̃i as described in Lemma 5.1. Furthermore, the
Exact Algorithm 1 does not require the storage of the residual vectors in (5.2) at each iteration,
as long as the values of µl, l = 1, . . . , k, are determined before the algorithm is executed. This
allows for a method with low memory consumption, even when the degree d of the Chebyshev
approximation is large. If ρi in line 2 vanishes, then the algorithm encounters a breakdown.
This scenario never occurred in our experiments.

REMARK 5.2 (Adjoint parameterized system). The Exact Algorithm 1 can be used to
approximate the shifted right preconditioned adjoint linear system given by

(−µ+ σ)

(
1

(−µ+ σ)
I + (K − σM)−TMT

)
w̃(µ) = c̃

⇐⇒
(
(K − σM)T + (−µ+ σ)MT

)
w̃(µ) = (K − σM)T c̃

⇐⇒ (K − µM)T w̃(µ) = (K − σM)T c̃,

(5.15)

where w̃(µ) ∈ Rdn. This system can be viewed as the shifted version of the adjoint seed
system (3.10). Solutions to the adjoint system A(µ)T z(µ) = c, c ∈ Rn, cannot be recovered
from the above system due to the structure of the adjoint of the linear system (2.3). Specifi-
cally, the solution vector in (5.15) does not contain z(µ) since the Chebyshev interpolation
coefficients of AT (µ) appear in the last block column of the matrix (K − µM)T as opposed
to the last block row of the matrix (K − µM) in (2.3).

6. Simulation of a parameterized Helmholtz equation. To highlight the capabilities of
our method, we consider a Helmholtz equation, which describes the propagation of waves.
Successful approaches for solving the Helmholtz equation have been considered in prior works
such as [8, 16], as well as in [17, 18], where preconditioning was combined with fast iterative
solvers. In particular, we consider the parameterized Helmholtz equation given by

(6.1)

(
∇2 + sin2(µ)α(x) + µ2 + cos2(µ)β(x)

)
u(x) = h(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where α(x) = 1+sin(x1), β(x) = 1+cos(x2), h(x) = exp(−x1x2), and Ω ⊂ ([0, 1]×[0, 1])
is as in Figure 6.2. The parameter µ in (6.1) can be interpreted as a material parameter. It is of
interest to approximate the solution u(x) for a variety of different values µ.

Consider a discretization of (6.1) which is of the same form as (1.1), i.e.,

A(µ) := A0 + sin2(µ)A1 + µ2A2 + cos2(µ)A3,(6.2)
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Algorithm 1: Preconditioned Chebyshev BiCG method for parameterized linear
systems.

Input: P`, ` = 0, 1, . . . , d, as in (1.3) (Chebyshev coefficients)
LPUP , decomposition of P (σ) ∈ Rn×n for L−1σ
b̃ ∈ Rdn as in (2.4), c̃ ∈ Rdn such that b̃T c̃ 6= 0

σ ∈ R as in (3.1) (target parameter), tol
{µl}l=1,...,k, µl ∈ R, |µ1 − σ| ≤ |µ2 − σ| ≤ · · · ≤ |µk − σ| (ordered set of shifts)
A(µl), l = 1, . . . , k, as in (1.2), ζ−1(µl) = ζ0(µl) = 1, l = 1, . . . , k

Output: Approx. sol. x̃j(µl), l = 1, . . . , k, to (1.1), from subspace of dim. j
Initialize: ρ−1 = 1, α−1 = 1, ω(µl) = −1/(−µl + σ), l = 1, . . . , k

v∗0 = w∗0 = 0 ∈ Rdn (search direction, seed system)
ṽ0(µl) = 0 ∈ Rdn, l = 1, . . . , k (search directions, shifted systems)
usd0 = 0 ∈ Rdn (approx. to seed system)
ũ0(µl) = 0 ∈ Rdn, l = 1, . . . , k (approx. to shifted systems)
r0 = b̃, s0 = c̃ (residual vectors)

1 for i = 0, 1, 2, . . . do
2 ρi = (ri)

T si, βi = −ρi/ρi−1
3 v∗i+1 = ri − βiv∗i , w∗i+1 = si − β̄iw∗i
4 Compute v̂1 such that v̂1 = M

(
(K − σM)−1v∗i+1

)
as in (4.4)

5 αi = ρi/((w
∗
i+1)T v̂1)

6 Compute v̂2 such that v̂2 = (K − σM)−T (MTw∗i+1) as in (4.5)
7 ri+1 = ri − αiv̂1, si+1 = si − ᾱiv̂2
8 usdi+1 = usdi + αiv

∗
i+1 (approx. sol. to seed system from subspace of dim i+ 1)

9 for l=1,. . . ,k do
10 ζi+1(µl) = (1− αiω(µl)− βiαi

αi−1
)ζi(µl) + βiαi

αi−1
ζi−1(µl) as in (5.11)

11 α̃i(µl) = −αi
(

ζi(µl)
ζi+1(µl)

)
, β̃i(µl) =

(
ζi−1(µl)
ζi(µl)

)2
βi as in (5.12)

12 ṽi+1(µl) =
(

1
ζi(µl)

)
ri − β̃i(µl)ṽi(µl) as in (5.13)

13 ũi+1(µl) = ũi(µl) + α̃i(µl)ṽi+1(µl) as in (5.14)
14 end
15 Compute x̃i+1(µk) = POSTPROCESS(ω(µk), ũi+1(µk))

16 Compute res = ‖A(µk)x̃i+1(µk)− b‖ / ‖b‖
17 if res ≤ tol then
18 Set x̃j(µk) = x̃i+1(µk), j = i+ 1

19 for l = 1, . . . , k − 1 do
20 x̃j(µl) = POSTPROCESS(ω(µl),ũj(µl))
21 end
22 if ‖A(µl)x̃j(µl)− b‖ / ‖b‖ ≤ tol, l = 1, . . . , k − 1 then
23 return
24 end
25 end
26 end
27 function x̃i+1(µ) = POSTPROCESS(ω(µ),ũi+1(µ))
28 Compute v̂3 = ω(µ)(K − σM)−1ũi+1(µ) as in (4.4)
29 Set x̃i+1(µ) = v̂3(1 : n)

30 end
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where A0, . . . , A3 arise from a finite element method (FEM) discretization and b is the
corresponding load vector.1 Approximating A(µ) in (6.2) with a Chebyshev interpolation
leads to a parameterized linear system of the form (1.4), where P (µ) ≈ A(µ). We consider
an approximate solution to the shifted preconditioned system (3.1) based on a linearization of
P (µ) as in (2.3). The resulting approximation of the companion linearization and, equivalently,
to x(µ) is obtained for many values of the parameter µ via one execution of the Exact
Algorithm 1. The relative residual norm at iteration i,

‖A(µ)x̃i(µ)− b‖
‖b‖

,(6.3)

is computed for a variety of µ with A(µ) in (6.2). The results of this experiment are presented
in Figures 6.1–6.5. Here, the nonlinear functions sin2(µ) and cos2(µ) are approximated using
Chebfun in Matlab with truncation parameter d as in (1.3); see [13]. All simulations in this
paper were carried out on a 2.3 GHz Dual-Core Intel Core i5 processor with 16 GB RAM.
The software for all examples in this paper were implemented in Matlab, and we made them
available online.2
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FIG. 6.1. Convergence for approximating the parameterized Helmholtz equation (6.1), generated from one
execution of the Exact Algorithm 1 with σ = 7.5 and evaluated for different values of µ ∈ [−10, 10]. Here
n = 243997, d = 50, tol = 10−9, and with the relative residual norm in (6.3).

Our experiments show that the preconditioned BiCG method leads to an accurate ap-
proximation of the linear system corresponding to a discretization of (6.1) for values of the
parameter µ close to the target parameter σ, and one execution of the Exact Algorithm 1 leads
to a large variety of solution approximations. Specifically, as the algorithm is run to solve the
seed system (3.9), each additional approximation corresponding to values of the parameter µl,
l = 1, . . . , k, is updated using only scalar operations and vector additions. Before each of the
approximates of (1.1) is returned, a final application of the preconditioner is performed. The
basis for the Krylov subspace (3.3) does not need to be stored if the values of the parameter µ
are determined in advance.

The simulation, visualized in Figure 6.1(a), gives access to the solutions corresponding to
all values of µ ∈ [6, 9], though we visualize just four of these. Analogously, the simulations
shown in Figure 6.3(a) and Figure 6.4(a) provide all solutions corresponding to µ ∈ [10.5, 12].

1The matrices and vector were generated using the finite element software FEniCS [2].
2https://github.com/siobhanie/ChebyshevBiCG
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FIG. 6.2. Solutions of a Helmholtz equation corresponding to the simulation in Figure 6.1(a) and one execution
of the Exact Algorithm 1 with σ = 7.5.

Note that the relative residual norms of the approximate solutions are all below a prescribed
tolerance.

In Figure 6.1(b), Figure 6.3(b), and Figure 6.4(b), we see the benefit of the short-term
recurrence property of the Exact Algorithm 1, i.e., the roughly constant cost of each iteration.
Specifically, we plot the relative residual norm in terms of CPU seconds, where we measure
CPU time after the precomputation steps. This feature is especially useful for simulations
which require many iterations until convergence and is not present in methods with a long-term
recurrence, e.g., GMRES and the full orthogonal method (FOM). Note that, though one
execution of the Exact Algorithm 1 gives approximations for many different values of µ, each
convergence curve here corresponds to a separate run.

From comparing the simulations in Figure 6.3 and Figure 6.4, we see that the cost of
the approach is largely independent of the degree d of the Chebyshev interpolation. More
precisely, the interpolation corresponding to the simulation in Figure 6.3 was performed
on the interval [−15, 15] with d = 64, leading to a companion linearization of dimension
64n×64n. Similarly, the simulation in Figure 6.4 was performed on the interval [−40, 40] with
d = 124, where the companion linearization had dimension 124n× 124n. The experiments
in Figure 6.3(a) and Figure 6.4(a) converged in roughly the same number of iterations. The
simulation in Figure 6.4(b) required approximately twice as many matrix-vector products with
a matrix of dimension n× n as the one in Figure 6.3(b) and took roughly twice as many CPU
seconds as a result. Note that the cost of the application of the preconditioner is the same
in both of these simulations as one LU decomposition of P (σ) ∈ Rn×n is performed in the
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precomputation step. By performing the interpolation on a larger interval, we have access to a
greater variety of solutions. However, only the solutions corresponding to values of µ close to
the target σ converge quickly.
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(a) Relative residual norm in terms of iterations.
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FIG. 6.3. Convergence for approximating the parameterized Helmholtz equation (6.1), generated from one
execution of the Exact Algorithm 1 with σ = 11.25 and evaluated for different values of µ ∈ [−15, 15]. Here
n = 243997, d = 64, tol = 10−9, and the relative residual norm (6.3).
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(a) Relative residual norm in terms of iterations.
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FIG. 6.4. Convergence for approximating the parameterized Helmholtz equation (6.1), generated from one
execution of the Exact Algorithm 1 with σ = 11.25 and evaluated for different values of µ ∈ [−40, 40]. Here
n = 243997, d = 124, tol = 10−9, and the relative residual norm (6.3).

REMARK 6.1 (Magnitude of the parameter µ). The Chebyshev coefficients can be
approximated efficiently using a discrete cosine transform. Thus, we can interpolate A(µ) on
a large interval with little additional cost. While doing so leads to a larger linearization, it
also allows for approximations of (1.1) for large values of µ. Considering values of µ close
enough to σ leads to convergence in j iterations, where j << dn, with the additional benefit
of a constant low cost per iteration. The experiments in this section were designed in order to
show a wide variety of solutions.

7. Simulation of a transfer function of a time-delay system. Consider the solution to
the linear system (1.1), where

A(µ) := −µI +A0 +A1e
−µ(7.1)
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FIG. 6.5. Solutions of a Helmholtz equation corresponding to the simulation in Figure 6.3(a) and one execution
of the Exact Algorithm 1 with σ = 11.25.

with random matrices A0, A1 ∈ Rn×n, a random vector b ∈ Rn, and n = 80. The solution to
this system is the transfer function of the time-delay system described by

ẋ(t) = A0x(t) +A1x(t− τ)− bv(t),

y(t) = CTx(t).

Specifically, the transfer function is obtained by applying the Laplace transform to the state
equation with x(0) = 0. In this formulation, µ is the Laplace variable; see [27, 35, 36]. The
vector b ∈ Rn is the external force, x(t) ∈ Rn is the state vector, v(t) is the input, y(t) is the
output, and τ > 0 is the delay. Without loss of generality, we set τ = 1 and assume the entire
state is the output, i.e., C = I ∈ Rn×n.

Here we use the Exact Algorithm 1 with preconditioner K−1 and the adjoint precondi-
tioner K−T . The application of the preconditioners is analogous to the implementation of
(K − σM)−1 and (K − σM)−T with σ = 0. The shifted preconditioned system (3.1c) is
approximated with one execution of the Exact Algorithm 1, generating approximations of
x(µ) as in (1.1). The relative residual norm at iteration i is computed as in (6.3) with A(µ)
from (7.1).

The results of this experiment are displayed in Figure 7.1. We see that our method
is competitive for a variety of positive and negative values of µ, and that approximations
corresponding to values of µ closer to the target parameter σ = 0 converge faster than
approximations corresponding to values of µ farther away. As the Exact Algorithm 1 is run,
each approximation is updated using just additional scalar and vector computations. Before
each approximate solution to (1.1) is returned, a final application of the preconditioner is
performed. The basis for the Krylov subspace (3.3) does not need to be stored if the values
of the parameter µ are determined in advance. Additionally, the larger the dimension j of
the Krylov subspace from which the approximates come, the more solutions we have access
to. As before, the nonlinear function e−µ is approximated using Chebfun in Matlab with
truncation parameter d as in (1.3).

8. An inexact variant of the preconditioned Chebyshev BiCG method for parame-
terized linear systems. In the short-term recurrence method of the Exact Algorithm 1, the
action of the preconditioners (K − σM)−1 and (K − σM)−T are applied via a block LU
decomposition of the matrix product (K−σM)Π in (4.3) when approximating the solution to
the shifted preconditioned linear system (3.1). In this way, each application of (K − σM)−1

requires the action of P (σ)−1 ∈ Rn×n, and each application of (K − σM)−T requires the
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FIG. 7.1. Convergence for approximating (1.1), generated from one (total) execution of the Exact Algorithm 1
with σ = 0 and A(µ) as in (7.1). Here d = 17, tol = 10−11, the relative residual norm (6.3), and b a random
vector.

action of P (σ)−T ∈ Rn×n, as can be seen in (4.4) and (4.5). An LU decomposition of the
matrix P (σ) was performed in the precomputing step and reused at each iteration, though
other choices based on a factorization are possible. This approach is only suitable when an LU
decomposition of a matrix of dimension n× n is feasible.

Consider now an inexact preconditioned BiCG method, where the action of (K − σM)−1

as well as the action of (K−σM)−T are applied approximately at each iteration. Specifically,
the corresponding linear systems with system matrices P (σ) and P (σ)T are solved iteratively,
and the accuracy of the solves varies from one iteration to the next. This approach, inspired by
the work [51], eliminates the need for an LU decomposition of P (σ), offering an improvement
in performance for approximating solutions to (1.1). A similar inner-outer approach was
investigated in [49], where the effect of the error in the inexact matrix-vector products was
analyzed for several different iterative methods. Additionally, in [32], a relaxation strategy for
low-rank ADI was studied for solving Lyapunov equations. Both of these works successfully
increased the inner tolerance as the error in the outer method decreased, and we apply this
strategy to our method.

Similar approaches, where Krylov methods have been used as preconditioners, have been
investigated in, for example, [10, 12, 43], as well as [4, 48, 52], where stopping criteria were
utilized. To our knowledge, this is the first time that an inexact BiCG method has been used to
solve for the solution of multiple shifted systems simultaneously and the first time that such
a framework has been paired with a linearization of the form in (1.5) to solve parameterized
systems, where the dependence on the parameter is nonlinear.

8.1. Derivation of the inexact preconditioned Chebyshev BiCG method for param-
eterized linear systems. The jth iteration of the Lanczos biorthogonalization procedure
generated by the matrix M(K − σM)−1 and its adjoint appear in (3.5). As we are inter-
ested in an inexact algorithm, we consider the analogous relations corresponding to the
inexact and iteration-dependent application of the preconditioning matrices (K − σM)−1 and
(K − σM)−T , i.e., at the iteration j, the relations

(8.1)
MẐj = Vj T̂j + β̂jvj+1e

T
j = Vj+1 T̂ j ,

X̂j = Wj T̂
T
j + γ̂jwj+1e

T
j = Wj+1

ˆ̄TTj
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hold, where

ẑi = P−11i
vi,(8.2a)

x̂i = P−12i

(
MTwi

)
(8.2b)

with

P−11i
≈ (K − σM)−1 and P−12i

≈ (K − σM)−T .

Here Ẑj =
[
ẑ1, . . . , ẑj

]
, X̂j =

[
x̂1, . . . , x̂j

]
∈ Rdn×j , and the matrices T̂j ∈ Rj×j and

T̂ j ,
ˆ̄TTj ∈ R(j+1)×j are of the same form as the matrices in (3.7) and (3.8) with entries α̂i,

γ̂i, and β̂i, i = 1, . . . , j, defined below. Note that the choice of notation in (8.2) above is
to differentiate the application of the preconditioner in (8.2a) from the application of the
adjoint preconditioner in (8.2b). More specifically, the preconditioning matrix (K − σM)−T

is applied inexactly to the vector (MTwi) ∈ Rdn in the adjoint case.
In this setting, an application of the preconditioner P−11i

refers to approximating the action
of P (σ)−1 within the application of L−1σ as in (4.4), and an application of P−12i

refers to the
application of P (σ)−T in the application of L−Tσ as in (4.5). We denote an exact application
of the preconditioners on the vectors vi and MTwi as

zi := (K − σM)−1vi,

xi := (K − σM)−T
(
MTwi

)
.

(8.3)

Note that these vectors are not computed in the inexact algorithm, as the preconditioners
are applied only approximately. These vectors are defined for the purpose of our analysis.
Consider the ith column in equations (8.1), i.e.,

(8.4)
Mẑi = γ̂i−1vi−1 + α̂ivi + β̂ivi+1,

x̂i = β̂i−1wi−1 + α̂iwi + γ̂iwi+1,

where v0 := 0, w0 := 0. Equations (8.4) paired with the biorthogonality condition (3.6) lead
to the definition

α̂i := wTi Mẑi.(8.5)

Further, we define

r̂i := β̂ivi+1 = Mẑi − α̂ivi − γ̂i−1vi−1,(8.6a)

ŝi := γ̂iwi+1 = x̂i − α̂iwi − β̂i−1wi−1,(8.6b)

giving

1 = wTi+1vi+1 =

(
ŝi
γ̂i

)T (
r̂i

β̂i

)
,

and thus the following definition:

γ̂i :=
ŝTi r̂i

β̂i
·(8.7)
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We define β̂i using the so-called canonical choice as in [25], i.e.,

β̂i := ‖r̂i‖2 .(8.8)

We are interested in solving the shifted preconditioned system (3.1) with our inexact
BiCG method. Equivalent to (8.1), at iteration j, the shifted inexact relations

(8.9)
Vj + (−µ+ σ)MẐj = Vj+1

(
Ij + (−µ+ σ)T̂ j

)
,

Wj + (−µ+ σ)X̂j = Wj+1

(
Ij + (−µ+ σ) ˆ̄TTj

)
hold, where Ij is as in (4.2). In practice, we form the matrices Ẑj and T̂ j in (8.9) once and
compute x̃j(µ), the approximation of the solution to (1.1) at iteration j for each value of µ as

yj(µ) = (Ij + (−µ+ σ)T̂j)
−1(βe1),(8.10a)

ûj(µ) = Ẑjyj(µ),(8.10b)
x̃j(µ) = (ûj(µ))1:n,(8.10c)

where β := ‖b‖ and (ûj(µ))1:n denotes the first n entries of (ûj(µ)) ∈ Rdn. Here Ij is as
in (3.6), e1 is the first column of the identity matrix of dimension j × j, and T̂j ∈ Rj×j is
defined as T̂ j with the last row removed. We assume the matrix in (8.10a) is nonsingular.

Computing the approximation x̃j(µ) requires one linear solve with a tridiagonal matrix
of dimension j × j and one matrix-vector product with a matrix of dimension dn× j for each
value of µ. Note that if at any iteration the inner product of the residual vectors vanishes, i.e.,
(ŝi)

T r̂i = 0, then the algorithm encounters a breakdown. This situation never occurred while
carrying out the experiments in this work. A full description of the inexact preconditioned
Chebyshev BiCG algorithm for parameterized linear systems appears in Algorithm 2. We will
refer to Algorithm 2 as the Inexact Algorithm 2 or the inexact algorithm.

The Inexact Algorithm 2 terminates when the approximations x̃j(µl) of the linear systems
given in (1.1) from the Krylov subspace of dimension j have relative residual norm below
a certain tolerance tol, for l = 1, . . . , k. As the Inexact Algorithm 2 stores the basis matrix
Ẑj for approximations of x̃j(µ), as well as the tridiagonal matrix T̂j , approximations of (1.1)
corresponding to µ /∈ {µl}, l = 1, . . . , k, can be computed after the algorithm has been
executed once. In particular, it is reasonable to expect accurate approximations corresponding
to values of µ close to the target σ, i.e., for µ such that |µ− σ| ≤ |µk − σ|.

REMARK 8.1 (Storing Ẑj and T̂j ). In the Exact Algorithm 1, the colinearity of the
residuals of the ith approximations of the BiCG method applied to the seed and shifted
systems was used in order to derive a short-term recurrence method for shifted systems. These
residual vectors spanned (3.3), and a basis matrix for the Krylov subspace was not stored.
Further, updates were computed based on an implicit LU factorization of Tj in (3.5), i.e., by
using a coupled two-term recurrence. This is also the approach in the standard BiCG method.

It was not possible to show an analogous colinearity of the residuals for the inexact
method, so the Inexact Algorithm 2 does not update approximations of the shifted systems
with the same approach as the Exact Algorithm 1. For reasons of presentation, the Inexact
Algorithm 2 stores the basis matrix Ẑj and computes the approximations corresponding to
each µ as described in (8.10). An approach based on an implicit LU factorization of each
matrix (Ij + (−µl + σ)T̂j), l = 1, . . . , k, could have been taken. Note that while Ẑj is a basis
matrix for the set of approximations given by the Inexact Algorithm 2, it is not a basis matrix
for (3.3); see Remark 8.3.
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Algorithm 2: Inexact preconditioned Chebyshev BiCG method for parameterized
linear systems.

Input: P`, ` = 0, 1, . . . , d, as in (1.3) (Chebyshev coefficients)
b̃ ∈ Rdn as in (2.4), c̃ ∈ Rdn such that b̃T c̃ 6= 0

σ ∈ R as in (3.1) (target parameter), tol
{µl}l=1,...,k, µl ∈ R, |µ1 − σ| ≤ |µ2 − σ| ≤ · · · ≤ |µk − σ| (ordered set of shifts)
A(µl), l = 1, . . . , k, as in (1.2)
Output: Approx. sol. x̃j(µl), l = 1, . . . , k, to (1.1), from subspace of dim. j,

matrices Ẑj ∈ Rdn×j , T̂j ∈ Rj×j
Initialize: r̂0 = b̃, ŝ0 = c̃, Ẑ0 = []

1 for i = 1, 2, . . . do
2 Normalize vi = r̂i−1/β̂i−1 using (8.8)
3 Normalize wi = ŝi−1/γ̂i−1 using (8.7)
4 Compute ẑi and x̂i as in (8.2)

5 Update Ẑi =
[
Ẑi−1 ẑi

]
6 Compute α̂i as in (8.5)
7 Compute r̂i as in (8.6a)
8 Compute ŝi as in (8.6b)
9 Update T̂i as in (8.1)

10 x̃i(µk) = POSTPROCESS(T̂i, Ẑi, µk, σ)
11 res = ‖A(µk)x̃i(µk)− b‖ / ‖b‖
12 if res ≤ tol do
13 Set x̃j(µk) = x̃i(µk), j = i

14 for l=1,. . . ,k-1 do
15 x̃j(µl) = POSTPROCESS(T̂j , Ẑj , µl, σ)
16 end
17 if ‖A(µl)x̃j(µl)− b‖ / ‖b‖ ≤ tol, l = 1, . . . , k − 1 do
18 return
19 end
20 end
21 end
22 function x̃j(µ) = POSTPROCESS(T̂j , Ẑj , µ, σ)
23 Compute yj(µ) as in (8.10a)
24 Compute ûj(µ) as in (8.10b)
25 return x̃j(µ) as in (8.10c)
26 end

REMARK 8.2 (Numerical behavior of the Exact Algorithm 1 and the Inexact Algorithm 2).
The Exact Algorithm 1 and the Inexact Algorithm 2 with exact preconditioning are equivalent
in applying the standard BiCG method to the shifted linear system (4.1) but are based on
different approaches. Both methods return the same approximate solution, ignoring roundoff
errors, but methods which use the same approach as in the Exact Algorithm 1, i.e., the ones
based on a coupled two-term recurrence, are often more robust and have better numerical
behavior; see [21].
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REMARK 8.3 (Krylov subspaces of the inexact algorithm). A result in [44] implies that
the relations (8.1) can be expressed equivalently as

(8.11)
MẐj =

(
M (K − σM)−1 + Ej

)
Vj = Vj+1 T̂ j ,

X̂j =
(
(K − σM)−TMT + Fj

)
Wj = Wj+1

ˆ̄TTj ,

where Ej =
∑j
i=1Eiviw

T
i and Fj =

∑j
i=1 Fiwiv

T
i , with Ei, Fi ∈ Rdn×dn. Here vi, wi

are the ith columns of Vj and Wj , respectively, and the biorthogonality condition (3.6) holds.
The matrices Ei and Fi represent the error which is introduced on each inexact application
of the preconditioner and its adjoint. Note that the relations (8.11) imply that the columns
of Vj in (8.1) span the Krylov subspace generated from the matrix

(
M(K − σM)−1 + Ej

)
and the vector v1, and, analogously, the columns of Wj in (8.1) span the Krylov subspace
generated from the matrix

(
(K − σM)−TMT + Fj

)
and the vector w1. We do not compute

the matrices Ei or Fi and mention them purely for theoretical reasons.

8.2. Explicit computation of the residual in the inexact algorithm. The Inexact Algo-
rithm 2 approximates the solution of the linear system (1.5) by solving the shifted precondi-
tioned linear system (3.1), where the preconditioners (K − σM)−1 and (K − σM)−T are
applied approximately in an inexact BiCG setting. In order to better understand the conver-
gence of our approach, we compute a bound for the residual at each iteration of the inexact
algorithm applied to this system. This bound includes a contribution that is directly related to
the error in the application of the preconditioner.

Define the inner residual vector pi at iteration i as

pi := (K − σM)ẑi − vi,(8.12)

where ẑi is as in (8.2). Equivalently, in matrix form, Ẑj := Zj + (K−σM)−1Pj , where Ẑj is
as in (8.1), Zj =

[
z1, . . . , zj

]
∈ Rdn×j , with zi as in (8.3), and Pj =

[
p1, . . . , pj

]
∈ Rdn×j .

The inner residual vector represents how inexactly we apply the preconditioner in the ith
iteration of the Inexact Algorithm 2.

The relations (8.1) and (8.9) are equivalent to the shifted relations given by

(8.13)
Vj + (−µ+ σ)MẐj = Vj

(
Ij + (−µ+ σ)T̂j

)
+ (−µ+ σ)β̂jvj+1e

T
j ,

Wj + (−µ+ σ)X̂j = Wj

(
Ij + (−µ+ σ)T̂Tj

)
+ (−µ+ σ)γ̂jwj+1e

T
j ,

and rini , the residual of the ith iterate of the Inexact Algorithm 2 applied to the linear sys-
tem (1.5), is expressed as

rini = b̃− (K − µM)ûi(µ)

= b̃− (K − µM)Ẑiyi(µ)

= b̃− (K − µM + σM − σM)Ẑiyi(µ)

= b̃− ((−µ+ σ)M + (K − σM))Ẑiyi(µ)

= b̃− (−µ+ σ)MẐiyi(µ)− Viyi(µ)− Piyi(µ)

=
(
Vi

(
βe1 −

(
Ii + (−µ+ σ)T̂i

))
− (−µ+ σ)β̂ivi+1e

T
i

)
yi(µ)− Piyi(µ)

= (µ− σ)β̂ivi+1e
T
i yi(µ)− Piyi(µ)

= rappi − Piyi(µ),

(8.14)
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where ûi(µ), yi(µ) are as in (8.10), β :=
∥∥∥b̃∥∥∥ with b̃ is as in (2.3), and we have used the shifted

relations (8.13). The vector rappi approximates rexi , the residual of the Exact Algorithm 1
applied to (1.5). This residual is defined as rexi := (µ− σ)βivi+1e

T
i yi(µ), where βi and vi+1,

as well as the computation of yi(µ) = (Ii + (−µ + σ)Ti)
−1(βe1), similar to (8.10), stem

from the relations (3.5); see [42]. Note that the quantity rappi above is efficient to compute. An
analogous result regarding the application of the adjoint preconditioner (K − σM)−T holds
for the residual of the adjoint linear system given in (5.15).

8.3. Convergence of the inexact algorithm. Preconditioned Krylov subspace methods
are only suitable when the action of the preconditioner is cheap to apply. It is, therefore,
of interest to apply the preconditioners in the Inexact Algorithm 2 in the most efficient way
possible. Inspired by work in [44], we prove a computable bound for the residual of the inexact
algorithm applied to the system (3.1). The error in the inexact application of the preconditioner
contributes to this bound.

Consider first the shifted relations (8.9) after j − 1 iterations of the inexact Lanczos
biorthogonalization process. Let a QR decomposition of the shifted tridiagonal upper Hessen-
berg matrix be such that

T j−1 :=
(
Ij−1 + (−µ+ σ)T̂ j−1

)
= Qj−1

[
RTj−1 0

]T
= Qj−1R̂j−1,(8.15)

where the entries of T j−1 ∈ Rj×(j−1) are denoted as tl,`, l = 1, . . . , j, ` = 1, . . . , j − 1, the
matrix QTj−1 is defined as

QTj−1 := Ωj−1Ωj−2 · · ·Ω1 ∈ Rj×j ,(8.16)

i.e., the product of Givens rotation matrices Ωi, i = 1, . . . , j − 1, given by

Ωi :=


Ii−1

ci si
−si ci

Ij−1−i

 ∈ Rj×j ,

and Rj−1 ∈ R(j−1)×(j−1) is upper triangular. Here si, ci are the sines and cosines of the
Givens rotations constructed to eliminate the nonzero elements ti+1,i on the subdiagonal
of T j−1.

At lines 10–14 of the Inexact Algorithm 2, we update our approximation x̃j(µ) as in (8.10)
by first performing a linear solve with the square matrix T j := (Ij + (−µ+ σ)T̂j) ∈ Rj×j .
Using the QR factorization in (8.15), the matrix Tj can be expressed as

Tj =
[
T j−1 tj

]
=
[
Qj−1R̂j−1 tj

]
= Qj−1

[
R̂j−1 QTj−1tj

]
= Qj−1R̃j ,

where tj ∈ Rj is the jth column of Tj , R̃j :=
[
R̂j−1 QTj−1tj

]
∈ Rj×j , and QTj−1 is as

in (8.16). We rewrite the linear solve in (8.10a) as

yj(µ) = T−1j (βe1) = R̃−1j QTj−1(βe1)(8.17)

and define ĝj := QTj−1(βe1) ∈ Rj , giving yj(µ) = R̃−1j ĝj , where R̃−1j is an upper triangular
matrix as the inverse of an upper triangular matrix. As shown in [42], the entries of ĝj are
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given by ĝj =
[
γ1 . . . γj

]T
, where γi := |cis1 · · · si−1β|, for i = 1, . . . , j − 1, and the

jth component is equal to

γj := |s1 · · · sj−1β|.(8.18)

Let η(j)i = (yj(µ))i denote the ith component of yj(µ). Then,

|(yj(µ))i| = |η(j)i | = |(R̃
−1
j )i,1:j ĝj | ≤

∥∥∥(R̃−1j )i,i:j

∥∥∥ ‖(ĝj)i:j‖
=
∥∥∥eTi R̃−1j ∥∥∥ ‖(ĝj)i:j‖ =

∥∥∥R̃−1j ∥∥∥ ‖(ĝj)i:j‖ =
1

σj(Tj)
‖(ĝj)i:j‖ ,

(8.19)

where σj(Tj) denotes the largest singular value of Tj and

‖(ĝ)i:j‖2 = γ2i + γ2i+1 + · · ·+ γ2j

= β2(|cis1s2 · · · si−1|2 + |ci+1s1s2 · · · si|2 + · · ·+ |s1s2 · · · sj−1|2

= β2(s1 · · · si−1)2
(
|ci|2 + |ci+1si|2 + · · ·+ |si · · · sj−1|2

)
.

The equality
∥∥[ci, ci+1si, . . . , si · · · sj−1

]∥∥ = ‖Ωj−1 · · ·Ωiei‖ = 1 holds, and thus,

‖(ĝ)i:j‖ = β|s1 · · · si−1|.

Note that the norm of rappi , as computed in (8.14), is given by

‖rappi ‖ =
∥∥∥(−µ+ σ)β̂ivi+1e

T
i yi(µ)

∥∥∥ =
|ti+1,i|
|r̃i,i|

|s1 · · · si−1β|,

where (−µ + σ)β̂i = ti+1,i, r̃i,i denotes the entry in the ith row, ith column of R̃i ∈ Ri×i,
and we have computed the ith entry of yi(µ) ∈ Ri using (8.17) and (8.18). This computation
is analogous to [9, Equation (5.2)]. We define the quantity

∆i :=
|r̃i,i|
|ti+1,i|

‖rappi ‖ = |r̃i,i||(yi(µ))i| = β|s1 · · · si−1|(8.20)

and thus obtain the bound

|(yj(µ))i| = |η(j)i | ≤
1

σj(Tj)
∆i(8.21)

from (8.19) and (8.20). The following theorem expresses a computable bound for the norm of
the residual of the inexact algorithm applied to the system (3.1).

THEOREM 8.4. Let rini be the residual of the ith iterate of the Inexact Algorithm 2 applied
to the linear system (1.5), and define

rappi :− (µ− σ)β̂ivi+1e
T
i yi(µ),

for i = 1, . . . , j, where β̂i, vi+1 are as in (8.13) and yi(µ) =
[
η
(i)
1 , . . . , η

(i)
i

]
∈ Ri as

in (8.10). If at each iteration i ≤ j the inner residual vector pi (8.12) satisfies

‖pi‖ ≤
1

j

σj(Tj)

∆i
ε := ε

(i)
inner,(8.22)
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with ∆i (8.20), then ∥∥rini ∥∥ ≤ ‖rappi ‖+ ε.

Proof. The proof follows directly from the reasoning above paired with (8.14), i.e.,

∥∥rinj ∥∥ ≤ ‖rappi ‖+ ‖Pjyj(µ)‖ = ‖rappi ‖+

∥∥∥∥∥
j∑
i=1

piη
(j)
i

∥∥∥∥∥
≤ ‖rappi ‖+

j∑
i=1

‖pi‖ |η(j)i | ≤ ‖r
app
i ‖+ ε,

where we have used the bounds in (8.21) and (8.22).

8.4. Approximation of a parameterized Helmholtz equation by the inexact algorithm.
Consider approximating the solution of the parameterized Helmholtz equation in (6.1) with
the Inexact Algorithm 2. In the simulation shown in Figure 8.1, the action of P (σ)−1 in the
application of the preconditioner is approximated via the iterative method BiCG. Here the
tolerance in the BiCG procedure, referred to as the inner tolerance, is varied at each iteration.
Specifically, we set the inner tolerance at iteration i, denoted toli, to tol1 = 10−14 and

toli =
1

|((yi−1(µ∗))i−1|
ε ≈ 1

∆i−1
ε,(8.23)

for i = 2, . . . , j, where (yi−1(µ∗))i−1 denotes the (i− 1)st component of yi−1(µ∗) ∈ Ri−1
as in (8.10a) and ∆i−1 is as in (8.20). The parameter µ∗ is equal to the µl furthest from
the target parameter σ, i.e., the parameter with corresponding approximation from which we
expect the slowest convergence (see (3.2)). Note that the inner tolerance as computed in (8.23)
uses information from the previous iteration.

The experiment shown in Figure 8.1 was produced with one execution of the Inexact
Algorithm 2. Though we display just four solutions, accessing each of the corresponding
approximations of µ ∈ [2.50, 3.50] requires the solution of a tridiagonal system of dimension
j × j, where j is the dimension of the subspace from which the approximates come. The
relative residual norms of these solutions are below a prescribed tolerance. Figure 8.2 displays
the convergence of the same simulation as a function of CPU time, omitting a comparison to
an exact application of the preconditioner. In this way, we see the cost in CPU seconds of each
iteration of the algorithm. The roughly constant cost of each iteration is due to the short-term
recurrence feature of the method. The CPU times here are measured after the precomputation
steps and, though one execution of the Inexact Algorithm 2 gives approximations for many
different values of µ, each convergence curve here corresponds to a separate run.

Theorem 8.4 provides a bound for the residual obtained from applying the inexact algo-
rithm to the linearized system (3.1), under the assumption that the bound in (8.22) is fulfilled
for i = 1, . . . , j. As the quantity ∆i is proportional to rappi , an approximation of the residual
assuming exact preconditioning, we can expect to solve the inner linear systems with growing
inaccuracy as the outer residual decreases. Increasing the inner tolerance as the algorithm
proceeds improves the performance without destroying the accuracy of the method. For com-
parison, we apply the preconditioner exactly via an LU decomposition of P (σ) and display
the convergence for a variety of values µ.

Figure 8.3 shows the convergence of the inexact algorithm applied to the same discretiza-
tion of the parameterized Helmholtz equation in (6.1), for larger values of the parameter µ.
Here we consider a problem of a larger dimension, where an LU decomposition of P (σ) is no
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FIG. 8.1. Convergence for approximating the parameterized Helmholtz equation (6.1), generated from one
(total) execution of the Inexact Algorithm 2 with σ = 3 and evaluated for different values of µ ∈ [−5, 5]. Here
n = 243997, d = 34, (outer) tol = 10−10, and the relative residual norm (6.3). BiCG method with variable inner
tol for application of P (σ)−1, according to (8.23) with ε = 10−12. Compare to LU of P (σ).
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FIG. 8.2. Relative residual norm in terms of CPU sec for the simulation displayed in Figure 8.1. Note that no
LU decomposition of P (σ) is performed.

longer feasible, and we apply the action of P (σ)−1 with the iterative method Aggregation-
based algebraic multigrid3 (AGMG) [37, 38, 39]. For this simulation, the inner tolerance
is as described in (8.23), i.e., we solve the inner systems with increasing inaccuracy as the
outer residual of the method decreases. We see that for larger values of the parameter µ, the
target parameter σ should be chosen closer to the values of µ which are of interest. As before,
executing the algorithm once allows us to compute the corresponding approximates for all µ
on a given interval in a cheap way, though we display just six of these solutions in the interval
[4.7, 5.3] in Figure 8.3(a) and six solutions in [5.7, 6.3] in Figure 8.3(b).

In summary, the inexact framework successfully eliminates the need for an LU decom-
position of the matrix P (σ) in the precomputing steps while maintaining the accuracy of the
method for many values of µ. The short-term recurrence property of the Inexact Algorithm 2
offers a constant cost per iteration. Thus, the inexact algorithm is suitable for a wide range of
large-scale simulations where an LU decomposition of a matrix is not feasible.

3Yvan Notay, AGMG software and documentation; see http://agmg.eu.
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(a) One execution of the Inexact Algorithm 2 with
σ = 5 and (outer) tol = 10−10.
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(b) One execution of the Inexact Algorithm 2 with
σ = 6 and (outer) tol = 10−9.

FIG. 8.3. Convergence for approximating the parameterized Helmholtz equation (6.1), generated from the
Inexact Algorithm 2 and evaluated for different values of µ ∈ [−8, 8]. Here n = 976076, d = 44, and the relative
residual norm (6.3). AGMG with variable tol in application of P (σ)−1 according to (8.23) with ε = 10−12. Note
that no LU of P (σ) is feasible.

9. Conclusions and future work. This work proposes two variants of a novel Krylov
subspace method to approximate the solution to parameterized linear systems of the form (1.1).
Both algorithms return a function x̃j(µ) at iteration j which is cheap to evaluate for many
different values of the parameter µ. These algorithms are constructed by considering the ap-
proximate solution to a companion linearization based on an accurate Chebyshev interpolation
of A(µ), where shift-and-invert preconditioners are used. The approximation of the resulting
shifted preconditioned system is found in a shifted BiCG setting.

Here both the preconditioner and its adjoint are applied via an efficient block LU decom-
position of the matrix (K − σM)Π as in (4.3). The first variant considers exact applications
of the preconditioners, and the second variant applies an approximation of the preconditioners
in an inexact setting. A computable bound for the residual obtained from iterates of the
inexact method was shown, and a contribution in the bound is directly related to the error in
the application of the preconditioner. Additionally, both algorithms offer a short-term recur-
rence, resulting in a constant cost per iteration. Numerical results confirm that the algorithms
proposed here are suitable for large-scale simulations.

The methods IDR(s) [45] and IDR(s) for shifted systems [14] have proven effective
for solving nonsymmetric linear systems. Another successful short-term recurrence method
for shifted systems was developed in [22], based on the method Bi-CGSTAB [50]. Using
these methods to solve the linearization (3.1) would likely result in new robust methods,
though further research would be needed. Furthermore, this work considered only real-valued
preconditioners, though complex-valued shift-and-invert preconditioners have successfully
been incorporated in several previous works for solving the Helmholtz equation; see, for
instance, [17, 18]. While such a strategy would likely work here as well, it would require
additional analysis.
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