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AN EVOLUTIONARY APPROACH TO THE COEFFICIENT PROBLEMS
IN THE CLASS OF STARLIKE FUNCTIONS∗

PIOTR JASTRZȨBSKI† AND ADAM LECKO†

Abstract. In this paper, we apply the differential evolution algorithm as a new approach to solve some coefficient
problems within Geometric Function Theory. We find sharp bounds for the determinant of the Hankel matrix H4,1(f)
and the determinants of all its sub-matrices for the class of starlike functions, i.e., for the class of all analytic injective
functions f in the unit disk D := {z ∈ C : |z| < 1} normalized by f(0) = f ′(0) − 1 = 0 such that f(D) is a
starlike set with respect to the origin. In addition, a relevant conjecture regarding some coefficient functionals related
to the Zalcman functional is formulated.
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1. Introduction. The differential evolution algorithm is a very powerful and effective
numerical computation technique used in many branches of mathematics as well as in applied
sciences. In this paper we illustrate the application of this algorithm to coefficient problems in
Geometric Function Theory (GFT). A solution to the open problem of finding sharp estimates
for the fourth-degree Hankel determinant in one of the most important classes in GFT, namely
the class of starlike functions, is presented. As we will further justify, the differential evolution
method can be treated as an auxiliary tool for solving coefficient problems within GFT.

The fundamental subclasses of the class Hol(D) of all analytic functions in the unit disk
D := {z ∈ C : |z| < 1} that underlies Geometric Function Theory (GFT) is the class A of all
analytic normalized functions f , i.e., functions of the form

(1.1) f(z) =

∞∑
n=1

anz
n, a1 := 1, z ∈ D,

and its subclass S of univalent (analytic and injective) functions. Apart from the class S
itself, its subclasses, distinguished by established geometrical properties of plane sets, are of
fundamental importance in the theory. Historically they are: the class of convex functions Sc
introduced by Study [42] in 1913, the class of starlike functions S∗ defined by Alexander [1],
the class of spirallike functions introduced by Špaček [40], the class of functions convex in the
direction of the imaginary axis defined by Robertson [37] in 1936, and others (cf. [13, 16]).
Since this paper deals with starlike functions, we recall their definition. A function f : D→ C
is called starlike with respect to the origin, shortly starlike, if f ∈ S and f(D) is a starlike set,
i.e., the line segment [0, w] := {tw : 0 ≤ t ≤ 1} lies in f(D) for every w ∈ f(D). The family
of such functions is denoted by S∗.

Due to the representation (1.1) of functions from the class S and thus also from each
of its subclasses, issues related to the properties of their coefficients are crucial to describe
the analytical properties of the studied classes. For k ∈ Z, let Zk := {n ∈ Z : n ≥ k}.
Particularly, N = Z1. In 1916, Bieberbach [4] formulated the famous conjecture, namely that
the sharp inequality |an| ≤ n holds for every n ∈ Z2 and every function in the class S and
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that equality holds for the Koebe function K ∈ S defined as

(1.2) K(z) :=
z

(1− z)2
= z +

∞∑
n=2

nzn, z ∈ D,

and its rotations. Bieberbach confirmed that his conjecture is true for the second coefficient.
The search for a proof of the Bieberbach conjecture resulted in the development of many
advanced research techniques such as the development of variational methods in complex
analysis or the creation of the Loewner chain theory [31]. The final proof of this conjecture
was given by de Branges in 1985 [12].

Regardless of the whole class S , the problem of estimating the coefficients was transferred
to the aforementioned subclasses in S. For starlike functions, which are the subject of this
paper, the Bieberbach problem was solved by Nevanlinna [33] already in 1921, who proved
that |an| ≤ n holds for every n ∈ Z2 and every function in the class S∗, with the Koebe
function (1.2) and its rotations being extremal. However, the same estimate for the coefficients,
both in the class of starlike functions S∗, which is a proper subclass of the class S, and
in the whole class S, with the same extremal function, does not distinguish between the
class S and its subclass S∗. Therefore, it is natural to consider more complicated coefficient
functionals giving a deeper knowledge of the class S and its subclasses. Historically, one
of the first is the Fekete-Szegő functional introduced in 1933 [15], i.e., given λ ∈ [0, 1], let
S 3 f 7→ Φλ(f) := a3 − λa22. Only in the case of λ = 0 and λ = 1, the upper bound for
|Φλ(f)| is the same in both classes S and S∗ (see, e.g., [19] for further references).

In the 60s, coefficient functionals were first considered as determinants of the Hankel
matrices Hq,n(f) defined as follows: for q, n ∈ N and f ∈ A of the form (1.1), let

Hq,n(f) :=


an an+1 . . . an+q−1
an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2(q−1)

 .
General results for Hankel determinants Hq,n(f) with applications can be found, e.g., in [7,
34, 35, 39].

Hankel matrices have remarkable applications in many areas of mathematics as well as
in applied sciences. One such example is the method of moments in statistics, one of the
methods for the estimation of population parameters. The method of moments applied to
polynomial distributions produces a system of equations, whose solution involves the inversion
of a Hankel matrix, i.e., θ = H−1E, where θ is a vector of unknown weights (coefficients
of a polynomial distributions), E a vector of sample moments, and H is a Hankel matrix.
Hankel matrices appear in the theory of Markov processes, which have important applications
in physics, chemistry, economics, bioinformatics, signal processing, information theory, and
many others. Let us also mention that the Hamburger moment problem has a solution if and
only if the Hankel kernel, which is an infinite Hankel matrix H with entries being nonnegative
integers (m0,m1, . . . ), is positive definite; as a conclusion this means that the entries mk are
statistical moments. Among other things, for these reasons, the study of Hankel matrices in
GFT is an important and at the same time a difficult problem. The estimation of the Hankel
determinant of Hq,n(f), particularly of the determinant of Hq,1(f), for subclasses in the
class S has been developed intensively in the last 20 years (e.g., [8, 9] and [36] with further
references).

In the early 70s, Zalcman considered the functional S 3 f 7→ Jn(f) := a2n−1 − a2n, for
n ∈ Z2, over the class S. He posed the famous conjecture that if f ∈ S and is given by (1.1),
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then |Jn(f)| ≤ (n− 1)2 for n ∈ Z2, with equality for the Koebe function and its rotations.
This conjecture was confirmed by Krushkal for n = 3 [23] and for n = 4, 5, 6 [24]. The case
n = 2 was shown by Bieberbach [4] (e.g., [16, Vol. I, p. 35]). Zalcman’s conjecture remains
open for n ∈ Z7. For the class of starlike functions, the Zalcman conjecture has been proved
in [5].

In 1999 Ma [32] generalized the Zalcman functional as follows:

S 3 f 7→ Jm,n(f) := am+n−1 − anam, for m,n ∈ Z2.

He conjectured that if f ∈ S, then for m,n ∈ Z2,

|Jm,n(f)| ≤ (m− 1)(n− 1),

with equality for the Koebe function and its rotations, and he confirmed the conjecture for
functions in the class S∗ and the subclass SR of S of functions having real coefficients. For
further results and references on the generalized Zalcman functional, see, e.g., [10, 14].

We now note that both the Zalcman functional Jn and the generalized Zalcman functional
Jm,n are determinants of sub-matrices of every Hankel matrix Hq,1(f) with q ≥ max{m,n}.
Namely,

Jn(f) =

∣∣∣∣ a1 an
an a2n−1

∣∣∣∣
and

Jm,n(f) =

∣∣∣∣ a1 an
am am+n−1

∣∣∣∣ .
For this reason it is natural to introduce the following functional: for k ∈ N, m,n ∈ Zk+1, let

A 3 f 7→ Jm,n,k(f) := akam+n−k − anam =

∣∣∣∣ ak an
am am+n−k

∣∣∣∣ .
Due to the results of Section 3, we formulate the following conjecture:

|Jm,n,k(f)| ≤ (m− k)(n− k), f ∈ S∗,

with equality for the Koebe function and its rotation. We think that this conjecture is meaningful
and true for the whole class S.

The problem of finding sharp estimates for the Hankel determinants is in general tech-
nically difficult. The applied computing methods are able to find such estimates for the
determinant detH2,2(f) = a2a4 − a23 on many known subclasses in the class A, in particular
in the subclasses of S. It is much more difficult to find sharp bounds for the third-order determi-
nant detH3,1(f) in known classes of analytic functions. Such a sharp estimate was obtained
for the class of convex functions Sc in [21], where it was shown that |detH3,1(f)| ≤ 4/135;
for the class of starlike functions of order 1/2 in [29]; it was shown that |detH3,1(f)| ≤ 1/9
for the classes T (0) and T (1/2) in [20]. Here, given α ∈ [0, 1), the class T (α) consists of
all f ∈ A such that Re f(z)/z > α for z ∈ D. For the class of starlike functions S∗ being
of interest in this paper, the sharp inequality |detH3,1(f)| ≤ 4/9 was shown in a recent
paper [22].

Taking into account the methods used to estimate the Hankel determinants of second and
third-order, the problem of finding a sharp estimate for the Hankel determinant detH4,1(f) in
selected subclasses of S is extremely difficult. It is not a problem to find some estimate, but
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the difficulty is to arrive at a sharp one. The authors do not know any such sharp result for
determinants of H4,1(f) for basic subclasses of univalent functions. Since both the Zalcman
functional and the generalized Zalcman functional are defined by sub-matrices in Hq,1(f), it
is natural to consider all square sub-matrices of Hq,1(f).

For this reason, the main goal of this paper is to propose the evolutionary approach to
estimate the determinants of such matrices as a fresh computational idea in GFT. We estimate
the determinant of the Hankel matrix H4,1(f) and determinants of all its square sub-matrices
in the class S∗. Taking into account the obtained upper bounds by applying the evolutionary
approach, a relevant general conjecture about the functional Jm,n,k defined here is formulated.

At the end let us emphasize that the differential evolution method can be treated as an
auxiliary tool for analyzing similar problems within GFT.

2. Preliminaries. The class S∗ of starlike functions studied in this paper was introduced
by Alexander in 1915 [1], where he also formulated their analytic characterization, which in
detail was elaborated by Nevanlinna [33] (e.g., [13, p. 41]). A different concept of deriving the
analytic formula for starlike functions was demonstrated in [27, 28]. In [30] the authors provide
an alternative, unified, and self-contained proof of the theorem below due to Alexander [1],
which, by the way, may be adopted in more general geometrical concepts.

THEOREM 2.1. For every f ∈ A, the following equivalence holds: f ∈ S∗ if and only if

(2.1) Re
zf ′(z)

f(z)
> 0, z ∈ D \ {0}.

Denote by P the subclass of Hol(D) of all analytic functions p having a positive real part
on D given by

(2.2) p(z) = 1 +

∞∑
n=1

cnz
n, z ∈ D.

It is well known ([6], cf. [16, Vol. I, p. 80]) that for every p ∈ P of the form (2.2), the
following sharp estimate holds true:

(2.3) |cn| ≤ 2, n ∈ N.

Now we define the m-th coefficient region Cm(P).
DEFINITION 2.2. For m ∈ N, let

Cm(P) :=
{
(c1, . . . , cm) ∈ Cm : ∃p∈P ck = p(k)(0)/k!, k = 1, . . . ,m

}
.

Given r > 0, let Dr := {z ∈ C : |z| ≤ r}. For everym ∈ N, Cm(P) is a compact convex
set in Cm (e.g., [17, p. 162, Corollary 9.11]). From (2.3) it follows also that Cm(P) ⊂ Dm2 .

Let H := (Hol(D), T ) be the topological space where T is the topology of uniform
convergence on compact subsets of D. Let F be a compact subset of Hol(D) in the space H.
Recall that a function f ∈ Hol(D) is called the support point of F if f ∈ F and there exists a
linear functional Λ on Hol(D) such that ReΛ is non-constant on F and

ReΛ(f) = max {ReΛ(g) : g ∈ F} .

The set of all support points of F is denoted as suppF .
Given m ∈ N, let Pm denote the set of all functions of the form

(2.4) p(z) =

m∑
j=1

λjL (xjz) , z ∈ D,
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where the xj are distinct points of T := {z ∈ C : |z| = 1}, the parameters λj ≥ 0, for
j = 1, . . . ,m, are such that

(2.5)
m∑
j=1

λj = 1,

and L ∈ P is defined as

(2.6) L(z) :=
1 + z

1− z
= 1 + 2

∞∑
n=1

zn, z ∈ D.

Clearly, Pm ⊂ P for all m ∈ N. It is well known (e.g., [17, p. 94]) that

suppP =
⋃
m∈N
Pm.

The theorem below, which can be found in [38, Theorem C] is the basis for further considera-
tions. As the author remarked, this theorem is equivalent to Theorem B shown by Hummel
in [18].

THEOREM 2.3. Let m ∈ N and Φ : Cm(P) → C be a continuous function, analytic
in the interior of Cm(P). If a function p ∈ P maximizes ReΦ on Cm(P), then p is of the
form (2.4), i.e., p ∈ Pm.

From (2.4) and (2.6), the next lemma follows:
LEMMA 2.4. Let m ∈ N. For p ∈ Pm of the form (2.2), it holds that

(2.7) cn = 2

m∑
j=1

λjx
n
j , n ∈ N,

where the xj are distinct points of T and λj ≥ 0, for j = 1, . . . ,m, satisfy (2.5).

3. Differential evolution. Evolutionary algorithms are among the best general meth-
ods for optimization. Differential evolution is based on population evolution. It has four
components:

• initialization,
• mutation,
• crossover,
• selection.

Without loss of generality, we consider minimization problems for a function f : RD 7→ R,
D ∈ Z2, (maximization can be performed by considering the function h = −f instead). The
main goal of the algorithm is to find a global minimum of f on some set (for simplicity we
will assume it to be a D-dimensional cube).

At the beginning we set 3 parameters: CR ∈ [0, 1], F ∈ [0, 2], NP ∈ Z5. The set G is a
population—a set of NP randomly chosen vectors from the domain of the function f . Next,
for each vector x = [x1, . . . , xD] from G, we perform the following operations:

• we randomly choose three vectors a = [a1, . . . , aD], b = [b1, . . . , bD], and
c = [c1, . . . , cD] ∈ G different in pairs and different from x,

• we randomly choose an integer R from the set {1, 2, . . . , D},
• we define the vector y = [y1, . . . , yD] as follows:

– we choose the number ri at random according to the normal distributionN(0, 1),
for i ∈ {1, . . . , D},
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– if ri < CR or i = R, then we set yi = ai + F (bi − ci); otherwise we set
yi = xi,

• if y belongs to the domain of function f and f(y) 6 f(x), then we substitute
y := x.

The algorithm was introduced by Storn and Price in 1996 [41]. The choice of the
parameters has a big impact on the speed of optimization. Mathematical correctness has been
considered in [11, 43].

4. Application of differential evolution to starlike functions. For further consideration
let us fix some notation. Let M be a square matrix of order n ∈ Z2. Given 1 ≤ k < n and
1 ≤ i1 < i2 < · · · < ik ≤ n, by M j1,...,jk

i1,...,ik
we denote a sub-matrix of M by removing k rows

and k columns numbered i1, . . . , ik and j1, . . . , jk, respectively. Since our interest is related
to the matrix H4,1(f), to simplify the notation, set

M =M(f) := H4,1(f).

For θ ∈ R and f ∈ A, let fθ(z) := e−iθf(eiθz), z ∈ D, denote a rotation of f. By (1.1) we
have

fθ(z) =

∞∑
n=1

ane
i(n−1)θzn, a1 = 1, z ∈ D.

Observe now that

detM(fθ) = detH4,1(fθ) = e12iθ detH4,1(f).

Therefore the estimation of |detH4,1(f)| after suitable rotation of f is equivalent to the
estimation of Re(detH4,1(f)). A similar property holds for the determinant of each square
sub-matrix of H4,1(f). For this reason, to compute an upper bound for the modulus of the
determinants of H4,1(f) and of its square sub-matrices, we apply Theorem 2.3.

Let f ∈ S∗ be of the form (1.1). Then by (2.1) there exists a function p ∈ P of the
form (2.2) such that

(4.1) zf ′(z) = p(z)f(z), z ∈ D.

Substituting the series (1.1) and (2.2) into (4.1) and by comparing the corresponding coeffi-
cients we obtain

nan = an +
n−1∑
k=1

cn−kak, n ∈ N, a1 = 1.

Hence we get

a2 = c1,

a3 =
c21
2

+
c2
2
,

a4 =
c31
6

+
c1c2
2

+
c3
3
,

a5 =
c41
24

+
c21c2
4

+
c1c3
3

+
c22
8

+
c4
4
,

a6 =
c51
120

+
c31c2
12

+
c21c3
6

+
c1c

2
2

8
+
c1c4
4

+
c2c3
6

+
c5
5
,

a7 =
c61
720

+
c41c2
48

+
c31c3
18

+
c21c

2
2

16
+
c21c4
8

+
c1c2c3

6
+
c1c5
5

+
c32
48

+
c2c4
8

+
c23
18

+
c6
6
.
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Observe that each function Φk, k = 1, . . . , 31, below is continuous on Cm(P) and
analytic in the interior of Cm(P) with the corresponding m. Therefore by Theorem 2.3 our
computation in each case is restricted to functions p in Pm, hence, to the functions (2.4)
having coefficients cn of the form (2.7). When applying the evolutionary algorithm, we use
xj = eiθj , with θj ∈ R for j = 1, . . . ,m.

4.1. Results of the evolutionary algorithm. Here the symbol ≈ denotes the numerical
approximation (not rounding).

a1 = 1(1)
a2 = c1 =: Φ1(c1)(2)

max |a2| ≈ 1.9999999999635196

a3 =
c21
2

+
c2
2

=: Φ2(c1, c2)(3)

max |a3| ≈ 2.999999999966037

a4 =
c31
6

+
c1c2
2

+
c3
3

=: Φ3(c1, c2, c3)(4)

max |a4| ≈ 3.9999999999802265

a5 =
c41
24

+
c21c2
4

+
c1c3
3

+
c22
8

+
c4
4

=: Φ4(c1, c2, c3, c4)(5)

max |a5| ≈ 4.9999999999790745

a6 =
c51
120

+
c31c2
12

+
c21c3
6

+
c1c

2
2

8
+
c1c4
4

+
c2c3
6

+
c5
5

=: Φ5(c1, c2, c3, c4, c5)(6)

max |a6| ≈ 5.999999999994299

a7 =
c61
720

+
c41c2
48

+
c31c3
18

+
c21c

2
2

16
+
c21c4
8

+
c1c2c3

6
+
c1c5
5

+
c32
48

+
c2c4
8

+
c23
18

+
c6
6

=: Φ6(c1, c2, c3, c4, c5, c6)

(7)

max |a7| ≈ 6.9999999996337685

detM3,4
3,4 = detH2,1(f) = J2(f) = a3 − a22 = −c

2
1

2
+
c2
2

=: Φ7(c1, c2)(8)

max
∣∣∣detM3,4

3,4

∣∣∣ = max |detH2,1(f)| ≈ 0.9999999224498696

detM2,4
3,4 = J2,3(f) = a4 − a2a3 = −c

3
1

3
+
c3
3

=: Φ8(c1, c2, c3)(9)

max
∣∣∣detM2,4

3,4

∣∣∣ ≈ 1.9999999997271551

detM2,3
3,4 = J2,4(f) = a5 − a2a4 = −c

4
1

8
− c21c2

4
+
c22
8

+
c4
4

=: Φ9(c1, c2, c3, c4)

(10)

max
∣∣∣detM2,3

3,4

∣∣∣ ≈ 2.999999999995327

detM2,4
2,4 = J3(f) = a5 − a23 = −5c41

24
− c21c2

4
+
c1c3
3
− c22

8
+
c4
4

=: Φ10(c1, c2, c3, c4)

(11)

max
∣∣∣detM2,4

2,4

∣∣∣ ≈ 3.9999999937369553
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detM2,3
2,4 = J3,4(f) = a6 − a3a4 = −3c51

40
− c31c2

4
− c1c

2
2

8
+
c1c4
4

+
c5
5

=: Φ11(c1, c2, c3, c4, c5)

(12)

max
∣∣∣detM2,3

2,4

∣∣∣ ≈ 5.999999995128978

detM2,3
2,3 = J4(f) = a7 − a24

= −19c61
720

− 7c41c2
48
− c31c3

18
− 3c21c

2
2

16
+
c21c4
8
− c1c2c3

6

+
c1c5
5

+
c32
48

+
c2c4
8
− c23

18
+
c6
6

=: Φ12(c1, c2, c3, c4, c5, c6)

(13)

max
∣∣∣detM2,3

2,3

∣∣∣ ≈ 8.999999999949889

detM1,4
1,4 = H2,2(f) = J3,3,2(f) = a2a4 − a23 = − c

4
1

12
+
c1c3
3
− c22

4

=: Φ13(c1, c2, c3)

(14)

max
∣∣∣detM1,4

1,4

∣∣∣ ≈ 0.999999913584528

detM2,4
1,4 = J3,4,2(f) = a2a5 − a3a4

= − c
5
1

24
− c31c2

12
+
c21c3
6
− c1c

2
2

8
+
c1c4
4
− c2c3

6

=: Φ14(c1, c2, c3, c4)

(15)

max
∣∣∣detM2,4

1,4

∣∣∣ ≈ 1.9999999999537437

detM2,3
1,4 = J3,5,2(f) = a2a6 − a3a5

= − c
6
1

80
− c41c2

16
− c21c

2
2

16
+
c21c4
8

+
c1c5
5
− c32

16
− c2c4

8

=: Φ15(c1, c2, c3, c4, c5)

(16)

max
∣∣∣detM2,3

1,4

∣∣∣ ≈ 2.9999999999997455

detM2,4
1,3 = J4,4,2(f) = a2a6 − a24

= − 7c61
360
− c41c2

12
+
c31c3
18
− c21c

2
2

8
+
c21c4
4
− c1c2c3

6
+
c1c5
5
− c23

9

=: Φ16(c1, c2, c3, c4, c5)

(17)

max
∣∣∣detM2,4

1,3

∣∣∣ ≈ 3.9999999995765996

detM2,3
1,3 = J4,5,2(f) = a2a7 − a4a5

= − c71
180
− c51c2

24
− c41c3

72
− c31c

2
2

12
+
c31c4
12
− c21c2c3

12

+
c21c5
5
− c1c

3
2

24
− c1c

2
3

18
+
c1c6
6
− c22c3

24
− c3c4

12

=: Φ17(c1, c2, c3, c4, c5, c6)

(18)

max
∣∣∣detM2,3

1,3

∣∣∣ ≈ 5.999999999994852
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detM3,4
1,2 = J4,4,3(f) = a3a5 − a24

= − c61
144
− c41c2

48
+
c31c3
18
− c21c

2
2

16
+
c21c4
8
− c1c2c3

6

+
c32
16

+
c2c4
8
− c23

9

=: Φ18(c1, c2, c3, c4, c5, c6)

(19)

max
∣∣∣detM3,4

1,2

∣∣∣ ≈ 0.9999999497375464

detM2,4
1,2 = J4,5,3(f) = a3a6 − a4a5

= − c71
360
− c51c2

60
+
c41c3
72
− c31c

2
2

24
+
c31c4
12
− c21c2c3

12
+
c21c5
10

− c1c
2
3

9
+
c22c3
24

+
c2c5
10
− c3c4

12

=: Φ19(c1, c2, c3, c4, c5)

(20)

max
∣∣∣detM2,4

1,2

∣∣∣ ≈ 1.9999999999408111

detM2,3
1,2 = J4,6,3(f) = a3a7 − a4a6

= − c81
1440

− c61c2
144
− c51c3

360
− c41c

2
2

48
+
c41c4
48
− c31c2c3

36

+
c31c5
15
− c21c

3
2

48
− c21c

2
3

36
+
c21c6
12
− c1c

2
2c3
24

− c1c3c4
12

+
c42
96

+
c22c4
16
− c2c

2
3

36
+
c2c6
12
− c3c5

15

=: Φ20(c1, c2, c3, c4, c5, c6)

(21)

max
∣∣∣detM2,3

1,2

∣∣∣ ≈ 2.9999999997966227

detM4
4 = detH3,1(f) = −

c61
144

+
c41c2
48

+
c31c3
18
− c21c

2
2

16

− c21c4
8

+
c1c2c3

6
− c32

16
+
c2c4
8
− c23

9

=: Φ21(c1, c2, c3, c4)

(22)

max
∣∣detM4

4

∣∣ = max |detH3,1(f)| ≈ 0.44444444442415865

detM3
4 = − c71

240
+
c51c2
240

+
c41c3
24
− c31c

2
2

48
− c31c4

24
+
c21c2c3
12

− c21c5
10

− c1c
3
2

16
+
c1c2c4

8
− c22c3

24
+
c2c5
10
− c3c4

12

=: Φ22(c1, c2, c3, c4, c5)

(23)

max
∣∣detM3

4

∣∣ ≈ 0.42427115980329017

detM2
4 = − c81

960
+
c51c3
60
− c41c

2
2

96
− c31c5

15
+
c21c2c4

8

− c1c
2
2c3
12

+
c42
64

+
c3c5
15
− c24

16

=: Φ23(c1, c2, c3, c4, c5)

(24)

max
∣∣detM2

4

∣∣ ≈ 0.3699523786405721
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detM4
1 = − c91

8640
+
c61c3
360
− c51c

2
2

480
− c41c5

60
+
c31c2c4
24

− c21c
2
2c3
24

+
c1c

4
2

64

+
c1c3c5
15

− c1c
2
4

16
− c22c5

20
+
c2c3c4
12

− c33
27

=: Φ24(c1, c2, c3, c4, c5)

(25)

max
∣∣detM4

1

∣∣ ≈ 0.296882841261676

detM3
2 = − c91

1728
− c71c2

720
+

7c61c3
720

− c51c
2
2

160
+
c51c4
120

+
c41c2c3
144

− c41c5
24
− c31c

3
2

144

+
c31c2c4
12

− c31c6
18
− c21c

2
2c3
16

+
c21c2c5
20

+
c21c3c4
24

+
c1c

4
2

64
− c1c2c

2
3

18

+
c1c3c5
15

− c1c
2
4

16
+
c32c3
144
− c22c5

40
+
c2c3c4
24

− c33
54

+
c3c6
18
− c4c5

20

=: Φ25(c1, c2, c3, c4, c5, c6)

(26)

max
∣∣detM3

2

∣∣ ≈ 0.6546327601175532

detM2
2 = − 11c101

86400
− c81c2

1920
+
c71c3
360
− 7c61c

2
2

2880
+

7c61c4
1440

− 7c51c5
600

− c41c
3
2

576
+
c41c2c4
32

− c41c
2
3

144
− 5c41c6

144
− c31c

2
2c3
72

+
c31c2c5
20

+
c31c3c4
36

+
c21c

4
2

384

− c21c
2
2c4
32

− c21c2c
2
3

24
− c21c2c6

24
+
c21c3c5
15

− c21c
2
4

32
+
c1c

3
2c3
36

+
c1c

2
2c5
40

− c1c
3
3

54
+
c1c3c6
18

− c1c4c5
20

− c52
384
− c32c4

96
+
c22c

2
3

144

− c22c6
48

+
c2c

2
4

32
− c23c4

72
+
c4c6
24
− c25

25

=: Φ26(c1, c2, c3, c4, c5, c6)

(27)

max
∣∣detM2

2

∣∣ ≈ 0.5881062366350213

detM1
2 = − c111

86400
− c91c2

17280
+
c81c3
2880

− c71c
2
2

2880
+
c71c4
1440

− 7c61c5
3600

− c51c
3
2

2880

+
c51c2c4
160

− c51c
2
3

720
− c51c6

144
− c41c

2
2c3

288
+
c41c2c5
80

+
c41c3c4
144

+
c31c

4
2

1152

− c31c
2
2c4
96

− c31c2c
2
3

72
− c31c2c6

72
+
c31c3c5
45

− c31c
2
4

96
+
c21c

3
2c3
72

+
c21c

2
2c5
80

− c21c
3
3

108
+
c21c3c6
36

− c21c4c5
40

− c1c
5
2

384
− c1c

3
2c4
96

+
c1c

2
2c

2
3

144
− c1c

2
2c6
48

+
c1c2c

2
4

32
− c1c

2
3c4
72

+
c1c4c6
24

− c1c
2
5

25
+
c42c3
576

+
c32c5
80

− c22c3c4
48

+
c2c

3
3

108
− c2c3c6

36
+
c2c4c5
40

+
c23c5
45
− c3c

2
4

48

=: Φ27(c1, c2, c3, c4, c5, c6)

(28)

max
∣∣detM1

2

∣∣ ≈ 0.2952999828856822
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detM3
3 = − 7c81

2880
− c61c2

360
+
c51c3
36
− c41c

2
2

96
+
c31c2c3
18

− c31c5
10
− c21c

3
2

24
+
c21c2c4

8
+
c21c

2
3

36
− c21c6

12

− c1c
2
2c3
12

+
c1c2c5
10

− c42
192
− c2c

2
3

36
+
c2c6
12
− c24

16

=: Φ28(c1, c2, c3, c4, c5, c6)

(29)

max
∣∣detM3

3

∣∣ ≈ 0.744687558245012

detM1
3 = − c101

17280
− c81c2

5760
+
c71c3
720
− c61c

2
2

960
+
c61c4
720

+
c51c2c3
720

− c51c5
120
− c41c

3
2

576

+
c41c2c4
48

− c41c6
72
− c31c

2
2c3
48

+
c31c2c5
60

+
c31c3c4
72

+
c21c

4
2

128

− c21c2c
2
3

36
+
c21c3c5
30

− c21c
2
4

32
+
c1c

3
2c3

144
− c1c

2
2c5
40

+
c1c2c3c4

24

− c1c
3
3

54
+
c1c3c6
18

− c1c4c5
20

+
c52
384
− c22c6

24
+
c2c3c5
30

+
c2c

2
4

32
− c23c4

36

=: Φ29(c1, c2, c3, c4, c5, c6)

(30)

max
∣∣detM1

3

∣∣ ≈ 0.31740723754842565

detM1
1 = − c121

1036800
− c101 c2

172800
+

c91c3
25920

− c81c
2
2

23040
+

c81c4
11520

− c71c5
3600

− c61c
3
2

17280

+
c61c2c4
960

− c61c
2
3

4320
− c61c6

864
− c51c

2
2c3

1440
+
c51c2c5
400

+
c51c3c4
720

+
c41c

4
2

4608

− c41c
2
2c4

384
− c41c2c

2
3

288
− c41c2c6

288
+
c41c3c5
180

− c41c
2
4

384
+
c31c

3
2c3

216
+
c31c

2
2c5

240

− c31c
3
3

324
+
c31c3c6
108

− c31c4c5
120

− c21c
5
2

768
− c21c

3
2c4

192
+
c21c

2
2c

2
3

288
− c21c

2
2c6
96

+
c21c2c

2
4

64
− c21c

2
3c4

144
+
c21c4c6
48

− c21c
2
5

50
+
c1c

4
2c3

576
+
c1c

3
2c5
80

− c1c
2
2c3c4
48

+
c1c2c

3
3

108
− c1c2c3c6

36
+
c1c2c4c5

40
+
c1c

2
3c5
45

− c1c3c
2
4

48

− c62
1536

− c42c4
768

+
c32c

2
3

864
+
c32c6
96
− c22c3c5

60
− c22c

2
4

128
+
c2c

2
3c4
48

+
c2c4c6
48

− c2c
2
5

50
− c43

162
− c23c6

54
+
c3c4c5
30

− c34
64

=: Φ30(c1, c2, c3, c4, c5, c6)

(31)

max
∣∣detM1

1

∣∣ ≈ 0.24689140987222155
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detM = detH4,1(f)

=
c121

1036800
− c101 c2

172800
− c91c3

25920
+

c81c
2
2

23040
+

c81c4
11520

+
c71c5
3600

− c61c
3
2

17280

− c61c2c4
960

+
c61c

2
3

4320
− c61c6

864
+
c51c

2
2c3

1440
+
c51c2c5
400

+
c51c3c4
720

− c41c
4
2

4608

− c41c
2
2c4

384
− c41c2c

2
3

288
+
c41c2c6
288

− c41c3c5
180

+
c41c

2
4

384
+
c31c

3
2c3

216
− c31c

2
2c5

240

+
c31c

3
3

324
+
c31c3c6
108

− c31c4c5
120

− c21c
5
2

768
+
c21c

3
2c4

192
− c21c

2
2c

2
3

288

− c21c
2
2c6
96

+
c21c2c

2
4

64
− c21c

2
3c4

144
− c21c4c6

48
+
c21c

2
5

50
− c1c

4
2c3

576

+
c1c

3
2c5
80

− c1c
2
2c3c4
48

+
c1c2c

3
3

108
+
c1c2c3c6

36
− c1c2c4c5

40
− c1c

2
3c5
45

+
c1c3c

2
4

48
+

c62
1536

− c42c4
768

+
c32c

2
3

864
− c32c6

96
+
c22c3c5
60

+
c22c

2
4

128

− c2c
2
3c4
48

+
c2c4c6
48

− c2c
2
5

50
+

c43
162
− c23c6

54
+
c3c4c5
30

− c34
64

=: Φ31(c1, c2, c3, c4, c5, c6)

(32)

max |detM | = max |detH4,1(f)| ≈ 0.12499999997131443

5. Conclusions. Based on the applied method of differential evolution, we can formulate
the following theorem:

THEOREM 5.1. If f ∈ S∗, then

(5.1) |detH4,1(f)| ≤
1

8
= 0.125.

The inequality (5.1) is sharp and equality holds for the function f ∈ S∗ defined by

zf ′(z)

f(z)
=

1 + z4

1− z4
, z ∈ D,

and its rotations, i.e., for

f(z) =
z√

1− z4
, z ∈ D,

√
1 := 1,

and its rotations.
The following results are known for the class S∗ of starlike functions:
THEOREM 5.2. If f ∈ S∗ is of the form (1.1), then

|an| ≤ n, n ∈ Z2;(5.2)
|Jm,n(f)| = |am+n−1 − anam| ≤ (m− 1)(n− 1), m, n ∈ Z2;(5.3)

|J3,3,2(f)| = |a2a4 − a23| ≤ 1;(5.4)

|detH3,1(f)| ≤
4

9
.(5.5)

All inequalities are sharp.
REMARK 5.3. The sharp estimates (5.2) were found by Nevanlinna [33] (cf. [13, p. 44]).

The estimate (5.3) was demonstrated by Ma [32], who thus confirmed the generalized Zal-
cman conjecture for starlike functions. The sharp estimate in (5.4) is found in [3]. The
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sharp inequality (5.5) was shown by Kowalczyk et al. [22], solving a long-standing prob-
lem. In the paper [2], Babalola showed that |detH3,1(f)| ≤ 16. Next, Zaprawa [44]
improved Babalola’s result by deriving |detH3,1(f)| ≤ 1. This result was improved by
Kwon et al. [25], where it was verified that |detH3,1(f)| ≤ 8/9. In [26], Kwon and Sim
proved that −4/9 ≤ detH3,1(f) ≤

√
3/9 for starlike functions having real coefficients and

that both inequalities are sharp. Further, Zaprawa et al. [45] verified that for the whole class
S∗, |detH3,1(f)| ≤ 5/9.

REMARK 5.4. Let us now emphasize that the results obtained by the evolutionary algo-
rithm are consistent (in the sense of numerical approximation) with those well-known results
recalled in Theorem 5.2. Results in points (2)–(7) are consistent with (5.2) for n = 2, . . . , 7.
The result of (8) is consistent with (5.3). The results of (9) and (22) are consistent with (5.4)
and (5.5), respectively.

Let us note that the results for the functional Jm,n,k, obtained successively in points
(14)–(21) by applying the evolutionary algorithm, suggest to formulate the following general
conjecture for starlike functions. It seems that this conjecture may also hold true for the whole
class S.

CONJECTURE 5.5. Let k ∈ N, m, n ∈ Zk+1. If f ∈ S (S∗), then

|Jm,n,k(f)| ≤ (m− k)(n− k),

with equality for the Koebe function and its rotations.
In addition, the study of the functional Jm,n,k on known subclasses in the class A seems

to be a sensible and interesting problem.
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[14] I. EFRAIMIDIS AND D. VUKOTIĆ, Applications of Livingston-type inequalities to the generalized Zalcman

functional, Math. Nachr., 291 (2018), pp. 1502–1513.
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