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AN ENHANCEMENT OF THE CONVERGENCE OF THE IDR METHOD∗

F. BOUYGHF†‡, A. MESSAOUDI†, AND H. SADOK‡

Abstract. In this paper, we consider a family of algorithms, called IDR, based on the induced dimension
reduction theorem. IDR is a family of efficient short recurrence methods introduced by Sonneveld and Van Gijzen
for solving large systems of nonsymmetric linear equations. These methods generate residual vectors that live in a
sequence of nested subspaces. We present the IDR(s) method and give two improvements of its convergence. We
also define and give a global version of the IDR(s) method and describe a partial and a complete improvement of its
convergence. Moreover, we recall the block version and state its improvements. Numerical experiments are provided
to illustrate the performances of the derived algorithms compared to the well-known classical GMRES method and
the bi-conjugate gradient stabilized method for systems with a single right-hand side, as well as the global GMRES,
the global bi-conjugate gradient stabilized, the block GMRES, and the block bi-conjugate gradient stabilized methods
for systems with multiple right-hand sides.

Key words. linear equations, iterative methods, IDR method, Krylov subspace, global and block Krylov subspace
methods
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1. Introduction. The aim of the IDR method studied in this paper is to solve the following
nonsymmetric linear system

(1.1) Ax = b,

where A is a matrix in CN×N and the vectors b and x are in CN . The IDR method is a short
recurrence method developed by Sonneveld and Van Gizen [19]. It is shown by Simoncini
and Szyld [18] that IDR(s) is a Petrov-Galerkin-type method with a particular choice of the
left Krylov subspace just like other well-known Krylov subspace methods (FOM, GMRES,
Lanczos, Hessenberg, QMR); for more details on these methods, see, e.g., [14, 16, 21]. Using
the characterization of the left inverse of the Krylov matrix, a unified approach for all Krylov
subspace methods was given in [1].

The rest of this paper is organized as follows: in the next section we give a brief overview
of the IDR(s) method. Then, we propose an improvement of the convergence of the IDR(s)
algorithm using orthogonal projectors. A partial and a full improvement of the IDR(s) method
are proposed, called PEnha-IDR(s) and FEnha-IDR(s) method, respectively. In Section 3,
we focus on the solution of linear systems with multiple right-hand sides. We define the
global version and recall the block version of the IDR(s) method, referred to as global IDR(s)
(Gl-IDR(s)) and block IDR(s) (Bl-IDR(s)) method. We also propose two improvements of
these methods, a partial and a full improvement, which will be referred to as enhanced global
and block IDR(s) and denoted by Gl-PEnha-IDR(s) and Bl-FEnha-IDR(s), respectively. In
Section 4, we present some numerical experiments to compare the proposed algorithms with
the well-known GMRES [17], the bi-conjugate gradient stabilized (BiCGStab) [21], the global
GMRES (Gl-GMRES) [11], the global bi-conjugate gradient stabilized (Gl-BiCGStab) [12],
the block GMRES (Bl-GMRES) [22], and the block bi-conjugate gradient stabilized (Bl-
BiCGStab) [5] methods.
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Throughout this article, all vectors and matrices are assumed to be complex, and the
following notation is used: First, MH represents the conjugate transpose of a matrix M . For
two vectors x and y in CN , the inner product is 〈x, y〉 = xHy, with ‖x‖ =

√
〈x, x〉 the

Euclidean norm. In the block and global cases, we consider matrices X and Y in CN×m, for
which the inner product is defined by 〈X,Y 〉F = Tr

(
XHY

)
, where Tr (Z) denotes the trace

of a square matrix Z. Moreover, the associated norm is the Frobenius norm indicated by ‖.‖F .
We denote by I the identity matrix of order N .

2. The IDR(s) method. The IDR(s) method is a variant of the IDR algorithm using s
shadow vectors, developed by Sonneveld and Van Gizen [19]. The subspaces used by the
IDR algorithms are related to Krylov subspaces. We will first recall the definition of a Krylov
subspace of order n associated to the matrix A and the vector r0 by

Kn(A, r0) = span{r0, Ar0, . . . , An−1r0},

where r0 = b−Ax0, with x0 an initial guess approximation of the solution of the system (1.1).

2.1. The IDR theorem. The IDR(s) method is based on the following Induction Dimen-
sion Reduction (IDR) theorem [19], which is a generalization of the original IDR theorem [20]
to the complex case; we first review this theorem.

THEOREM 2.1 (IDR [19]). Let A be any matrix in CN×N , and let G0 be the full Krylov
space KN (A, r0). Let S be any eigensubspace of CN such that S and G0 do not share a
nontrivial invariant subspace of A, and define the sequence Gj , j = 1, 2, . . . , as

Gj = (I − ωjA) (Gj−1 ∩ S) ,

where the ωj’s are nonzero complex scalars. Then the following statements hold:

• Gj ⊂ Gj−1, ∀j > 0.
• Gν = {0}, for some ν ≤ N .

From this theorem, we know that it is possible to generate an appropriate sequence
of nested subspaces of decreasing dimension and that under mild conditions the smallest
possible subspace is {0}. A Krylov-type solver produces iterates xn for which the residuals
rn = b − Axn are in the Krylov spaces Kn(A, r0). Here, x0 is an initial estimate of the
solution. If all the residuals rn can be constructed in the nested subspaces Gj , then we may get
the approximate solution in finite steps. At most N +N/s matrix-vector products are needed
in the generic case for the IDR(s) method [19].

2.2. The IDR(s) algorithm. Consider S = N
(
PH
)
, where P = [p1 p2 · · · ps] is a

full-rank matrix in CN×s, with s� N andN denoting the null space. For all nonzero integers
j, the IDR spaces are recursively defined as

Gj = (I − ωjA) (Gj−1 ∩ S) .

According to the IDR theorem, for all j ≤ N , we have Gj ⊂ Gj−1, and there exists ν 6 N
such that Gν = {0}. Thus, the IDR theorem can be used to develop an algorithm for solving
linear systems. This is done by constructing residuals with rn ∈ Gj , because according to this
theorem, it is possible to generate a sequence of smallest possible subspaces. Then, the aim of
Sonneveld’s approach is, first to construct subspaces Gj for all nonzero integer j, where ωj are
nonzero scalars. Then, we compute the approximate solution xn associated to the residual
vector rn = b−Axn, which is necessarily in Gj . Thus, the residual rn ∈ Gj can be written as

(2.1) rn = (I − ωjA) vn−1 with vn−1 ∈ Gj−1 ∩ S.
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Since, there exists ν such that Gν = {0}, it follows that there exists an integer m such that
rm ∈ Gν = {0}. The scalars ωj are chosen such that ‖rn‖ is minimal.

Now, to compute rn at each iteration, it is necessary to compute vn−1, and this can be
done by using the fact that vn−1 ∈ S. In [8], Gutknecht considered

(2.2) vn−1 = rn−1 −Gn−1c,

where for all integers l ≤ s, the vector c = [δl, . . . , δ1]
T is in Cl and the matrix

Gn−1 = [gn−1−l · · · gn−2] ∈ CN×l, with gi ∈ Gj−1, for i = n − l − 1, . . . , n − 2. From
equations (2.1) and (2.2), we get

rn = rn−1 − ωjAvn−1 −Gn−1c.

REMARK 2.2. In order to determine the s variables δi, the space S can be chosen to be
the left null space of some N × s matrix P = [p1 p2 · · · ps], i.e., S = N (PH), which can
be generated randomly since the probability that the space G0 ∩ S contains some eigenvectors
of A is zero. Then δi can be determined from the equation

PHvn−1 = 0.

We therefore obtain the s× l system

pH1 rn−1 − pH1

(
l∑
i=1

δign−i

)
= pH1 rn−1 − pH1 (Gn−1c) = 0

...

pHs rn−1 − pHs

(
l∑
i=1

δign−i

)
= pHs rn−1 − pHs (Gn−1c) = 0.

Under normal circumstances the previous system is uniquely solvable if l = s. Then, to
compute all scalars δi, for i = 1, . . . , s, we need s vectors in Gj . Consequently, computing the
first vector in Gj requires s+ 1 vectors in Gj−1, and we may expect rn to be in Gj only for
n ≥ j(s+ 1). Define the matrices

Gn−1 = ∆Rn = [∆rn−1 ∆rn−2 · · · ∆rn−s] ,

and

∆Xn = [∆xn−1 ∆xn−2 · · · ∆xn−s] ,

where the forward difference operator ∆un = un+1 − un is used. Then the computation of
rn ∈ Gj can be implemented by the following algorithm:

Calculate c ∈ Cs from
(
PH∆Rn

)
c = PHrn−1,

v = rn−1 −∆Rn−1c,

rn = v − ωjAv.

Since Gj−1 ⊂ Gj , repeating these calculations will produce new residuals rn+1, rn+2, . . .
in Gj . Once s+ 1 residuals in Gj have been computed, we can expect the next residual to be
in Gj+1. The approximation xn associated with the residual rn = b−Axn is given by

xn = xn−1 + ωjv −∆Xn−1c.

Putting all the relations together, we get the IDR(s) algorithm stated in Algorithm 1.
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Algorithm 1 IDR(s) Algorithm [19].
1. A ∈ CN×N , x0, b ∈ CN , P ∈ CN×s, P = orth(P ), tol ∈ [0, 1], itemax > 0,
r0 = b−Ax0;

2. for n = 0 to s− 1 do (build s vectors in G0)
3. v = Arn;
4. ω = (vHrn)/(vHv);
5. ∆xn = ωrn;
6. ∆rn = −ωv;
7. rn+1 = rn + ∆rn;
8. xn+1 = xn + ∆xn;
9. end for

10. ∆Rn+1 = [∆rn · · · ∆r0];
11. ∆Xn+1 = [∆xn · · · ∆x0];
12. n = s;
13. while ‖rn‖ / ‖b‖ > tol and n < itemax do
14. for k = 0 to s do (build s vectors of Gj)
15. solve c from PH∆Rnc = PHrn;
16. compute q = −∆Rnc, v = rn − q;
17. if k = 0 then
18. t = Av; ω = (tHv)/(tHt);
19. ∆rn = q − ωt;
20. ∆xn = −∆Xnc+ ωv;
21. else
22. ∆xn = −∆Xnc+ ωv;
23. ∆rn = −A∆xn;
24. end if
25. rn+1 = rn + ∆rn;
26. xn+1 = xn + ∆xn;
27. n = n+ 1;
28. ∆Rn = [∆rn−1 · · · ∆rn−s];
29. ∆Xn = [∆xn−1 · · · ∆xn−s];
30. end for
31. end while.

2.3. Partial and full enhancement of the convergence of the IDR(s) method. We
propose an improvement of the convergence of the IDR(s) method. Two enhancements of this
method are studied, the first one called partial enhancement, denoted by PEnha-IDR(s), and
the second one called full enhancement, denoted by FEnha-IDR(s). We propose to improve
the convergence of the IDR(s) method by using the following well-known result:

PROPOSITION 2.3. Consider the orthogonal projector

Ql = I − ZlZ†l ,

where the rectangular matrix Zl is a full-rank matrix in RN×l and Z†l =
(
ZTl Zl

)−1
ZTl is its

pseudo-inverse (Moore-Penrose inverse) (for more details on the pseudo inverse, see [13]).
Applying the projector Ql to any vector r in RN , we obtain a new residual, which we denote
by

rEnha = Qlr.
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Then, we have ∥∥rEnha
∥∥ ≤ ‖r‖ .

REMARK 2.4. The matrix computed in Algorithm 1,

∆Rn = [∆rn−1 ∆rn−2 · · · ∆rn−s] ,

is of full rank. Therefore, the pseudo-inverse of ∆Rn is well defined, and its columns can be
used for building the orthogonal projector Ql.

By invoking Proposition 2.3 with the residual vector rn, we obtain an improvement in the
accuracy and stability of the IDR(s) algorithm. Thus, we apply an orthogonal projector Ql to
the residual of this method. To avoid a storage problem, we use the s vectors of Gj already
calculated in the IDR(s) method to construct the orthogonal projector.

The partial enhancement of the convergence of the IDR(s) method (PEnha-IDR(s)) is
given by choosing Zl equal to the last column of ∆Rn (l = 1), and by adding the following
instructions (using Matlab notation) to line 26 in Algorithm 1:

1. Z1 = ∆Rn(:, n);
2. Z = Z†1 ∗ rn+1;
3. xPEnhan+1 = xn+1 + ∆Xn(:, n) ∗ Z;
4. rPEnhan+1 = rn+1 −∆Rn(:, n) ∗ Z;

The full enhancement of the convergence of the IDR(s) (FEnha-IDR(s)) method is defined
by choosing Zl equal to ∆Rn (l = s), and by adding the following instructions (using Matlab
notation) to line 26 in Algorithm 1:

1. Zs = ∆Rn;
2. Z = Z†s ∗ rn+1;
3. xFEnhan+1 = xn+1 + ∆Xn ∗ Z;
4. rFEnhan+1 = rn+1 −∆Rn ∗ Z;

REMARK 2.5. For building the orthogonal projector Ql, we can also take some of the last
columns of the matrix ∆Rn.

3. The global and block IDR(s) methods. In this section, we consider the solution of
large and sparse nonsymmetric systems with multiple right-hand sides of the form

(3.1) AX = B,

where the coefficient matrix A is a nonsingular complex matrix of order N and the matrices
X = [x1 x2 · · · xm] and B = [b1 b2 · · · bm] ∈ CN×m, with m� N .

One class of solvers for problem (3.1) are the global methods, which are based on the use
of a global projection process onto a matrix (global) Krylov subspace, including the global
FOM and GMRES methods [11], the global BCG and Bi-CGStab methods [5], and the global
Hessenberg and CMRH methods [10].

The other class is that of block solvers, which are much more efficient when the matrix A
is relatively dense. The first block solvers are the block conjugate gradient (Bl-CG) and block
bi-conjugate gradient (Bl-BCG) methods proposed in [15], while for nonsymmetric problems,
the block generalized minimal residual (Bl-GMRES) algorithm [22], the block quasi-minimum
residual (Bl-QMR) algorithm [7], the block Bi-CGStab (Bl-BiCGStab) algorithm [5], and the
block Lanczos method [6] have been developed.
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3.1. The global IDR(s) method. In this section we recall some matrix products that
will be used to define the global version of the IDR(s) method for solving the system of
nonsymmetric linear equations (3.1). As for the IDR(s) method, partial and full enhancements
of this version are proposed.

We recall the definition of the Kronecker product [13] and of the �-product [2] and
give some fundamental properties of the latter. A matrix system of CN×m is said to be
F-orthonormal if it is orthonormal with respect to 〈Y, Z〉F = Tr(Y HZ). For any matrix
A = (ai,j) and any matrixB, the Kronecker product ofA andB is defined byA⊗B = [ai,jB].
In what follows, we refer to the product denoted by � that is defined as follows [2]:

DEFINITION 3.1. Let A = [A1 A2 · · · As] and B = [B1 B2 · · · Bl] be matrices of
dimension N × sm and N × lm, respectively, where Ai and Bj (i = 1, . . . , s, j = 1, . . . , l)
are N ×m matrices. Then the s× l matrix AT �B is defined by

AT �B =


〈A1, B1〉F 〈A1, B2〉F · · · 〈A1, Bl〉F
〈A2, B1〉F 〈A2, B2〉F · · · 〈A2, Bl〉F

...
...

...
...

〈As, B1〉F 〈As, B2〉F · · · 〈As, Bl〉F

 .
REMARKS 3.2.

1. If m = 1, then AT �B = ATB.
2. If m = 1, s = 1, and l = 1, then setting A = u ∈ CN , B = v ∈ CN , we have
AT �B = uHv ∈ C.

3. The matrix A = [A1 A2 · · · As] is F-orthonormal if and only AT �A = Is.
4. If X ∈ CN×m, then XT �X = ‖X‖2F .

We state some properties of this product combined with the Kronecker product.
PROPOSITION 3.3.
Let A,B,C ∈ CN×sm, D ∈ CN×N , L ∈ Cs, and α ∈ C. Then we have

1. (A+B)T � C = AT � C +BT � C.
2. AT � (B + C) = AT �B +AT � C.
3. (αA)T � C = α(AT � C).
4. (AT �B)T = BT �A.
5. (DA)T �B = AT � (DTB).
6. ‖AT �B‖F ≤ ‖A‖F ‖B‖F .
7. AT � (B(L⊗ Im)) = (AT �B)L.

Proof. The first six assertions are proved in [2]. We will prove the last one. We define
A = [A1 A2 · · · As] ∈ CN×sm, B = [B1 B2 · · · Bs] ∈ CN×sm, with Ai, Bi ∈ CN×m
and L = [l1, l2, . . . , ls]

T ∈ Cs×1. Then using the definition of the �-product we get

AT � (B(L⊗ Im)) = AT �

(
s∑
i=1

Bili

)
=

s∑
i=1

(
AT �Bi

)
li =

(
AT �B

)
L,

and the result follows.
We recall the definition of the global Krylov subspace of order n associated with the

matrices A and R0, where R0 = B −AX0 with X0 an initial approximation of the solution
X∗ of the system (3.1).

DEFINITION 3.4. The subspace Kgn(A,R0) generated by A and increasing powers of A
applied to R0,

Kgn(A,R0) =

{
n∑
i=1

Ai−1R0γi; γi ∈ C

}
,
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is called the global Krylov subspace of order n associated with A and R0; see, e.g., [4]. It
can be also defined by

Kgn(A,R0) = span
{
R0, AR0, . . . , A

n−1R0

}
.

3.1.1. The global IDR(s) algorithm. The global version of the IDR theorem is stated in
the following theorem, whose proof is similar to that of the IDR theorem.

THEOREM 3.5 (global IDR). Let A be any matrix in CN×N , and let Gg0 be the full global
Krylov space KgN (A,R0). Let Sg denote any eigensubspace of CN such that Sg and Gg0 do
not share a nontrivial invariant subspace of A, and define the sequence Ggj , j = 1, 2, . . . , as

Ggj = (I − ωjA)
(
Ggj−1 ∩ S

g
)
,

where the ωj’s are nonzero complex scalars. Then the following conditions are satisfied:
• Ggj ⊂ G

g
j−1, ∀j > 0.

• Ggν = {0}, for some ν ≤ N .
The global IDR(s) algorithm is an extension of the IDR(s) algorithm. It can be derived as

a consequence of the global IDR theorem. Assume that all column vectors of Rn−s, . . . , Rn−1
belong to Ggj−1. Then we can construct the global residual Rn, whose column vectors belong
to Ggj , by defining

Rn = (I − ωjA)Vn−1,

where Vn−1 is an N ×m matrix such that Vn−1 ∈ Ggj−1 ∩ Sg and the scalar parameter ωj is
obtained by minimizing the Frobenius norm of the residual Rn. To obtain such Vn−1, suppose
that the subspace Sg can be written as follows:

Sg = N (PH) = {Z ∈ CN×m;PT � Z = 0s×1},

for a certain N × sm matrix P. Let

Vn−1 = Rn−1 −
s∑
i=1

∆Rn−1−iδi, where ∆Rk = Rk+1 −Rk.

Then the condition Vn−1 ∈ Sg can be rephrased as

(3.2) PT � Vn−1 = 0s×1.

The coefficients δ1, δ2, . . . , δs are obtained by solving the previous equation.
Define c = [δ1, δ2, . . . , δs]

T ∈ Cs and the matrices

∆Rgn = [∆Rn−1 ∆Rn−2 · · · ∆Rn−s] ,

and

∆Xg
n = [∆Xn−1 ∆Xn−2 · · · ∆Xn−s] .

Then the matrix Rn can be written as

Rn = (I − ωjA)Vn−1 = (I − ωjA)

(
Rn−1 −

s∑
i=1

∆Rn−1−iδi

)
= Rn−1 − ωjAVn−1 −∆Rgn(c⊗ Im),
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and using Proposition 3.3, equation (3.2) becomes

PT � Vn−1 = PT �

(
Rn−1 −

s∑
i=1

∆Rn−1−iδi

)
= PT �Rn−1 −PT � (∆Rgn(c⊗ Im))

= PT �Rn−1 −
(
PT �∆Rgn

)
c = 0s×1.

The computation of Rn ∈ Ggj is implemented by the following algorithm:
Calculate c ∈ Cs from

(
PT �∆Rgn

)
c = PT �Rn−1,

Vn−1 = Rn−1 −∆Rgn(c⊗ Im),

Rn = Vn−1 − ωjAVn−1.

The approximation Xn is obtained as

Xn = Xn−1 + ωjVn−1 −
s∑
i=1

∆Xn−1−iδi

= Xn−1 + ωjVn−1 −∆Xg
n (c⊗ Im) .

The scalar ωj is given by

ωj =
〈T, Vn−1〉F
〈T, T 〉F

=
Tr(THVn−1)

Tr(THT )
, where T = AVn−1.

Finally, we obtain the global IDR(s) algorithm stated in Algorithm 2.

3.1.2. Partial and full enhancement of the global IDR(s) method. As for the IDR(s)
method, we propose an improvement of the convergence of the global IDR(s) method. Two
enhancements of these methods are studied, the first one is called global partial enhancement,
denoted by Gl-PEnha-IDR(s), and the second one is called global full enhancement, denoted
by Gl-FEnha-IDR(s). We propose to improve the convergence of the global IDR(s) method by
using the following result:

PROPOSITION 3.6. Consider the orthogonal projector

Ql = I −ZlZ†l ,

where the rectangular matrix Zl is a full-rank matrix in RN×lm and Z†l =
(
ZTl Zl

)−1ZTl
its pseudo-inverse (Moore-Penrose inverse). By applying the projector Ql to any matrix
R ∈ RN×m, we obtain a new residual that we denote by

REnha = QlR.

Then, we have ∥∥REnha
∥∥
F
≤ ‖R‖F .

By invoking Proposition 3.6 with the residual vector Rn, we obtain an improvement of
the global IDR(s) algorithm: We apply an orthogonal projector Ql to the residual of this
method by using the s matrices of Ggj that are already computed in the global IDR(s) method
to construct the orthogonal projector.

The partial improvement of the convergence of the global IDR(s) (Gl-PEnha-IDR(s))
method is given by choosing Zl equal to the last column matrix of ∆Rgn (l = 1) and by adding
the following instructions (using Matlab notation) to line 27 in Algorithm 2:
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Algorithm 2 Global IDR(s) algorithm (Gl-IDRs)).
1. A ∈ CN×N , X0, B ∈ CN×m, P ∈ CN×sm, P = orth(P), tol ∈ [0, 1],
itemax > 0, R0 = B −AX0;

2. for n = 0 to s− 1 do (build s matrices in Gg0 )
3. V = ARn;
4. ω = 〈V,Rn〉F / 〈V, V 〉F ;
5. ∆Xn = ωRn;
6. ∆Rn = −ωV ;
7. Rn+1 = Rn + ∆Rn;
8. Xn+1 = Xn + ∆Xn;
9. end for

10. ∆Rgn+1 = [∆Rn · · · ∆R0];
11. ∆Xg

n+1 = [∆Xn · · · ∆X0];
12. H = PT �∆Rgn+1, h = PT �Rn+1;
13. n = s;
14. while ‖Rn‖F / ‖B‖F > tol and n < itemax do
15. for k = 0 to s do (build s matrices of Ggj )
16. solve the system Hc = h;
17. compute Q = −∆Rgn (c⊗ Im), V = Rn −Q;
18. if k = 0 then
19. T = AV ; ω = 〈T, V 〉F / 〈T, T 〉F ;
20. ∆Rn = Q− ωT ;
21. ∆Xn = −∆Xg

n (c⊗ Im) + ωV ;
22. else
23. ∆Xn = −∆Xg

n (c⊗ Im) + ωV ;
24. ∆Rn = −A∆Xn;
25. end if
26. Rn+1 = Rn + ∆Rn;
27. Xn+1 = Xn + ∆Xn;
28. n = n+ 1;
29. ∆Rgn = [∆Rn−1 · · · ∆Rn−s];
30. ∆Xg

n = [∆Xn−1 · · · ∆Xn−s];
31. ∆h = PT �∆Rn;
32. H(:, n) = ∆h;
33. end for
34. end while

1. Z1 = ∆Rgn(:, (n− 1)m+ 1 : nm);

2. Z = Z†1 ∗Rn+1;
3. XGl−PEnha

n+1 = Xn+1 + ∆Xg
n(:, (n− 1)m+ 1 : nm) ∗ Z;

4. RGl−PEnhan+1 = Rn+1 −∆Rgn(:, (n− 1)m+ 1 : nm) ∗ Z;
The full improvement of the convergence of the global IDR(s) (Gl-FEnha-IDR(s)) method

is defined by choosing Zl equal to ∆Rgn (l = s) and by adding the following instructions
(using Matlab notation) to line 27 in Algorithm 2:

1. Zs = ∆Rgn;
2. Z = Z†s ∗Rn+1;
3. XGl−FEnha

n+1 = Xn+1 + ∆Xg
n ∗ Z;
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4. RGl−FEnhan+1 = Rn+1 −∆Rgn ∗ Z;

3.2. The block IDR(s) method. In this section we consider nonsymmetric linear systems
with multiple right-hand sides (3.1). In order to state the block version of IDR(s), we first give
a variant of the IDR theorem that is an extension of the IDR theorem to the block case. We
also recall the block IDR(s) (Bl-IDR(s)) method as defined in [3], and we propose a partial
enhancement (PEnha-Bl-IDR(s)) method and a full enhancement (FEnha-Bl-IDR(s)) of the
convergence of this method. We first recall the block Krylov subspace of order n associated
with the matrices A and R0.

DEFINITION 3.7. The subspace Kbn(A,R0) generated by A and increasing powers of A
applied to R0,

Kbn(A,R0) =

{
n∑
i=1

Ai−1R0γi; γi ∈ Cm×m
}
,

is called the block Krylov subspace; see, e.g., [4].
Now we recall the definition of the block grade of R0 with respect A [9].
DEFINITION 3.8. Let Bn(A,R0) be the subspace

Bn(A,R0) := Kn(A,R0(:, 1)) + . . .+Kn(A,R0(:,m)).

Then the positive integer v(A,R0) defined by

v(A,R0) := min{n| dim(Bn(A,R0))} = dim(Bn+1(A,R0))

= min{n| Bn(A,R0)} = Bn+1(A,R0)

is called the block grade of R0 with respect to A.
REMARK 3.9. If X∗ is the exact block solution of AX = B, then

X∗ ∈ X0 +Kbv(A,R0)
(A,R0).

3.2.1. The block IDR(s) algorithm. Now we present the extension of the IDR theorem
to the block case given by [3].

THEOREM 3.10 (Block IDR). Let A be any matrix in CN×N , and let Gb0 be the full block
Krylov space Kbv(A,R0)

(A,R0). Let Sb denote any eigensubspace of CN such that Sb and Gb0
do not share a nontrivial invariant subspace of A. Define the sequence Gbj , j = 1, 2, . . . , as

Gbj = (I − ωjA)
(
Gbj−1 ∩ Sb

)
,

where the ωj’s are nonzero complex scalars. Then the following conditions are satisfied:

• Gbj ⊂ Gbj−1, ∀j > 0.
• Gbν = {0}, for some ν ≤ v(A,R0).

The block IDR(s) method is a natural extension of the IDR(s) method. It can be con-
sidered an implementation of the block IDR theorem. Suppose that all column vectors of
Rn−s, . . . , Rn−1 belong to Gbj−1. Then we can construct the block residual Rn whose column
vectors belong to Gbj by defining

Rn = (I − ωjA)Vn−1,

where Vn−1 is an N ×m matrix whose column vectors belong to Gbj−1 ∩ Sb and the scalar
parameter ωj is obtained by minimizing the Frobenius norm of the block residual Rn. To
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obtain such Vn−1, suppose that the subspace Sb can be written as Sb = N (PH) for some
N × sm matrix P. Let

Vn−1 = Rn−1 −
s∑
i=1

∆Rn−1−iγi, where ∆Rk = Rk+1 −Rk.

Then the condition Vn−1 ∈ Sb can be expressed as

PHVn−1 = 0.

The m × m matrices γ1, γ2, . . . , γs are obtained by solving the previous equation. The
approximation to a solution is taken as

Xn = Xn−1 + ωjVn−1 −
s∑
i=1

∆Xn−1−iγi.

The scalar ωj is given by

ωj =
〈T, Vn−1〉F
〈T, T 〉F

=
Tr(THVn−1)

Tr(THT )
, where T = AVn−1.

Finally, we obtain the block IDR(s) algorithm stated in Algorithm 3.

3.2.2. Partial and full enhancement of the block IDR(s) method. As for the IDR(s)
method, we propose an improvement of the convergence of the block IDR(s) method by
applying Proposition 3.6. Two enhancements of this method are proposed, the first one is
called block partial enhancement, denoted by Bl-PEnha-IDR(s), and the second one is called
block full enhancement, denoted by Bl-FEnha-IDR(s).

The partial enhancement of the block IDR(s) (Bl-PEnha-IDR(s)) method is obtained by
choosing Zl equal to the last column matrix of ∆Rbn, l = 1, and by adding the following
instructions (using Matlab notation) to line 27 in Algorithm 3:

1. Z1 = ∆Rbn(:, (n− 1)m+ 1 : nm);

2. Z = Z†1 ∗Rn+1;
3. XBl−PEnha

n+1 = Xn+1 + ∆Xb
n(:, (n− 1)m+ 1 : nm) ∗ Z;

4. RBl−PEnhan+1 = Rn+1 −∆Rbn(:, (n− 1)m+ 1 : nm) ∗ Z;
The full enhancement of the convergence of the block IDR(s) (Bl-FEnha-IDR(s)) method

is defined by choosing Zl equal to ∆Rbn, l = s, and by adding the following instructions
(using Matlab notation) to line 27 in Algorithm 3:

1. Zs = ∆Rbn;
2. Z = Z†s ∗Rn+1;
3. XBl−FEnha

n+1 = Xn+1 + ∆Xb
n ∗ Z;

4. RBl−FEnhan+1 = Rn+1 −∆Rbn ∗ Z;

4. Examples. In this section, we consider the convection-diffusion equation{
−∆u− α.∇u− βu = f, in Ω,

u = 0, on ∂Ω,

where Ω = (0, 1)3 and α = [αx, αy, αz]
T ∈ R3. The discretization of this equation is done

via centered finite differences with the standard 7-point stencil in three dimensions. For all the
examples we choose α = [0.5, 0.5, 0.5]T , β = 5, and Nx = 30, Ny = 20, and Nz = 20. The
order of the system is N = Nx ×Ny ×Nz = 12000.
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Algorithm 3 Block IDR(s) algorithm (Bl-IDRs)).
1. A ∈ CN×N , X0, B ∈ CN×m, P ∈ CN×sm, P = orth(P), tol ∈ [0, 1],
itemax > 0, R0 = B −AX0;

2. for n = 0 to s− 1 do (build s matrices of Gb0)
3. V = ARn;
4. ω = 〈V,Rn〉F / 〈V, V 〉F ;
5. ∆Xn = ωRn;
6. ∆Rn = −ωV ;
7. Rn+1 = Rn + ∆Rn;
8. Xn+1 = Xn + ∆Xn;
9. end for

10. ∆Rbn+1 = [∆Rn · · · ∆R0];
11. ∆Xb

n+1 = [∆Xn · · · ∆X0];
12. H = PH∆Rbn+1, h = PHRn+1;
13. n = s;
14. while ‖Rn‖F / ‖B‖F > tol and n < itemax do
15. for k = 0 to s do (build s matrices of Gbj )
16. solve the system HC = h;
17. compute Q = −∆RbnC, V = Rn −Q;
18. if k = 0 then
19. T = AV ; ω = 〈T, V 〉F / 〈T, T 〉F ;
20. ∆Rn = Q− ωT ;
21. ∆Xn = −∆Xb

nC + ωV ;
22. else
23. ∆Xn = −∆Xb

nC + ωV ;
24. ∆Rn = −A∆Xn;
25. end if
26. Rn+1 = Rn + ∆Rn;
27. Xn+1 = Xn + ∆Xn;
28. n = n+ 1;
29. ∆Rbn = [∆Rn−1 · · · ∆Rn−s];
30. ∆Xb

n = [∆Xn−1 · · · ∆Xn−s];
31. ∆h = PHRn;
32. H(:, (n− 1)m+ 1 : nm) = ∆h;
33. end for
34. end while

4.1. IDR(s) method. To illustrate the efficiency of our technique, we compare the
enhanced IDR(s) methods for systems with single right-hand sides given by Algorithm 1 with
the BiCGStab and the GMRES methods. Then, we apply the classical IDR(s) and the new
enhanced IDR(s) (partial and full enhancement IDR(s)) methods, denoted by PEnha-IDR(s)
and FEnha-IDR(s), for two different values of s, s = 8 and s = 12. We plot the graphs of
the residual and error norms. For these methods, the shadow vectors P and the right-hand b
of (1.1) are chosen as

P = orth(rand(N, s)), xs = rand(N, 1), b = A ∗ xs,

where xs is the solution of the considered system and the rand-function creates an N × s
random matrix for P and a random N -vector for xs with coefficients uniformly distributed in
[0, 1]. The initial guess is taken to be zero. For this case, the iterations were stopped as soon as
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FIG. 4.1. Comparison of the residual norms of the IDR(s) method, its
enhancements, and the BiCGStab and GMRES methods, for s = 8 and s = 12.

FIG. 4.2. Comparison of the error norms of the IDR(s) method, its enhance-
ments, and the BiCGStab and the GMRES method, for s = 8 and s = 12.

‖rn‖/‖b‖ ≤ 10−10. We remark that instead of rand, the function randn can be used as well,
which creates a random matrix or vector with real random coefficients. The orth(A)-function
returns an orthonormal basis for the range of the matrix A. Figures 4.1 and 4.2 illustrate the
comparison of these algorithms with respect to the residual and error norms, respectively.

4.2. Global and block IDR(s) methods. For the global and block methods, the shadow
matrix P and the right-hand side B of (3.1) are chosen as follows:

P = orth(rand(N, sm)), XS = rand(N,m) B = A ∗XS,

with a matrix initial guess equal to zeros(N,m). The algorithms were stopped as soon as

‖Rn‖F /‖B‖F ≤ 10−10.
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4.2.1. Global IDR(s) method. For the global case we compare the global IDR(s) (Gl-
IDR(s)) and its enhancements, the global partial enhancement IDR(s) (Gl-PEnha-IDR(s)) and
the global full enhancement IDR(s) (Gl-FEnha-IDR(s)) for s = 8, s = 12 and for m = 6, with
the Gl-BiCGStab and the Gl-GMRES methods. Figures 4.3 and 4.4 provide this comparison
with respect to the residual and error norms, respectively.

FIG. 4.3. Comparison of the residual norms of the Gl-IDR(s) method, its
enhancements, and the Gl-BiCGStab and Gl-GMRES method, for s = 8, s = 12
and for m = 6.

FIG. 4.4. Comparison of the error norms of the Gl-IDR(s) method, its
enhancements, and the Gl-BiCGStab and Gl-GMRES method, for s = 8, s = 12
and for m = 6.

4.2.2. Block IDR(s) method. For the block case we compare the block IDR(s) (Bl-
IDR(s)) and its enhancements, the block partial enhancement IDR(s) (Bl-PEnha-IDR(s)) and
the block full enhancement IDR(s) (Bl-FEnha-IDR(s)) for s = 8, s = 12 and for m = 6 with
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FIG. 4.5. Comparison of the residual norms of the Bl-IDR(s) method, its
enhancements, and the Bl-BiCGStab and Bl-GMRES method, for s = 8, s = 12
and for m = 6.

FIG. 4.6. Comparison of the error norms of the Bl-IDR(s) method, its
enhancements, and the Bl-BiCGStab and Bl-GMRES method, for s = 8, s = 12
and for m = 6.

the Bl-BiCGStab and the Bl-GMRES methods. Figures 4.5 and 4.6 illustrate this comparison
with respect to the residual and error norms, respectively.

5. Conclusion. In this paper, we propose a new technique to improve the convergence
behavior of the IDR(s) method for the standard, global, and block cases. By using the s linearly
independent vectors that have already been computed, we construct orthogonal projectors to
enhance the convergence.

Numerically, we observe that the enhanced algorithms of the IDR(s) methods are more
efficient and converge faster than the BI-CGStab and GMRES methods, particularly when
s increases, for the standard and block cases. In the global case, the improved methods of
IDR(s) are as efficient as the GMRES method, particularly when s increases.
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