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REGULAR CONVERGENCE AND FINITE ELEMENT METHODS
FOR EIGENVALUE PROBLEMS∗
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Abstract. Regular convergence, together with other types of convergence, have been studied since the 1970s for
discrete approximations of linear operators. In this paper, we consider the eigenvalue approximation of a compact
operator T that can be written as an eigenvalue problem of a holomorphic Fredholm operator functionF (η) = T− 1

η
I .

Focusing on finite element methods (conforming, discontinuous Galerkin, non-conforming, etc.), we show that the
regular convergence of the discrete holomorphic operator functions Fn to F follows from the compact convergence
of the discrete operators Tn to T . The convergence of the eigenvalues is then obtained using abstract approximation
theory for the eigenvalue problems of holomorphic Fredholm operator functions. The result can be used to prove the
convergence of various finite element methods for eigenvalue problems such as the Dirichlet eigenvalue problem and
the biharmonic eigenvalue problem.
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1. Introduction. Eigenvalue problems of partial differential equations have many impor-
tant applications in science and engineering, e.g., the design of solar cells for clean energy,
the calculation of electronic structure in condensed matter, extraordinary optical transmission,
non-destructive testing, photonic crystals, and biological sensing. Due to the flexibility in
treating complex structures and a rigorous theoretical justification, finite element methods
have been widely used to solve eigenvalue problems [2, 4, 7, 11, 20, 24].

The study of the finite element methods for eigenvalue problems started in 1970s and has
been an active research area since then. Many results obtained before the 1990s can be found
in the book chapter by Babuška and Osborn [2]. We refer the readers to [4, 24] for discussions
of recent developments. The main functional analysis tool is the spectral perturbation theory
for linear compact operators [10, 18]. Essentially, if there is uniform convergence of the finite
element solution operators to the continuous solution operator, then the theory of Babuška and
Osborn [2] can be employed to obtain the convergence of the eigenvalues and the associated
eigenfunctions, i.e., all eigenpairs are approximated correctly, and there are no spurious modes.

While uniform convergence of discrete operators can be proved for some finite element
methods such as conforming finite element methods, it is impossible or challenging for many
other finite element methods, for instance, the discontinuous Galerkin methods. Various
methods have been proposed in the literature to prove convergence when uniform convergence
is not available [1, 11, 19]. In this paper, we consider the eigenvalue approximation of a
compact operator T and reformulate it as an eigenvalue problem of the holomorphic Fredholm
operator function. The regular convergence of the discrete holomorphic operator functions
Fn follows from the compact convergence of the discrete operators. The convergence of
eigenvalues and eigenfunctions is then obtained using the abstract approximation theory
for the eigenvalue problems of holomorphic Fredholm operator functions in [16, 17]. This
work extends the results in [15, 16, 25] and provides an alternative way to analyze the
convergence of various finite element approximations for eigenvalue problems of partial
differential equations [21, 26, 27, 28, 29].
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The rest of the paper is arranged as follows. In Section 2, we recall the discrete ap-
proximation scheme, different types of convergence for linear operators, and the abstract
approximation theory for eigenvalue problems of holomorphic Fredholm operator functions.
Section 3 contains the study of regular convergence related to the finite element approximation
operators for partial differential equations in L2-spaces. It turns out that compact convergence
of the discrete solution operator guarantees regular convergence. Using the abstract approxi-
mation theory for holomorphic Fredholm operator functions, we show convergence of various
finite element methods for the Dirichlet eigenvalue problem in Section 4 and the biharmonic
eigenvalue problem in Section 5. We end the paper with some conclusions and future work in
Section 6.

2. Preliminaries. We present a brief introduction on the discrete approximation scheme,
different types of convergence, and the abstract approximation theory for eigenvalue problems
of holomorphic Fredholm operator functions. The readers are referred to [10, 16, 17, 22, 23, 25]
for more details.

2.1. Discrete approximation schemes. Let X and Xn, n ∈ N, be Banach spaces, with
{Xn}n∈N a sequence of approximation spaces for X . Let P = {pn}n∈N be a sequence of
bounded linear operators pn : X → Xn such that

‖pnx‖Xn −→ ‖x‖X (n ∈ N),

for all x ∈ X .
DEFINITION 2.1. A sequence {xn}n∈N with xn ∈ Xn is said to P -converge to x ∈ X if

‖xn − pnx‖Xn −→ 0 (n ∈ N).

We write it as xn
P−→ x (n ∈ N) or simply xn → x (n ∈ N).

DEFINITION 2.2. A sequence {xn}n∈N with xn ∈ Xn is called (discrete) P -compact if

for every N′ ⊂ N there exists N′′ ⊂ N′ and an x ∈ X such that xn
P−→ x (n ∈ N′′).

Let Y be a Banach space. Denote by L(X,Y ) the space of bounded linear operators from
X to Y . We denote by N (A) = {x ∈ X : Ax = 0} andR(A) = {y ∈ Y : y = Ax, x ∈ X}
the null space and the range of the operator A ∈ L(X,Y ), respectively.

DEFINITION 2.3. An operator A ∈ L(X,Y ) is called semi-Fredholm if R(A) ⊂ Y is
closed and additionally N (A) has a finite dimension or R(A) has a finite codimension. If
R(A) is closed and in addition dimN (A) and codimR(A) are both finite, then A is called
Fredholm. The index of a Fredholm operator is defined as

indA = dimN (A)− codimR(A).

In the following, we define various notions of convergence for linear operators; see [10,
22, 25] for details. These are point convergence, stable convergence, compact convergence,
and regular convergence. Let {Yn}n∈N be a sequence of Banach spaces that approximates
Y , and let Q = {qn}n∈N be a sequence of bounded linear operators qn : Y → Yn such that
‖qny‖Yn −→ ‖y‖Y (n ∈ N) for all y ∈ Y .

DEFINITION 2.4. A sequence {An}n∈N of linear operators An ∈ L(Xn, Yn) converges
(or PQ-converges, or converges discretely) to A ∈ L(X,Y ) if

xn
P−→ x (n ∈ N) =⇒ Anxn

Q−→ Ax (n ∈ N).

We write this as An −→ A (n ∈ N) or An
PQ−→ A (n ∈ N).
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In Theorem 2-8 of [25], the equivalence of An
PQ−→ A (n ∈ N) and

‖An‖ ≤ const, (n ∈ N), ‖Anpnx− qnAx‖Yn → 0 (n ∈ N), ∀x ∈ X,

is claimed. The following theorem is a consequence of Theorem 2-8 and Theorem 2-9 in [25].
THEOREM 2.5. If pn ∈ L(X,Xn), pnX = Xn, and b = const with

(2.1) inf
x∈X,pnx=xn

‖x‖X ≤ b‖xn‖Xn (n ∈ N,∀xn ∈ Xn),

then ‖Anpnx− qnAx‖Yn → 0 (n ∈ N),∀x ∈ X , implies ‖An‖ ≤ const (n ∈ N).
Proof. If the conditions are satisfied, then by Theorem 2-9 in [25], one has the equivalence

of ‖Anpnx − qnAx‖Yn → 0 (n ∈ N), ∀x ∈ X , and An
PQ−→ A (n ∈ N). By Theorem 2-8

in [25], ‖An‖ ≤ const (n ∈ N).
DEFINITION 2.6. A sequence {An}n∈N of linear operators An ∈ L(Xn, Yn) converges

stably to A ∈ L(X,Y ) if the following two conditions are met:

1. An
PQ−→ A (n ∈ N).

2. There is some n0 ∈ N such that the inverse operators A−1n ∈ L(Yn, Xn) exist for all
n ≥ n0, where

‖A−1n ‖ ≤ C (n ≥ n0).

We write in short form An → A stably.

DEFINITION 2.7. A sequence {An}n∈N of linear operators An ∈ L(Xn, Yn) converges
compactly to A ∈ L(X,Y ) if the following conditions are met:

1. An
PQ−→ A (n ∈ N).

2. ‖xn‖Xn ≤ C (n ∈ N) =⇒ {Anxn}n∈NQ-compact.
We write in short form An → A compactly.

DEFINITION 2.8. A sequence {An}n∈N of linear operators An ∈ L(Xn, Yn) converges
regularly to A ∈ L(X,Y ) if the following two conditions are satisfied:

1. An
PQ−→ A (n ∈ N).

2. {An}n∈N is regular, which means

‖xn‖Xn ≤ C (n ∈ N), {Anxn}n∈NQ-compact =⇒ {xn}n∈N P -compact.

We write in short form An → A regularly.
The following theorem from [25] (Theorem 2-55 therein) states a sufficient condition for

the regular convergence of An to A.
THEOREM 2.9. Let

Bn → B stably (Bn ∈ L(Xn, Yn), B ∈ L(X,Y )),

Cn → C compactly (Cn ∈ L(Xn, Yn), C ∈ L(X,Y )),

whereR(B) = Y . Then

An := Bn + Cn =⇒ B + C =: A regularly.

DEFINITION 2.10. A sequence {An}n∈N of linear operators An ∈ L(Xn, Yn) converges
uniformly to A ∈ L(X,Y ) if ‖Anpn − qnA‖ → 0 (n ∈ N). We write in short form An → A
uniformly.
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2.2. Holomorphic Fredholm operator functions. We now introduce the abstract approx-
imation theory for eigenvalue problems of holomorphic Fredholm operator functions [16, 17].
Let X and Y be complex Banach spaces. Let Ω ⊆ C be a compact simply connected region.

Let F : Ω → L(X,Y ) be a holomorphic operator function on Ω and, for each η ∈ Ω,
F (η) be a Fredholm operator of index zero [14].

DEFINITION 2.11. A complex number λ ∈ Ω is called an eigenvalue of F if there exists
a nontrivial x ∈ X such that F (λ)x = 0. The element x is called an eigenfunction of F
associated with λ.

The resolvent set ρ(F ) and the spectrum σ(F ) of F (·) are defined respectively as

ρ(F ) = {η ∈ Ω : F (η)−1 exists and is bounded}

and

σ(F ) = Ω \ ρ(F ).

If ρ(F ) 6= ∅, then, since F (η) is holomorphic, the spectrum σ(F ) has no cluster points in Ω
and every λ ∈ σ(F ) is an eigenvalue for F (η). Furthermore, the operator function F−1(·)
is meromorphic; see [16, Section 2.3]. The dimension of N (F (λ)) is called the geometric
multiplicity of an eigenvalue λ.

DEFINITION 2.12. An ordered sequence of elements x0, x1, . . . , xk in X is called a
Jordan chain of F at an eigenvalue λ if

F (λ)xj +
1

1!
F (1)(λ)xj−1 + . . .+

1

j!
F (j)(λ)x0 = 0, j = 0, 1, . . . , k,

where F (j) denotes the jth derivative.
The length of any Jordan chain of an eigenvalue λ is finite. Denote by m(F, λ, x0) the

length of a Jordan chain formed by an eigenfunction x0. The maximal length of all Jordan
chains of λ is denoted by κ(F, λ), called the ascent of λ. Elements of any Jordan chain of an
eigenvalue λ are called generalized eigenfunctions of λ.

DEFINITION 2.13. The closed linear hull of all generalized eigenfunctions of an eigen-
value λ, denoted by G(λ), is called the generalized eigenspace of λ.

Let Xn, Yn be Banach spaces, not necessarily subspaces of X,Y . Let pn ∈ L(X,Xn)
and qn ∈ L(Y, Yn) be such that

lim
n→∞

‖pnx‖Xn = ‖x‖X , ∀x ∈ X and lim
n→∞

‖qny‖Yn = ‖y‖Y , ∀y ∈ Y.

Consider a sequence of discrete operator functions

Fn : Ω→ L(Xn, Yn), n ∈ N.

Assume that ρ(F ) 6= ∅ and
(b1) For every η ∈ Ω, {Fn(η)}n∈N is a sequence of Fredholm operators with index zero.
(b2) For every η ∈ Ω, {Fn(η)}n∈N is equibounded on Ω, i.e., ‖Fn(η)‖ ≤ C (n ∈ N).
(b3) For every η ∈ Ω, {Fn(η)}n∈N approximates F (η), i.e.,

‖[Fn(η)pn − pnF (η)]x‖Yn → 0.

(b4) For every η ∈ Ω, {Fn(η)}n∈N is regular.
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Under these assumptions, the following theorem states that all eigenvalues are approxi-
mated correctly; see [16, 17] or [3].

THEOREM 2.14. For any λ ∈ σ(F ) there exists n0 ∈ N and a sequence λn ∈ σ(Fn),
n ≥ n0, such that λn → λ as n→∞. For any sequence λn ∈ σ(Fn) with this convergence
property and the associate eigenfunctions v0n ∈ N (Fn(λn)), ‖v0n‖Xn = 1, one has that

|λn − λ| ≤ Cε1/κn ,

inf
v∈N (F (λ))

‖v0n − pnv‖Xn ≤ Cε1/κn ,

where

εn = max
|η−λ|≤δ

max
v∈G(λ)
‖v‖X=1

‖Fn(η)pnv − qnF (η)v‖Yn

for sufficiently small δ > 0.
The theorem above states that all eigenvalues and eigenfunctions are approximated

correctly. Note that condition (b3) (pointwise convergence) itself is not sufficient to rule out
spurious discrete eigenvalues. We refer the readers to [5] for some (pointwise convergent)
mixed finite element methods producing spurious eigenvalues.

3. Finite element approximations. To analyze finite element methods for eigenvalue
problems of partial differential equations, we choose X = Y = L2(D) for the rest of the
paper, where D ⊂ R2 is a Lipschitz polygonal domain. The result in this paper holds for
higher-dimensional cases if the corresponding approximation properties of the finite element
methods for the source problem are available. Denote by ‖· ‖ the usual L2-norm. Let T be the
solution operator for the source problem associated to the eigenvalue problem. For example,
the Poisson equation with homogeneous Dirichlet boundary condition is the source problem
associated with the Dirichlet eigenvalue problem. In this section, we present some general
results that can be used to prove the convergence of a large class of finite element methods
for eigenvalue problems. It turns out that compact convergence of the finite element solution
operators Tn in the L2-norm is crucial.

Assume that T ∈ L(X,X) is compact, and let I : X → X be the identity operator. The
eigenvalue problem for T is to find λ 6= 0 and nontrivial x ∈ X such that

(3.1) Tx =
1

λ
x.

Define F : Ω→ L(X,X) such that

(3.2) F (η) := T − 1

η
I, η ∈ Ω,

where Ω is a compact subset of C such that 0 /∈ Ω. It is clear that F (η) is a holomorphic
Fredholm operator for every η ∈ Ω and ρ(F ) 6= ∅. The eigenvalue problem of F (·) is to find
λ ∈ Ω and x ∈ X such that

(3.3) F (λ)x = 0.

Clearly, (3.3) is equivalent to the eigenvalue problem (3.1) for T .
Let Tn := Thn be a regular triangular mesh for D with mesh size hn → 0+, n→∞. Let

Xn ⊂ X be the associated finite element space endowed with the L2-norm and P = {pn}n∈N,
pn : X → Xn be the L2-projection, i.e., for f ∈ X , pnf ∈ Xn is such that

(pnf, xn) = (f, xn) for all xn ∈ Xn.
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Let In : Xn → Xn be the identity operator and qn = pn. Assume that there exists a
series of finite element approximation operators Tn : Xn → Xn for T . Define the discrete
approximation operators

(3.4) Fn(η) := Tn −
1

η
In, η ∈ Ω.

Since Xn is finite-dimensional, Fn(η) is Fredholm with index zero for η ∈ Ω and n ∈ N. For
the convergence analysis of the discrete eigenvalues of Fn(·) to those of F (·), we shall see that

Tn → T compactly

is sufficient. The stable convergence of In to I holds.
LEMMA 3.1. In → I stably.
Proof. If pnI − Inpn = 0, then In → I . Furthermore, I−1n : Xn → Xn exists and is

bounded. Hence In → I stably.
The following lemmas establish sufficient conditions for compact convergence.
LEMMA 3.2. Assume that Tn → T discretely. If there exists a space X ′ compactly

embedded in X with Xn ⊂ X ′ and {Tn}n∈N as operators from Xn to X ′ are uniformly
bounded, then Tn → T compactly.

Proof. Let ‖xn‖ ≤ C (n ∈ N). Then {Tnxn}n∈N is bounded in X ′. For any subsequence
{Tnxn}n∈N′ ,N′ ⊂ N, due to the compact embedding of X ′ into X , there exists a convergent
subsequence of {Tnxn}n∈N′′ , N′′ ⊂ N′, such that Tnxn → y ∈ X (n ∈ N′′). Hence,

‖Tnxn − pny‖ = ‖pnTnxn − pny‖ 6 ‖Tnxn − y‖ → 0 (n ∈ N′′).

The proof is complete.
REMARK 3.3. For a finite element approximation of the source problem, one usually has

a discrete solution operator T ′n : X → Xn. In general, the discrete operator Tn : Xn → Xn

is such that Tnpn = T ′n.
LEMMA 3.4. Let T : X → X be a compact operator. If Tn → T uniformly, then

Tn → T compactly.
Proof. Let ‖xn‖ ≤ C (n ∈ N). Since T is compact, for any subsequence {Txn}n∈N′ ,

N′ ⊂ N, there exits a convergent subsequence {Txn}n∈N′′ ,N′′ ⊂ N′, such that Txn → y ∈ X
as N′′ 3 n→∞. For n ∈ N′′,

‖Tnxn − pny‖ = ‖Tnxn − pnTxn + pnTxn − pny‖
≤ ‖Tnpnxn − pnTxn‖+ ‖pnTxn − pny‖ → 0 as n→∞.

Hence {Tnxn}n∈N is discretely compact and Tn → T compactly.
THEOREM 3.5. Let T : X → X be compact. Assume that Tn → T compactly. Then:

1. ‖Fn(η)‖ ≤ C for every η ∈ Ω and n ∈ N.
2. For every η ∈ Ω and x ∈ X , ‖[Fn(η)pn − pnF (η)]x‖ → 0.
3. Fn(η)→ F (η) regularly for each η ∈ Ω.
4. For an eigenvalue λ of F , there exist n0 and a sequence of eigenvalues λn of Fn,
n > n0, such that λn → λ as n→∞. For any sequence λn with this convergence
property and the associated eigenfunctions xn ∈ N (Fn(λn)), ‖xn‖ = 1, it holds
that

|λn − λ| ≤ Cε1/κn ,

inf
x∈N (F (λ))

‖xn − pnx‖ ≤ Cε1/κn ,

where εn =
∥∥(Tnpn − pnT )|G(λ)

∥∥ and κ is the ascent of λ.
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Proof.
1. Since Xn ⊂ X and the pn are L2-projections, we clearly have that pn ∈ L(X,Xn)

and pnX = Xn. Furthermore, since pn are orthogonal projections, (2.1) is satisfied
by taking x = xn and b = 1. Since Tn → T discretely, the Tn are uniformly
bounded in n due to Theorem 2.5. It is clear that In’s are uniformly bounded. Then,
‖Fn(η)‖ ≤ C due to the fact that Ω is compact.

2. For a fixed η ∈ Ω and x ∈ X ,

‖[Fn(η)pn − pnF (η)]x‖ =

∥∥∥∥(Tnpn − pnT )x− 1

η
(Inpn − pnI)x

∥∥∥∥
= ‖(Tnpn − pnT )x‖ → 0 as n→∞.

3. Since Tn → T compactly, Fn(η) → F (η) regularly for each η ∈ Ω due to Theo-
rem 2.9.

4. We have that

max
|η−λ|≤δ

max
v∈G(λ)
‖v‖X=1

‖Fn(η)pnx− pnF (η)x‖ = max
v∈G(λ)
‖v‖X=1

‖(Tnpn − pnT )x‖ .

The proof is completed by applying Theorem 2.14.
REMARK 3.6. In view of Remark 3.3, one has that

‖(T ′n − pnT )x‖ = ‖pn(T ′n − T )x‖ ≤ ‖(T ′n − T )x‖.

Hence, the consistency error εn is bounded by the error of the finite element solution operators.

4. The Dirichlet eigenvalue problem. In this section, we analyze the convergence of
several finite element methods for the Dirichlet eigenvalue problem. LetD ⊂ R2 be a bounded
Lipschitz polygonal domain. The Dirichlet eigenvalue problem is to find λ ∈ R and u 6= 0
such that

−∆u = λu in D,
u = 0 on ∂D.

The associated source problem is, given f , to find u such that

(4.1)
−∆u = f in D,

u = 0 on ∂D.

For f ∈ L2(D), the weak formulation of (4.1) is to find u ∈ H1
0 (D) such that

(4.2) a(u, v) = (f, v) for all v ∈ H1
0 (D),

where

a(u, v) =

∫
D

∇u · ∇v dx, (f, v) =

∫
D

fv dx.

The variational formulation of the eigenvalue problem is: Find λ ∈ R and u ∈ H1
0 (D) such that

a(u, v) = λ(u, v) for all v ∈ H1
0 (D).

There exists a unique solution u ∈ H1
0 (D) to (4.2). Furthermore, u ∈ H1+α(D), where

α ∈ ( 1
2 , 1] (α = 1 if D is convex) is the elliptic regularity index; see, e.g., [24, Section 3.2].
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Due to the wellposedness of (4.2) and the compact embedding of H1
0 (D) into L2(D), the

solution operator to (4.2)

T : L2(D)→ L2(D) such that Tf = u

is compact. The Dirichlet eigenvalue problem is equivalent to the operator eigenvalue problem
of finding λ ∈ R and u ∈ L2(D) such that

T (λu) = u.

LEMMA 4.1. Let Ω ⊂ C\{0} be a compact set and F (·) be defined in (3.2). Then
F : Ω→ L(L2(D), L2(D)) is a holomorphic Fredholm operator function.

Proof. It is clear that F (·) is holomorphic in Ω. Since T is compact and I is the identity
operator, F (η) is a Fredholm operator of index zero for every η ∈ Ω.

Assume that there exists a finite element solution operator Tn : Xn → Xn such that
Tnfn = un. In general, one has convergence of the finite element method for the source
problem, i.e.,

lim
n→∞

‖Tnpnf − pnTf‖ = 0 for all f ∈ X.

Next we investigate several finite element methods for the Dirichlet eigenvalue problem using
the results in Section 3.

4.1. The conforming finite element method. Let Xn be the Lagrange element space
equipped with the L2-norm. The discrete formulation for the source problem (4.2) is as
follows. For f ∈ L2(D), find un ∈ Xn such that

(4.3) a(un, vn) = (fn, vn) for all vn ∈ Xn,

where a(un, vn) = (∇un,∇vn) and fn = pnf .
The discrete problem (4.3) has a unique solution un such that ‖un‖H1(D) ≤ C‖fn‖. Let

u and un be the solutions of (4.2) and (4.3), respectively. The classical finite element error
analysis gives that (see, e.g., [9])

(4.4) ‖u− un‖ ≤ Ch2αn ‖f‖.

Let Tn : Xn → Xn, Tnfn = un, be the finite element solution operator of (4.3). Since

‖un − pnu‖ = ‖pnun − pnu‖ ≤ ‖un − u‖,

using (4.4), one obtains that

lim
n→∞

‖Tnpnf − pnTf‖ = 0 for all f ∈ X.

LEMMA 4.2. Let Fn(·) be defined in (3.4). Then Fn → F regularly.
Proof. Due to Lemma 3.2, Tn → T compactly. Lemma 2.9 then implies that Fn → F

regularly, completing the proof.
The convergence for the Lagrange finite element method of finding λn and un such that

a(un, vn) = λn(un, vn) for all vn ∈ Xn

follows from (4.4) and Theorem 3.5.
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THEOREM 4.3. Let λ ∈ σ(F ). There exists n0 ∈ N and a sequence λn ∈ σ(Fn), n ≥ n0,
such that λn → λ as n→∞. For any sequence λn ∈ σ(Fn) with this convergence property
and the associated eigenfunction un, ‖un‖ = 1, one has that

(4.5) |λn − λ| ≤ Ch2αn and ‖un − u‖ ≤ Ch2αn ,

where u is some eigenfunction associated to λ with ‖u‖ = 1.
Proof. Since T is self-adjoint, each eigenvalue has ascent κ = 1. From (4.4), it holds that

εn ≤ Ch2αn . Hence (4.5) holds due to Theorem 3.5.
REMARK 4.4. For convex domains, one has that α = 1 and thus obtains second-order

convergence for the eigenvalues and eigenfunctions using the linear Lagrange element.

4.2. Interior penalty discontinuous Galerkin methods. We consider the interior
penalty discontinuous Galerkin methods for the Dirichlet eigenvalue problem [1, 26]. Denote
by FIn and FBn the sets of the interior edges and boundary edges of the triangulation Tn,
respectively. Let Fn := FIn ∪ FBn . Let w and v be piecewise smooth vector-valued and
scalar-valued functions. Let F ∈ FIn be an interior face shared by two elements K+ and K−

with outward normal ν±. Denote by w± and v± the value of w and v on ∂K± taken from
within K±, respectively. The jumps across F are defined by

JwK = w+ · ν+ +w− · ν−, JvK = v+ν+ + v−ν−,

and the averages are defined by

{{w}} =
1

2

(
w+ +w−

)
, {{v}} =

1

2

(
v+ + v−

)
.

For F ∈ FBn , one simply defines

JwK = w · ν, JvK = vν, {{w}} = w, {{v}} = v.

Define the discontinuous Galerkin space Xn by

Xn := {v ∈ L2(D) : v|K ∈ P `(K),K ∈ Tn},

where P `(K) is the space of polynomials of degree at most ` ≥ 1 on K. Let pn be the
L2-projection of f ∈ L2(D) to Xn such that

(pnf, vn) = (f, vn) for all vn ∈ Xn.

We consider the DG methods in primal form for the Poisson equation. Find un ∈ Xn

such that

(4.6) an(un, vn) = (fn, vn) for all vn ∈ Xn,

where an : Xn ×Xn → R is defined by

an(un, vn) = (∇nun,∇nvn)−
∫
Fn
{{∇nun}} · JvnKds

− r
∫
Fn
{{∇nvn}} · JunKds− sn(un, vn) for un, vn ∈ Xn,

where∇n is the element-wise gradient operator. The stabilization form sn(·, ·) is defined as

sn(un, vn) =

∫
Fn
γh−1n JunKJvnKds,
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for γ > 0 independent of the mesh size. In particular, one obtains the symmetric interior
penalty (SIP) method by setting r = 1, the non-symmetric interior penalty (NIP) method by
setting r = −1, and the incomplete interior penalty (IIP) by setting r = 0.

The finite element space Xn can be endowed with a second norm ‖·‖n:

‖vn‖n = ‖∇nvn‖+ ‖h−1/2JvnK‖2Fn .

For f ∈ H1
0 (D) or f ∈ Xn, the Poincaré inequality holds (Property 1 in [1])

(4.7) ‖f‖ ≤ C‖f‖n,

where C is a constant depending on D but not on the mesh.
For γ large enough, it is well-known that there exists a unique solution un to (4.6). Denote

the discrete solution operator by Tn : Xn → Xn. Let Tn → T , and let ‖xn‖ ≤ C (n ∈ N).
Since Tn’s are uniformly bounded as operators from (Xn, ‖·‖) to (Xn, ‖·‖n), {‖Tnxn‖n}n∈N
is uniformly bounded. Due to Theorem 5.7 in [12], there exists a convergent subsequence
Tnxn in the L2-norm. Thus, Tn → T compactly.

According to Property 2 in [1], for the discrete solution un to (4.6) and the exact solution
u to (4.2), it holds that

‖u− un‖n ≤ Chα‖f‖ for f ∈ L2(D).

Using the Poincaré inequality (4.7), for f ∈ L2(D), one has that

‖Tnpnf − pnTf‖ = ‖un − pnu‖ ≤ ‖un − u‖ ≤ ‖un − u‖n ≤ Chα‖f‖.

THEOREM 4.5. Let λ ∈ σ(F ). There exists n0 ∈ N and a sequence λn ∈ σ(Fn), n ≥ n0,
such that λn → λ as n→∞. For any sequence λn ∈ σ(Fn) with this convergence property
and the associated eigenfunction un, ‖un‖ = 1, one has that

(4.8) |λn − λ| ≤ Chαn and ‖un − u‖ ≤ Chαn,

where u is some eigenfunction associated to λ with ‖u‖ = 1.
Proof. Since Tn → T compactly, Fn(η) converges to F (η) regularly due to Lemma 3.4.

Then (4.8) follows from Theorem 3.5.
REMARK 4.6. For the symmetric DG method, that is, when r = 1 in (4.6), the conver-

gence order in Theorem 4.5 can be improved using the duality argument.

4.3. The nonconforming Crouzeix-Raviart method. We consider the nonconforming
piecewise linear finite element space of Crouzeix-Raviart [6]:

Xn := {v : v|K ∈ P1(K) is continuous at the midpoints of the edges of K
and v = 0 at the midpoints on ∂D},

where P1(K) denotes the space of polynomials on K of degree less or equal to 1.
Define the bilinear form on Xn

an(un, vn) := (∇nun,∇nvn), un, vn ∈ Xn.

The discrete problem is to find un ∈ Xn such that

(4.9) an(un, vn) = (fn, vn) for all vn ∈ Xn,
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where fn = pnf . There exists a unique solution un to (4.9). Denote the discrete solution
operator to be Tn : Xn → Xn such that

un = Tnfn.

Using the error estimate in the L2-norm (Theorem 1.5 of Ch. III in [6]) and the property of the
L2-projection, one has that

‖pnTf − Tnpnf‖ ≤ Ch2α‖f‖,

which implies Tn → T uniformly.
Using Theorem 3.5, we obtain the convergence of the non-conforming Crouzeix-Raviart

method. The proof is similar to the previous ones and thus omitted.
THEOREM 4.7. Let λ ∈ σ(F ). There exists n0 ∈ N and a sequence λn ∈ σ(Fn), n ≥ n0,

such that λn → λ as n→∞. For any sequence λn ∈ σ(Fn) with this convergence property
and the associated eigenfunction un, ‖un‖ = 1, one has that

|λn − λ| ≤ Ch2αn and ‖un − u‖ ≤ Ch2αn ,

where u is some eigenfunction associated to λ with ‖u‖ = 1.
REMARK 4.8. The Crouzeix-Raviart element is non-conforming in the sense that the finite

element space is not a subspace of H1
0 (D), which is the solution space for (4.2). Note here,

however, that we use the space L2(D) instead of H1
0 (D) so that the discrete space becomes

a subspace. A similar comment applies to the Morley element method for the biharmonic
eigenvalue problem in the next section.

5. The biharmonic eigenvalue problem. We now consider the biharmonic eigenvalue
problem. Let D denote a bounded Lipschitz polygonal domain in R2 with boundary ∂D. Let
ν denote the unit outward normal to ∂D. The biharmonic eigenvalue problem with clamped
plate boundary condition is to find λ ∈ R and u 6= 0 such that

(5.1)
∆2u = λu in D,

u =
∂u

∂ν
= 0 on ∂D.

The associated source problem is as follows. Given a function f , find a function u such that

(5.2)
∆2u = f in D,

u =
∂u

∂ν
= 0 on ∂D.

Define

H2
0 (D) :=

{
v ∈ H2(D) : v =

∂v

∂ν
= 0 on ∂D

}
and a bilinear form a : H2

0 (D)×H2
0 (D) such that

a(u, v) := (∆u,∆v).

The weak formulation of (5.2) is, for f ∈ L2(D), to find u ∈ H2
0 (D) such that

a(u, v) = (f, v) for all v ∈ H2
0 (D).
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The weak formulation of (5.1) is to find λ ∈ R and u ∈ H2
0 (D), u 6= 0, such that

(5.3) a(u, v) = λ(u, v) for all v ∈ H2
0 (D).

There exists a unique solution u to (5.3) belonging to H2+α(D) for some α ∈ (1/2, 1] such
that

‖u‖H2+α(D) ≤ C‖f‖,

where the constant C depends only on D. When D is convex, α = 1. The parameter α is
referred to as the index of elliptic regularity for the biharmonic equation.

Consequently, there exists a solution operator T : L2(D) → L2(D) such that, given
f ∈ L2(D),

a(Tf, v) = (f, v) for all v ∈ H2
0 (D).

It is obvious that T is self-adjoint due to the symmetry of a(·, ·) and compact due to the
compact embedding of H2

0 (D) into L2(D).

5.1. The Argyris element method. We consider the Argyris element (see, e.g., [24,
Section 4.2]), which is H2-conforming for triangular meshes Thn . Denote the associated finite
element space by Xn. The discrete problem for the source problem (5.2) can be stated as
follows. For f ∈ L2(D), find un ∈ Xn ⊂ H2

0 (D) such that

(5.4) a(un, vn) = (pnf, vn) for all vn ∈ Xn.

There exists a unique solution un to (5.4) such that

(5.5) ‖u− un‖H2(D) ≤ Chαn‖f‖.

The discrete formulation for the eigenvalue problem (5.1) is to find λn ∈ R and un ∈ Xn,
un 6= 0, such that

a(un, vn) = λn(un, vn) for all vn ∈ Xn.

Using a duality argument (Ch. II of [6]) and (5.5), one has that

‖u− un‖ ≤ Ch2αn ‖f‖.

Consequently, the discrete solution operator Tn : Xn → Xn is such that

‖Tnpnf − pnTf‖ ≤ Ch2αn ‖f‖ for f ∈ L2(D).

Since Xn ⊂ H2
0 (D), n ∈ N, and the embedding of H2

0 (D) into X is compact, one has that
Tn → T compactly due to Lemma 3.2.

Let F (·) and Fn(·) be defined as in (3.2) and (3.4), respectively, and Fn → F regularly.
Using a similar argument as for the Dirichlet eigenvalue problem, we obtain the following
convergence theorem of the Argyris element method for the biharmonic eigenvalue problem.

THEOREM 5.1. Let λ ∈ σ(F ). There exists n0 ∈ N and a sequence λn ∈ σ(Fn), n ≥ n0,
such that λn → λ as n→∞. For any sequence λn ∈ σ(Fn) with this convergence property
and the associated eigenfunction un, ‖un‖ = 1, one has that

|λn − λ| ≤ Ch2αn and ‖un − u‖ ≤ Ch2αn ,

where u is some eigenfunction associated to λ with ‖u‖ = 1.
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5.2. The C0 interior penalty discontinuous Galerkin method. We consider the C0

interior penalty discontinuous Galerkin method (C0 IPG) for the biharmonic equation [8]; see
also [27] using the holomorphic operator approach but for a different proof. Let Xn ⊂ H1(Ω)
be the Lagrange finite element space of order k ≥ 2 associated with Thn . Let Ehn be the set
of the edges in Thn . For edges e ∈ Ehn that are the common edge of two adjacent triangles
K± ∈ Thn and for v ∈ Xn, we define the jump of the flux to be

J∂v/∂neK =
∂vK+

∂ne

∣∣∣
e
−
∂vK−
∂ne

∣∣∣
e
,

where ne is the unit normal pointing from K− to K+. Let

∂2v

∂n2e
= ne · (4v)ne

and define the average normal-normal derivative to be{{
∂2v

∂n2e

}}
=

1

2

(
∂2vK+

∂n2e
+
∂2vK−
∂n2e

)
.

For e ⊂ ∂D, we take ne to be the unit outward normal and define

J∂v/∂neK = − ∂v

∂ne
and

{{
∂2v

∂n2e

}}
=
∂2v

∂n2e
.

Given fn ∈ Xn, fn = pnf , the corresponding C0 IPG method for the source problem is
to find uh ∈ Xn such that

(5.6) an(un, vn) = (fn, vn) for all v ∈ Xn,

where

an(w, v) =
∑

K∈Thn

∫
K

D2w : D2v dx

+
∑
e∈Ehn

∫
e

{{
∂2w

∂n2e

}}s
∂v

∂ne

{
+

{{
∂2v

∂n2e

}}s
∂w

∂ne

{
ds

+ σ
∑
e∈Ehn

1

|e|

∫
e

s
∂w

∂ne

{ s
∂v

∂ne

{
ds.

In the above equation, D2w : D2v =
∑2
i,j=1 wxixjvxixj is the Frobenius inner product of

the Hessian matrices of w and v, and σ > 0 is a (sufficiently large) penalty parameter. There
exist discrete solution operators Tn : Xn → Xn to (5.6) such that Tn → T .

The C0 IPG method for the biharmonic eigenvalue problem is to find λn ∈ R and un 6= 0
such that

(5.7) an(un, vn) = λn(un, vn) for all vn ∈ Xn.

Let X ′ = H1
0 (D). Since the Tn : Xn → X ′, n ∈ N, are uniformly bounded, due to

the compact embedding of X ′ into X and Lemma 3.2, Tn → T compactly. Lemma 2.9
implies that Fn → F regularly. Then the following convergence theorem holds for the C0

IPG method.
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THEOREM 5.2. Let λ ∈ σ(F ). There exists n0 ∈ N and a sequence λn ∈ σ(Fn), n ≥ n0,
such that λn → λ as n→∞. For any sequence λn ∈ σ(Fn) with this convergence property
and the associated eigenfunction un, ‖un‖ = 1, one has that

|λn − λ| ≤ Ch2αn and ‖un − u‖ ≤ Ch2αn ,

where u is some eigenfunction associated to λ with ‖u‖ = 1.
Proof. Due to Lemma 1 in [8], there exists a unique discrete solution un to (5.7) such that

‖u− un‖ ≤ Ch2αn ‖f‖ for f ∈ L2(D).

One has that

‖Tnpnf − pnTf‖ ≤ Ch2αn ‖f‖ for f ∈ L2(D).

Then Theorem 3.5 applies.

5.3. The Morley element method. We consider the Morley element space Xn. Let pn
be the L2-projection from X onto Xn. For f ∈ X , the Morley finite element method for the
biharmonic equation is to find un ∈ Xn such that

(5.8) an(un, vn) = (pnf, vn) for all vn ∈ Xn,

where

an(un, vn) :=
∑
K∈Tn

∫
K

D2un : D2vndK, un, vn ∈ Xn.

There exists a unique solution un ∈ Xn such that (see, e.g., [24, Section 4.4.2])

(5.9) ‖u− un‖2,hn ≤ Chαn‖f‖,

where the mesh-dependent norm ‖·‖2,hn is defined as

‖u‖2,hn =
∑
K∈Tn

(u, u)H2(K).

Let Tn : Xn → Xn be the discrete solution operator to (5.8). Since ‖u‖ ≤ ‖u‖2,hn , due
to (5.9), it holds that

‖u− un‖ ≤ Chαn‖f‖.

As a consequence, one has that

‖Tnpnf − pnTf‖ ≤ Chαn‖f‖ for f ∈ X.

We have the following convergence theorem for the Morley element method.
THEOREM 5.3. Let λ ∈ σ(F ). There exists n0 ∈ N and a sequence λn ∈ σ(Fn), n ≥ n0,

such that λn → λ as n→∞. For any sequence λn ∈ σ(Fn) with this convergence property
and the associated eigenfunction un, ‖un‖ = 1, one has that

|λn − λ| ≤ Chαn and ‖un − u‖ ≤ Chαn,

where u is some eigenfunction associated to λ with ‖u‖ = 1.
REMARK 5.4. We would like to use this example to illustrate that when an order of

convergence is available for the source problem, the same order of convergence holds for the
eigenvalue problem. The convergence order can be improved using a sharper error estimate in
the L2-norm; see, e.g., [13].
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6. Conclusions and future work. In this paper, we present a general approach to
prove convergence of various finite element methods for eigenvalue problems, including the
conforming methods, discontinuous Galerkin methods, and non-conforming methods. Using
the abstract approximation theory for eigenvalue problems of holomorphic Fredholm operator
functions, one needs to verify the compact convergence of the discrete solution operators.
The result has the potential to prove convergence of many other finite element methods for
eigenvalue problems such as the mixed finite element methods, virtual element methods, and
weak Galerkin methods.

We use the space L2(D) and the L2-projection for the finite element spaces. Thus, the
convergence of the eigenfunctions is also in the L2-norm. However, this framework also works
if one chooses other spaces and projections, for example, H1(D) and H1-projections for the
finite element spaces for the Dirichlet eigenvalue problem. Then one can obtain convergence
of the eigenfunctions in the H1-norm.

As seen above, the convergence order obtained using Theorem 3.5 for certain methods is
not optimal. However, if the optimal convergence order for the source problem is available in
the L2-norm, then the optimal convergence order for the eigenfunctions follows immediately.

REFERENCES

[1] P. F. ANTONIETTI, A. BUFFA, AND I. PERUGIA, Discontinuous Galerkin approximation of the Laplace
eigenproblem, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 3483–3503.

[2] I. BABUŠKA AND J. OSBORN, Eigenvalue problems, in Handbook of Numerical Analysis, Vol. II, P. G. Ciarlet
and J.-L. Lions, eds., North-Holland, Amsterdam, 1991, pp. 641–787.

[3] W.-J. BEYN, Y. LATUSHKIN, AND J. ROTTMANN-MATTHES, Finding eigenvalues of holomorphic Fredholm
operator pencils using boundary value problems and contour integrals, Integral Equations Operator
Theory, 78 (2014), pp. 155–211.

[4] D. BOFFI, Finite element approximation of eigenvalue problems, Acta Numer., 19 (2010), pp. 1–120.
[5] D. BOFFI, F. BREZZI, AND L. GASTALDI, On the problem of spurious eigenvalues in the approximation of

linear elliptic problems in mixed form, Math. Comp., 69 (2000), pp. 121–140.
[6] D. BRAESS, Finite Elements, 2nd ed., Cambridge University Press, Cambridge, 2001.
[7] J. H. BRAMBLE AND J. E. OSBORN, Rate of convergence estimates for nonselfadjoint eigenvalue approxima-

tions, Math. Comp., 27 (1973), pp. 525–549.
[8] S. C. BRENNER, P. MONK, AND J. SUN, C0 interior penalty Galerkin method for biharmonic eigenvalue

problems, in Spectral and High Order Methods for Partial Differential Equations—ICOSAHOM 2014,
R. M. Kirby, M. Berzins, and J. S. Hesthaven, eds., Lect. Notes Comput. Sci. Eng., 106, Springer, Cham,
2015, pp. 3–15.

[9] S. C. BRENNER AND L. R. SCOTT, The Mathematical Theory of Finite Element Methods, Springer, New
York, 2008.

[10] F. CHATELIN, Spectral Approximation of Linear Operators, Academic Press, New York, 1983.
[11] J. DESCLOUX, N. NASSIF, AND J. RAPPAZ, On spectral approximation. I. The problem of convergence,

RAIRO Anal. Numér., 12 (1978), pp. 97–112, iii.
[12] D. A. DI PIETRO AND A. ERN, Mathematical Aspects of Discontinuous Galerkin Methods, Springer, Heidel-

berg, 2012.
[13] D. GALLISTL, Morley finite element method for the eigenvalues of the biharmonic operator, IMA J. Numer.

Anal., 35 (2015), pp. 1779–1811.
[14] I. GOHBERG AND J. LEITERER, Holomorphic Operator Functions of One Variable and Applications,

Birkhäuser, Basel, 2009.
[15] R. D. GRIGORIEFF AND H. JEGGLE, Approximation von Eigenwertproblemen bei nichlinearer Parameterab-

hängigkeit, Manuscripta Math., 10 (1973), pp. 245–271.
[16] O. KARMA, Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I, Numer.

Funct. Anal. Optim., 17 (1996), pp. 365–387.
[17] , Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II. (Convergence

rate), Numer. Funct. Anal. Optim., 17 (1996), pp. 389–408.
[18] T. KATO, Perturbation Theory for Linear Operators, Springer, New York, 1966.
[19] B. MERCIER, J. OSBORN, J. RAPPAZ, AND P.-A. RAVIART, Eigenvalue approximation by mixed and hybrid

methods, Math. Comp., 36 (1981), pp. 427–453.
[20] J. E. OSBORN, Spectral approximation for compact operators, Math. Comput., 29 (1975), pp. 712–725.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

REGULAR CONVERGENCE AND FEM FOR EIGENVALUE PROBLEMS 243

[21] X. PANG, J. SUN, AND Z. ZHANG, FE-holomorphic operator function method for nonlinear plate vibrations
with elastically added masses, J. Comput. Appl. Math., 410 (2022), Art. 114156, 10 pages.

[22] F. STUMMEL, Diskrete Konvergenz linearer Operatoren. I, Math. Ann., 190 (1970/71), pp. 45–92.
[23] , Diskrete Konvergenz linearer Operatoren. II, Math. Z., 120 (1971), pp. 231–264.
[24] J. SUN AND A. ZHOU, Finite Element Methods for Eigenvalue Problems, CRC Press, Boca Raton, 2017.
[25] G. VAINIKKO, Funktionalanalysis der Diskretisierungsmethoden, B. G. Teubner, Leipzig, 1976.
[26] Y. XI AND X. JI, A holomorphic operator function approach for the Laplace eigenvalue problem using

discontinuous Galerkin method, CSIAM Trans. Appl. Math., 2 (2021), pp. 776–792.
[27] , A new method using C0IPG for the biharmonic eigenvalue problem, J. Sci. Comput., 90 (2022),

Art. 81, 18 pages.
[28] W. XIAO, B. GONG, J. SUN, AND Z. ZHANG, A new finite element approach for the Dirichlet eigenvalue

problem, Appl. Math. Lett., 105 (2020), Art. 106295, 5 pages.
[29] , Finite element calculation of photonic band structures for frequency dependent materials, J. Sci.

Comput., 87 (2021), Art. 27, 16 pages.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

