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ON SYLVESTER’S LAW OF INERTIA FOR
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Abstract. For Hermitian matrices and generalized definite eigenproblémes. DL factorization provides
an easy tool to slice the spectrum into two disjoint intesvah this note we generalize this method to nonlinear
eigenvalue problems allowing for a minmax characterizatio(sofme of) their real eigenvalues. In particular we
apply this approach to several classes of quadratic pencils
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1. Introduction. The inertia of a Hermitian matrixd is the triplet of nonnegative inte-
gers In(A) := (np, nn, n;), wheren,, n,, andn, are the number of positive, negative, and
zero eigenvalues ol (counting multiplicities). Sylvester’s classical law ofirtia states that
two Hermitian matricest, B € C™*™ are congruent (i.eA = S BS for some nonsingular
matrix S) if and only if they have the same inertia(lh) = In(B).

An obvious consequence of the law of inertia is the followtwollary: if A has
an LDL* factorizationA = LDL*, thenn, andn, equal the number of positive and
negative entries ab, and if a blockL DL factorization exists wher® is a block diagonal
matrix with 1 x 1 and indefinite2 x 2 blocks on its diagonal, then one has to increase the
number of positive and negatidex 1 blocks of D by the number of x 2 blocks to getr,,
andn,, respectively. Hence, the inertia df can be computed easily. This is particularly
advantageous if the matrix is banded.

If B € C"*" is positive definite, andl — ¢ B = LDL" is the block diagonaL DL
factorization ofA — o B for someo € R, we get the inertia Id — 0 B) = (np, ny, n,) as
described in the previous paragraph. Then, the generadigieshvalue problemlz = ABx
hasn,, eigenvalues smaller than Hence, the law of inertia yields a tool to locate eigen-
values of Hermitian matrices or definite matrix pencils. @@mng it with bisection or the
secant method, one can determine all eigenvalues in a giterval or determine initial ap-
proximations for fast eigensolvers, and it can be used tolchdether a method has found
all eigenvalues in an interval of interest or not.

The law of inertia was first proved in 1858 by J. J. Sylvesté&},[and several different
proofs can be found in textbook8,[6, 11, 13, 15], one of which is based on the minmax
characterization of eigenvalues of Hermitian matriceshisinote we discuss generalizations
of the law of inertia to nonlinear eigenvalue problems alfmyfor a minmax characterization
of their eigenvalues.

2. Minmax characterization. Our main tools in this paper are variational characteriza-
tions of eigenvalues of nonlinear eigenvalue problems igdimang the well known minmax
characterization of Poincaf16] or Courant ] and Fischer §] for linear eigenvalue prob-
lems.

*Received October 17, 2012. Accepted January 29, 2013. dheblionline on April 22, 2013. Recommended
by D. Kressner.

TMasinski fakultet Sarajevo, Univerzitet Sarajevo, Bosnia afeizegovina,Kost i c@ref . unsa. ba).

fInstitute of Mathematics, Hamburg University of Technologyp-21071 Hamburg, Germany
(voss@ u- har bur g. de).

82



ETNA
Kent State University
http://etna.math.kent.edu

SYLVESTER'S LAW OF INERTIA FOR NONLINEAR EIGENPROBLEMS 83

We consider the nonlinear eigenvalue problem
(2.1) TNz =0,

whereT'(\) € C**™, X € J, is a family of Hermitian matrices depending continuously o
the parametek € J, andJ is a real open interval which may be unbounded.
To generalize the variational characterization of eigkrasg we need a generalization of
the Rayleigh quotient. To this end we assume that
(A;) forevery fixedrz € C", z # 0, the scalar real equation

(2.2) fz) =25 T(\)x =0

has at most one solution=: p(x) € J.
Then the equatiorf (A\; ) = 0 implicitly defines a functionap on some subse® C C",
which is called the Rayleigh functional a2.(l), and which is exactly the Rayleigh quotient
in case of a monic linear matrix functidh(\) = A\I — A.
Generalizing the definiteness requirement for linear pefdi\) = AB — A, we further
assume that
(Az) for everyx € D and every\ € J with A # p(z) it holds that

(A =p(x)) f(X;z) > 0.

If pis defined oD = C™ \ {0}, then the problenT'(\)xz = 0 is called overdamped.
This notion is motivated by the finite dimensional quadretgenvalue problem

T(\)x = Mz 4+ \Cz + Kz =0,

where M, C, and K are Hermitian and positive definite matricesClfis large enough such
thatd(x) := (2 Cx)? — 4(2¥ Kz)(x Mz) > 0 for everyx # 0, thenT'(-) is overdamped.
Generalizations of the minmax and maxmin characterizatofreigenvalues were proved by
Duffin [4] for the quadratic case and by Rogets][for general overdamped problems.

For nonoverdamped eigenproblems, the natural orderingltdhe smallest eigenvalue
the first one, the second smallest the second one, etc., eppobpriate. This is obvious if
we make a linear eigenvalue probl@ii\)z := (A — A)z = 0 nonlinear by restricting it to
an intervalJ which does not contain the smallest eigenvaluelofrhen the condition§A; )
and(A,) are satisfiedp is the restriction of the Rayleigh quotieRt, to

D:={x#0: Ra(z) € J},

andinf,cp p(x) will in general not be an eigenvalue.
If A\ € Jis an eigenvalue of'(-), theny = 0 is an eigenvalue of the linear prob-
lemT'(\)y = py, and therefore there exists & N such that

) vIT (M)
0= max min —————
Vel vev\{o}  ||v]|?

)

where H, denotes the set of all-dimensional subspaces @f'. In this case\ is called
an/th eigenvalue of ().

With this enumeration the following minmax characteriaatior eigenvalues was proved
in [20, 21].

THEOREM 2.1. LetJ be an open interval ifR, and letT'(\) € C"*™, X\ € J, be a
family of Hermitian matrices depending continuously onglheameter\ € J such that the
conditions (1) and (4,) are satisfied. Then the following statements hold.
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(i) Forevery/ € N there is at most onéh eigenvalue of'(-) which can be character-

ized by

2.3 A = i 3 .

(2:3) ES e Sup P(Y)
(ii) If

A= veHﬁr%/meﬂ eV oD plv) € J
for somel € N, then )\, is the/th eigenvalue of (+) in J, and(2.3) holds.
(iii) If there exist thekth and thefth eigenvalue\, and A, in J (k < ¢), then.J contains
the jth eigenvalue\; (k < j < ¢) as well withh, < A; < Ap.
(iv) Let\; = inf epp(x) € Jand A, € J. If the minimum in(2.3) is attained for
an ¢-dimensional subspadé, thenV D U {0}, and(2.3) can be replaced by

Ae = sup  p(v).

min
VeH,, VCDU{0} eV, v#£0

(v) Xis anfth eigenvalue if and only i, = 0 is the/th largest eigenvalue of the linear
eigenproblen?’(\)x = p.

(vi) The minimum irf2.3) is attained for the invariant subspaceBf\,) corresponding
to its ¢ largest eigenvalues.

3. Sylvester’s law for nonlinear eigenvalue problems.We first consider the over-
damped case. Thefi(-) has exactly: eigenvalues\; < --- < X, in J [17].

THEOREM 3.1. Assume thafl’ : J — C™*" satisfies the conditions of the minmax
characterization in Theorerf.1, and assume that the nonlinear eigenvalue proh(2r) is
overdamped, i.e., for eveny= 0 Equation(2.2) has a unique solutiop(z) € J.

For o € J, let (ny,,n,,n,) be the inertia ofI'(¢). Then the nonlinear eigenprob-
lemT'(\)z = 0 hasn eigenvalues inJ, n, of which are less thaw, n, exceeds, and
for n, > 0, o is an eigenvalue of geometric multiplicity. .

Proof. The invariant subspacl’” of T'(c) corresponding to its positive eigenvalues
has dimensiom,, and it holds thatf (c;z) = 2T (o)x > 0 for everyz € W, z # 0.
Hencep(z) < o by (A2), and therefore the,th smallest eigenvalue @f(-) satisfies

= i < .
Mo = R, B, PO < B, plr) <o
On the other hand for every subspdceof C™ of dimensionn, + n. + 1, there exists a
vectorz € V such thatf(o; z) < 0. Thusp(x) > o, and it holds that

)‘np+nz+1 = p(x) > o,

min max
dim V=n,+n.+1 ze€V,z#0
which completes the proof. 0O
Next we consider the case that an extreme eigenvalue, itleer @; := inf,.cp p(x)
or A\, :=sup,p p(x), is contained in/.
THEOREM 3.2. Assume thafl’ : J — C"*" satisfies the conditions of the minmax
characterization, and letn,,, n,,, n.) be the inertia ofl'(c) for somes € J.
(i) If Ay := inf.ep p(x) € J, then the nonlinear eigenproblef(\)z = 0 has ex-
actlyn,, eigenvalues\; <--- < A, inJ which are smaller thaw.
(i) If sup,cp p(z) € J, then the nonlinear eigenproblef(\)z = 0 has exactlyn,,
eigenvalues\,,_,,, +1 < --- < A\, in J exceeding.
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Proof. (i): We first show thatf(\;z) < 0 for every A\ € J with A < A; and for
every vectorz # 0. Assume thatf(\;z) > 0 for someX < A\ andz # 0, let & be
an eigenvector of2.1) corresponding to\;, and letw(t) := tZ + (1 — t)z, 0 < ¢t < 1.
Theno(t) := f(\;w(t)) is continuousino, 1], ¢(0) = f(A;z) > 0,andp(1) = f(A\; ) <0
by (A3). Hence, there exists a valdec [0, 1) such thatf(\;w(t)) = 0, i.e.,w(f) € D
andp(w(t)) = A < A contradicting\; := inf,cp p(x).

Forn, = 0, the matrixT'(c) is negative semidefinit, i.ex? T'(¢)x < 0 for = # 0, and
it follows from (Az) thatp(z) > o holds true for every: € D. Hence, there is no eigenvalue
less than.

Forn, > 0, let W denote the invariant subspace®fo) corresponding to its positive
eigenvalues. Thetfi(o;z) = 21T (o) > 0forz € W, z # 0, and fromf(\;z) < 0
for A < Aq, it follows thatz € D andp(z) < o. HenceJV ¢ DU {0} and as in the proof of
Theorem3.1we obtain

An, = max_ p(r) < max p(z) <o,

min
dim V=n,, VND#D) z€VND zeW,xz#0

i.e.,,T(-) has at least,, eigenvalues less than

Assume that there exists &n, + 1)th eigenvalue\,,,, < o of T'(), and letiW be
the invariant subspace @f(\,, 1) corresponding to its nonnegative eigenvalues. Then this
implies thatdim W > n, + 1, W\ {0} C D, andp(z) < A,,+1 < o foreveryz € W
with = # 0, contradicting the fact that for every subspdacewith dim V' = n, + 1 there
exists a vector: € V with 27T (o) < 0, i.e., eitherr ¢ D or p(z) > o.

(i) S(N) :== —T'(—A\) satisfies the conditions of Theoretriin the interval-J, and—.J
contains the smallest eigenvalue,,, of S. 0

For the general case the law of inertia has the following form

THEOREM3.3. LetT : J — C™*™ satisfy the conditions of the minmax characteriza-
tion, and leto, 7 € J, o0 < 7.

Let (np,, N, ,n2, ) and(n,_,n,_,n. ) be the inertias of (o) andT'(7), respectively.
Then the inequality,,, < n,_ holds, and the eigenvalue problét1) has exactly:, —n,,_
eigenvalues\,,, 1 <--- <\, in(o,7).

Proof. LetTV be the invariant subspaceBfc) corresponding to its positive eigenvalues.
Then by the positive definiteness”T(o)x > 0, for everyx € W, z # 0, it follows
from (As) thatz®T'(7)z > 0 holds as well, hencey,, < n,,_.

Let V' be a subspace @" with V N D # () anddim V' = n,_ + 1. We first show that
there exits az € V' N D with p(x) > o, from which we then obtain

inf sup p(x) > o.

A 1= 1
"ro T dim V=n, +1, VOD#0D zcvnD

From the hypothesidim V' > n,,_, it follow that there exists a vectar € V, x # 0
such thatz! T'(o)z < 0. If z € D, then it follows from(A,) that we are done. Otherwise,
we choosey € V N D andw > min(p(y),o). Thenz¥T(w)z < 0 < yHT(w)y, and
with w(t) := txz + (1 — t)y it follows in the same way as in the proof of Theor&m2 that
there exist a valué ¢ [0, 1] such thatw(f) € V N D andp(w(t)) = w > o.

If U denotes the invariant subspaceTdfr) corresponding to its positive eigenvalues,
thenz®T(7)z > 0 holds for everyr € U, x # 0.

If UND = 0, thenz?T(\)z > 0 holds for every\ € J andz € U, z # 0 and in
particular forA = ¢. Hence,U C W and fromo < 7 the equalityn, = n,_ follows. In
this case'(-) has no eigenvalue ifo, 7) because otherwise a corresponding eigenvector
would satisfyz’ T'(o)z < 0 < 27T (7)x, i.e.,» ¢ W andz € U contradictingl C W.
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If UND # 0, thenp(z) < 7 holds for everyr € U N D and therefore

A inf sup p(z) < sup p(z) <.

dim V=n,_, VOD#D »cvVnD zeUND

Mpr

Hence,\,, 41 and ), are both contained itic, 7) and so are the eigenvalugs
forj=mn, +1,...,n, .

REMARK 3.4. Without using the minmax characterization of eigemea) Neumaierl[3]
proved Theoren®.3 for matricesT” : J — C"*™ which are Hermitian and (elementwise)
differentiable inJ with positive definite derivatived”(\), A\ € J. Obviously, suchl’(-)
satisfy the conditions of the minmax characterization.

ExaMPLE 3.5. Consider the rational eigenvalue problem

where K, M € R™*" are symmetric and positive definite, the matéix € R"**i has
rankk;, and0 < oy < --- < g,. This problem models the free vibrations of certain fluid—
solid structures; cf.]].

In each intervalJ, = (o¢,0041), £ = 0,...,p, 09 = 0, opp1 = o0, the func-
tion f,(\, z) := 2T ()\)x is strictly monotonically increasing, and therefore afjeivalues
in J, are minmax values of the Rayleigh functiopal

For the first intervally, Theorem3.2 applies. Hence, if € J; and(n,,n,,n,) is the
inertia of T'(7), then there are exactly, eigenvalues inJ, which are less than. Moreover,
if 71 < 7 are contained in one interval;, then the number of eigenvalues in the inter-
val (71, 72) can be obtained from the inertiasBfr, ) andT'(72) according to Theorer.3.

4. Quadratic eigenvalue problems.We consider quadratic matrix pencils
(4.1) Q(\) == A+ \B+C,

with Hermitian matricesA, B, C' € C™*™ under several conditions that guarantee that (some
of) the real eigenvalues allow for a variational charazggion and hence for slicing of the
spectrum using the inertia.

4.1. C<0and A > 0. Let C be negative definite and positive semidefinite. Multi-
plying Q(\)x = 0 by A~!, one gets the equivalent nonlinear eigenvalue problem

Q(\N)z = NAz + Bx + A\"'Cz =0.
Differentiating f (\; z) := 2 Q(\)x with respect to\ yields

a%\f()\; z) =z Az — X2z Cx > 0 for everyz # 0 and every\ # 0.
Hence,  satisfies the conditions of the minmax characterization Both inter-
valsJ_ := (—o0,0) andJ; := (0, 00).

For the corresponding Rayleigh functional- with domain Dy, it holds
that\] = inf,ep, po(x) € J1 andA, = sup,.p_p-(x) € J_, and therefore the follow-
ing statement follows from Theore&2.

THEOREM4.1. LetC be negative definite and positive semidefinite.

(i) For o > 0letIn(Q(0)) = (ny,n,,n.) be the inertia of)(s). Then the quadratic
pencil (4.1) hasn, positive eigenvalues less than
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(i) For o < 0letIn(Q(o)) = (np,n,,n.) be the inertia of) (). Then(4.1) hasn,,
negative eigenvalues exceeding
If Ais positive definite, ther is overdamped with respect tb. andJ_, and therefore
there exist exactly: positive andn negative eigenvalues. H # 0 is positive semidefinite
andr = rank(A), thenoco is an infinite eigenvalue of multiplicity—r, and there are only+r
finite eigenvalues.
If B is positive definite, then the Rayleigh functional

5 o Cx
2H Bz + \/(x# Bx)? — 4(2H Az)(xH Cx)

p+(z) = —

is defined onC™ \ {0}. Hence,(Q,.J,) is overdamped, and there existpositive andr
negative eigenvalues. Theorehi can be strengthened according to the following result.
THEOREM4.2. Assume thatl is positive semidefinite3 is positive definite, and” is
negative definite.
(i) For o > 0 letIn(Q(0)) = (n,,n,,n.) be the inertia of)(s). Then the quadratic
pencil (4.1) hasn, positive eigenvalues less than n,, eigenvalues exceeding
and ifn, # 0, theno is an eigenvalue of)(-) with multiplicity n,.
(i) For o < 0letIn(Q(a)) = (np,n,,n.) be the inertia of (). Then(4.1) hasn,,
negative eigenvalues exceeding:,— finite eigenvalues less thanand ifn, # 0,
theno is an eigenvalue af)(-) with multiplicity n.,.

4.2. Hyperbolic problems. The quadratic penci)(-) defined by the Hermitian ma-
trices A, B,C € C"*" is called hyperbolic ifA is positive definite and for every € C",
x # 0, the quadratic polynomial

fOva) = a2 Az + e Be + 2" Cx =0

has two distinct real roots

42) pute) = e 1 (2B
. o) = ence

-~ 27H Ag 20H Ax xHAx"

A hyperbolic quadratic matrix polynomi@(-) has the following properties (cf1p)):
the ranges/. = p+(C™ \ {0}) are disjoint real closed intervals withax J_ < min.J,,
moreoverQ()) is positive definite for\ < min.J_ and\ > max.J,, and it is negative
definite for\ € (max.J_, min.J,).

Let J, be an open interval witti, ¢ J, and.J_ N .J, = §, and letJ_ be an open
interval withJ_ ¢ J_ and.J, Nn.J_ = (. Then(Q, J;) and(—Q, J_) satisfy the conditions
of the variational characterization of eigenvalues ang #ire both overdamped. Hence, there
exist2n eigenvalues

)\ISS)\n<)\n+1§§A2n

A= dimV=j seVrsko p-(w) and Ant; = dimV=j seVrsko pe@), j=1.n.

If IN(Q(0)) = (np,n,,n,) is the inertia ofQ(c) andn,, = n, thenQ(o) is neg-
ative definite and there ane eigenvalues smaller tham and n eigenvalues exceeding.
If n, = n holds, thenQ(o) is positive definitef(o;x) > 0 is valid for everyz # 0, and
if %f(a;x) < 0 holds, then it follows that < A\, ando > \,,, otherwise.
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If n, # n andn, # n,thenoc € J_ U J, and Theoren8.1 applies. We only have
to find out which of these intervals is located in. To this end we determine# 0 such
thatf(o;2) := 27 Q(o)z > 0 (this can be done by a few steps of the Lanczos method which
is known to converge first to extreme eigenvalues)a%lf(a; r) =202 Az + 2" Bx < 0,
then it follows thatp_(z) > o, and thereforer < A, = max,.op_(z). Similarly, the
inequalitesf(o;x) > 0 and20z Az + 2 Bx > 0imply 0 > \,11 = ming.op; (7).
Hence we obtain the following slicing of the spectruntf).

THEOREM4.3. Let

Q) = A+ \B+C

be hyperbolic, and letn,,, n,,, n.) be the inertia of)(¢) for o € R.
(i) If n,, = n then there aren eigenvalues smaller tham and n eigenvalues greater
thano.

(i) Letn, =n.

If 202" Az + 2 Bx < 0 for an arbitrary = # 0, then there aren eigenvalues
exceeding.

If 202 Az 4+ 2™ Bz > 0 for an arbitrary z # 0, then all2n eigenvalues are less
thano.

(i) For n, = 0 andn, > 0 letxz # 0 be an element of the null space @fo).
If 202 Az + 2" Bx < 0, thenQ(\)z = 0 hasn — n, eigenvalues iff—oo, o), n
eigenvalues iffo, co) ando = A, with multiplicity n,.

If 202 Az + 2 Bz > 0, thenQ(-) hasn eigenvalues irf—oo, 7), n — n, eigen-
values in(o, 00), ando = A, 1 with multiplicity n...
(iv) Forn, > 0andn, = 0 letz # 0 be such thaff (o; ) > 0.
If 202 Az + 2" Bz < 0, thenQ(-) hasn — n,, eigenvalues ii—oc, o) andn +n,,
eigenvalues irffo, o).
If 202 Az + 2" Bz > 0, thenQ(-) hasn + n,, eigenvalues iti—oo, o) andn — n,,
eigenvalues irfo, 0o).

(v) Forn, > 0andn. > 0letz # 0 be such thaif (c;z) > 0.
If 200" Az + 2 Bz < 0, thenQ(-) hasn — n, — n. eigenvalues in—oc, o)
andn + n,, eigenvalues ifo, co).
If 202" Az + 2% Bx > 0, thenQ(:) hasn + n, eigenvalues in—oc, o) and
n —n, — n, eigenvalues irfo, co).
In either casers is an eigenvalue with multiplicity , .

REMARK 4.4. These results on quadratic hyperbolic pencils can bergézed to a

hyperbolic matrix polynomial of higher degree

k
P =) NA;, A=A j=0,.. .k A>0,
7=0

which is hyperbolic ifA;, is positive definite and for every # 0 the corresponding polyno-
mial f(\; z) := zf P(\)2 hask real and distinct roots.

In this case there exigtdisjoint open intervalg; C R, j = 1,..., k such thatP(-) has
exactlyn eigenvalues in eacli;, and these eigenvalues allow for a minmax characterization
cf. [12, 14]. To fix the numeration letup J; 41 < inf J;forj=1,... .k — L.

Foro € R, let (n,,n,,n.) be the inertia ofP(s), and letx € C™ be a vector such
thatz P(o)z > 0. If f(-;x) has exactlyj roots which exceed, then it holds that

og€Jjz1 or oe€[supJ,infJ;] or o€ Jj.
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Which one of these situations occur can be deduced from tigeirte,, = »n orn, = n) and
the derivativef%f(a; x) as for the quadratic case.

4.3. Definite quadratic pencils. In a recent paper, Higham, Mackey, and Tisseulj [
generalized the concept of hyperbolic quadratic polyntswiaiving the positive definiteness
of the leading matrixA.

A quadratic pencil 4.1) is definite if A, B, andC are Hermitian, there exists a real
value u € RU {oo} such thatQ(u) is positive definite, and for every € C™, = # 0 the
scalar quadratic polynomial

fOvz) = 22 Az + Mo Be 4+ 25 Cx = 0

has two distinct roots ifR U {co}.

The following theorem was proved ia().

THEOREM4.5. The Hermitian matrix polynomia) () is definite if and only if any two
(and hence all) of the following properties hold:

o d(z) = (2 Bx)? — 4(2f Ax)(zH# Cx) > 0 for everyz € C"\ {0},
e Q(n) > 0for somen € RU {0},
e Q&) < 0forsomet € RU {oo}.

For¢ < n (otherwise consideR(—A)) it was shown in 4] that there are: eigenvalues
in (£, ) which are minmax values of a Rayleigh functional, and theaiemgn eigenvalues
in [—o00,&) and (n, oo] are maxmin and minmax values of a second Rayleigh functional
Hence, if¢ andn are known, then the slicing of the spectrum usingtieL factorization
follows similarly to the hyperbolic case. However, givenand theL DL factorization
of Q(o), we are not aware of an easy way to decide in which of the iatefv oo, €), (¢, 7),
or (1, o] the parameter is located. The articles'[ 8, 14] contain methods to detect whether
a quadratic pencil is definite and to compute the paramétansln, however they are much
more costly than computing anD L factorization of a matrix. For the Exampléssand4.8
at least one of these parameters are known and the slicingecgiven explicitly.

ExAMPLE 4.6. Duffin [4] called a quadratic eigenproblerh {) an overdamped network,
if A, B, andC are positive semidefinite and the so called overdampingitond

d(z) = (" Bx)? — 4(z" Az) (" Cx) > 0 foreveryz # 0

is satisfied.

So, actuallyB has to be positive definite, and therefd@pé.) is positive definite for
everyu > 0, andQ(-) is definite.

If » denotes the rank of, then @.1) hasn + r finite real eigenvalues, the largesbnes
of which (called primary eigenvalues by Duffin) are minmalues of

(2) 5 2" Cx

py(2) = 22— ——

" o Br + \/d(x)’

and the smallest ones (called secondary eigenvalues) are maxmin values

min  p_(z),

>‘7l+1—j = max
dim V=3, VND_#£0 z€VND_

whereD_ = {z € C" : 2z Az # 0} andp_(z) = (—a:HBx— \/d(x)) /(221 Az)
forx e D_.
Hence, the following slicing of the spectrum can be derived.
THEOREMA4.7.Let A, B,C € C™*" be positive semidefinite and assume tiat) > 0
for z # 0. Letr be the rank ofd andIn(Q(o)) = (np, n,,n.) be the inertia of)(o) for
somer € R. Then the following holds.
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(i) If n, = n, then there are- eigenvalues smaller than and . eigenvalues greater

thano.

(i) For n, =0andn, > 0letx # 0 be an element of the null space@fo).
If 200 Az + 2¥ Bz < 0, thenQ(-) hasr — n, eigenvalues in(—oo, o) andn
eigenvalues irfo, 0].
If 202 Az + 2 Bz > 0, thenQ(-) hasr eigenvalues i{—oco, o), andn — n,
eigenvalues irfo, 0]. In either caseg is an eigenvalue af)(-) with multiplicity n.

(iii) For n, > 0letx # 0 be such thaff(c;z) > 0.
If 2027 Az + 2" Bz < 0, thenQ(\)z = 0 hasr — n,, eigenvalues if{—oo, o)
andn + n, — n, eigenvalues iro, 0].
If 202 Az + 2 Bz > 0, thenQ(\)x = 0 hasr +n,, — n, eigenvalues ifi—oc, o)
andn — n, eigenvalues irfo, 0].

ExAMPLE 4.8. Free vibrations of fluid—solid structures are goverbgdhe nonsym-

metric eigenvalue problen®] 18]

Ks C Ts| _ Ms 0 Ts
“3 [ 0 Kf] [%‘] -4 [CT Mf} LJ
whereK, € R***, K; € R/*/ are the stiffness matrices, add, € R***, My € R/*/
are the mass matrices of the structure and the fluid, respgtandC € R**f describes the
coupling of structure and fluid. The vectey is the structure displacement vector, andis

the fluid pressure vectok’;, M,, K¢, andM; are symmetric and positive definite.
Multiplying the first line of @.3) by A, one obtains the quadratic pencil

M, 0 “K, -C] [o o0
QU =N [ 0 0] A [CT Mf] - [0 Kf] '

It can easily be seen that far, # 0 the quadratic equatiop?, z7]Q()) s

. ] =0 has
f
one positive solutiop, (z,, z ;) and one negative solutign_(z,, zs), and forz, = 0 it has
one positive solutiop (z, 2 ) := 2+ Kz /(2% M;x ;) and the solutiop_ (x5, 2 ¢) := oo.
R S ! . .
Moreover the positive eigenvalues d@f ) are minmax values of the Rayleigh functiopal.
Hence, one gets the following result for the (physically megful) positive eigenvalues:
if In(Q(0)) = (np,ny,n,) for o > 0, then there are exactly, eigenvalues ir(0,0), n,
eigenvalues irfo, oo), and ifn, # 0, theno is an eigenvalue of multiplicity:...

4.4. Nonoverdamped quadratic pencils.We consider the quadratic pencil.{) where
the matricesA, B, and C are positive definite. Then far # 0, the two complex roots
of f(\;z) := 2 Q(\)x are given in ¢.2).

Let us define

6 :=sup{p_(z) : p_(z) € R}, 04 :=inf{p;(2) : p+(z) € R},
J_ = (—00,04), Ji = (0-,0), and
Dy ={zeC" :py(x) e Js}.
If f(A\,z) > 0forz # 0andX € R, then it follows that_ = —oco anddy = oo. The

eigenvalue problen®(\)z = 0 has no real eigenvalues, but this does not have to be known
in advance. Theorer.9 applies to this case as well.

It is obvious that—@Q and @ satisfy the conditions of the minmax characterization of
its eigenvalues iv_ and.J, respectively. Hence, all eigenvaluesjn are minmax-values
ofp_:

— min max (x), j=1,2,....
7 dimV=j, VAD_#0 zeVND_ p-(x), J B
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Taking advantage of the minmax characterization of therw@ees ofQ(\) == —Q(—-\)
in J := J; with the Rayleigh functiongh := —p., we obtain the following maxmin char-
acterization

)\S_nﬂ—l—j = max min +(£C), ] = 1727-'~-

dim V=3, VNDy#) z€VNDy

of all eigenvalues of) in J.

Hence, forc < ¢4 and foro > §_, we obtain slicing results for the spectrum@f-)
from TheorenB.2 If In(Q(0)) = (np, nn, n.) ando < é4, then there exist,, eigenvalues
of Q(+) in (—o0,0), and ifo € (6_,0), then there are,, eigenvalues irfc, 0). However,
andé_ are usually not known. The following theorem contains uppaunds ofs_ and
lower bounds o, thus yielding subintervals of—occ, ) and (5_,0) where the above
slicing applies.

THEOREM4.9. Let A, B,C' € C"*™ be positive definite, and lgt. andp_ be defined
in (4.2). Then it holds that

(i)

~ zHCx .
Oy 1= — Tﬁ())(m <oy =inf{py(x) : pi(x) €R}
and
22 Cy =
= N < — == —
d_ =sup{p_(z) : p_(z) € R} IIH%I Ay o
(ii)
. 2HCx 2" Cx A
[ < < — i =:0_.
o 21}51753(131{337 <dy and /- < 21;1;51$HB$ )

Proof: (i): The va[ue5+ is a lower bound ob . if for every z # 0 such thap (z) € R
it holds thatp (x) > 0. The following proof takes advantage of the facts thatz) < 0

and 2 f(p (x);z) > 0.
The equatiorf (p. (z); ) = 27 Q(p (z))z = 0 is satisfied if and only if

1
p+(2)

t"Br = —p, (x)af Az — 7O,

Hence,
0

1
a)\f(p_i_(x), x) pi(z)x” Az + 2" Bx = py (z)a” Az p+(:(;)x Cxr>0

H / H
5 _x"Cx . el OF
< ———, e, 04 >— =0
p+(2)” < oH Ay’ = r;l;%( xH Ax A

and analogously we obtain

if and only if
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(ii): Solving f(p(z);z) = 0 for 2L Az, one gets from(%f(er(a:);x) > 0 that

27 Cx 21Cx -
> 2—— je,ipL > -2 =04,
p(w) = xH By’ +t= Iil;%( xH Bz +
and analogously
H
ol OF AN
0 < —2min ——— =_. |
- Igil& xH Bx

From Theoren8.2we obtain the following slicing of the spectrum@f-).

THEOREM 4.10. Let A, B, and C be positive definite matrices, and for some= R
letIin(Q(o)) = (np, np, nz).

@) If

- 2 Cx 5 2" COx
o < max { —4/max —2max
- 220 xH Ax’ 220 xH Bz [’

then there exist,, eigenvalues of)(\)z = 0in (—o0, o).

(ii) If
o . a2HCx C 2H0x
0 Zmin ) T [ A e (-

then there exist,, eigenvalues of)(\)z = 0in (o, 0).
EXAMPLE 4.11. In a numerical experiment, the matricksB, andC were generated
by the following MATLAB statements:
randn(’ state’, 0);
A=eye(20); B=randn(20);B=B *B; C=randn(20);C=C *C,;.
It was found that)(\)x = 0 has26 real eigenvalued,3 in the domain ofp_ and13 in
the domain ofp,.. So, Sylvester’s theorem can be applied to all of theétheigenvalues are

less than—+/max(A(C, A)) and6 eigenvalues exceed,/min(\(C, A)).

Conclusions. We have considered a given family of Hermitian matrig&s.) depend-
ing continuously on a parametarin an open real interval which allows for a variational
characterization of its eigenvalues. We proved slicingltegor the spectrum df'(-), where
at first general nonlinear eigenvalue problems are coreiglevhich are then specialized to
various types of quadratic eigenproblems.
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