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PARAMETER ESTIMATION FOR MULTIVARIATE EXPONENTIAL SUMS  *

DANIEL POTTS' AND MANFRED TASCHE!

Abstract. The recovery of signal parameters from noisy sampled data éssential problem in digital signal
processing. In this paper, we discuss the numerical solatidhe following parameter estimation problem. Let
ho be a multivariate exponential sum, i.@q is a finite linear combination of complex exponentials withtidist
frequency vectors. Determine all parametersigf i.e., all frequency vectors, all coefficients, and the nundfe
exponentials, if finitely many sampled data’af are given. Using Ingham-type inequalities, the Riesz staluf
finitely many multivariate exponentials with well-separafegtjuency vectors is discussed in continuous as well as
discrete norms. Furthermore, we show that a rectangular €&etype matrix has a bounded condition number, if
the frequency vectors are well-separated and if the numbsawiples is sufficiently large. Then we reconstruct
the parameters of an exponential sém by a novel algorithm, the so-called sparse approximate Prorthade
(SAPM), where we use only some data sampled along few straiggg.| The first part of SAPM estimates the
frequency vectors using the approximate Prony method in thetate case. The second part of SAPM computes
all coefficients by solving an overdetermined linear Vanderdetype system. Numerical experiments show the
performance of our method.

Key words. parameter estimation, multivariate exponential sum, mulétarexponential fitting problem, har-
monic retrieval, sparse approximate Prony method, sparsespmate representation of signals
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1. Introduction. Letthe dimensiod € N and a positive intege¥! € N\ {1} be given.
We consider al-variate exponential sum of ordéy that is a linear combination

M
(1.1) ho(m) ==Y c;eli® (z=[z]L, €RY)
j=1

of M complex exponentials with complex coefficients# 0 and distinct frequency vectors
fi=[fiisy € T = [—x, )% Assume thafc;| > ¢o (j = 1,..., M) for a convenient
bound0 < gy < 1. Here the torud is identified with the interva]—x, 7). Further the dots
in the exponents ofi(1) denote the usual scalar productRA.

If ho is real-valued, thenl(1) can be represented as a linear combination of ridge func-
tions

M
ho(x) = Z ;| cos (fj -z Jrgaj)
j=1

with ¢; = |¢;] €7, Assume that the frequency vectofs € T (j = 1,..., M) fulfill the
gap condition oril'

(1.2) dist(f;, f,) = min{||(f; + 27k) — filloc 1k €Z'} > ¢ >0

forall 5,0 =1,..., M with j # [. Let N € Nwith N > 2M + 1 be given. In the following
G is either the full gridZ$, := [N, N]¢NZ< or a union of2N + 1 grid pointsn € Z? lying
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on few straight lines. I is chosen such th#&| < (2N +1)? for d > 2, thenG is called a
sparse sampling grid
Suppose that perturbed sampled data

h(n) :=ho(n) +e(n), le(n)| <e

of (1.1 for all n € G are given, where the error ternagn) € C are bounded by certain
accuracye > 0. Then we consider the followingarameter estimation problefior the d-
variate exponential suni(l): Recover the distinct frequency vectofs € [, 7)% and the
complex coefficients; so that

M
(1.3) h(n) = ¢;efi™ <e (neG)
j=1

for very small accuracy > 0 and for minimal ordeV/. In other words, we are interested in
sparse approximate representations of the given noisy/data € C (n € G) by sampled
data of the exponential surh.(l), where the conditionl(3) is fulfilled.

The approximation of data by finite linear combinations ofngpdex exponentials has a
long history; seel9, 20]. There exists a variety of applications, such as fittingleacmag-
netic resonance spectroscopic ddtd pr the annihilating filter method3[L, 6, 30]. Recently,
the reconstruction method o8][was generalized to bivariate exponential sumsih [In
contrast to 1], we introduce a sparse approximate Prony method, whereseenly some
data on a sparse sampling gfid Furthermore, we remark on the relation to a reconstruction
method for sparse multivariate trigonometric polynomiakse Remar.3and [L6, 12, 32].

In this paper, we extend the approximate Prony method &&gtp multivariate expo-
nential sums. Our approach can be described as follows:

(i) Solving a few reconstruction problems of univariate empntial sums, we determine a
finite set of feasible frequency vectof$ (k = 1,..., M’). For each reconstruction we use
only data sampled along a straight line. As parameter estimave use the univariate ap-
proximate Prony method which can be replaced by anothenHioe method p4], such as
ESPRIT (Estimation of Signal Parameters via Rotationahfiance Techniquesp, 27] or
matrix pencil methodsl[o, 29].

(ii) Then we test if a feasible frequency vectpf (k = 1,..., M’) is an actual frequency
vector of the exponential sum.(l) too. Replacing the conditiori (3) by the overdetermined
linear system

M’
(1.4) et =h(n) (neG),
k=1

we compute the least squares solut(ejg){y:'r Then we say thaf), is an actual frequency
vector of (L.1), if |c,| > 0. Otherwise f} is interpreted as frequency vector of noise and is

canceled. Lef; (j = 1,..., M) be all the actual frequency vectors.
(iii) In a final correction step, we solve the linear system

Mo
Zéj efim=hn) (ne@).
j=1

As explained above, our reconstruction method uses thé dgaares solution of the linear
system {..4) with the rectangular coefficient matrix

[eiffn] (G| > M).
neG, j=1,...,.M
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If this matrix has full rankM and if its condition number is moderately sized, then one can
efficiently compute the least squares solutionlfl), which is sensitive to permutations of
the coefficient matrix and the sampled data; Seep. 239—-244]. In the special caBe= 74,

we can show that this matrix is uniformly boundedNf > ¥4 Then we usé2N + 1)¢
sampled data for the reconstruction/af frequency vectorg; and M complex coefficients
¢; of (1.0).

However, our aim is an efficient parameter estimationlof)(by a relatively low num-
ber of given sampled datan) (n € G) on a sparse sampling grid. The corresponding
approach is calle@parse approximate Prony meth@8APM). Numerical experiments for
d-variate exponential sums withe {2, 3, 4} show the performance of our parameter recon-
struction.

This paper is divided into two parts. The first part consi$tSections2 and3, where we
discuss the Riesz stability of finitely many multivariatgperentials. It is a known fact that
an exponential sumL(1) with well-separated frequency vectors can be well recoostd. In
addition, one also knows that the parameter estimation ekaonential sum with clustered
frequency vectors is very difficult. What is the basic caus¢éhete effects? In Sectidy
we investigate the Riesz stability of multivariate expaieda with respect to the contin-
uous norms ofZ.2([—N, N]%) and C([-N, N]%), respectively, where we assume that the
frequency vectors fulfill the gap conditio.(); see Lemm&.1 and Corollary2.3. These
results are mainly based on Ingham-type inequalities; 5&epp. 59-66 and pp. 153—-156].
Furthermore, we present a result for the converse assertgonif finitely many multivariate
exponentials are Riesz stable, then the correspondingdrexy vectors are well-separated,;
see Lemm&.2. In Section3, we extend these stability results to draw conclusionstier t
discrete norm of?(Z4;). Moreover, we prove that the condition number of the coefiti
matrix of (1.4) is uniformly bounded, if we choose the full sampling gid= Z4, and if NV is
sufficiently large. By the results of Secti@none can see that well-separated frequency vec-
tors are essential for a successful parameter estimati¢h Hf Up to now, a corresponding
result for a sparse sampling gii@is unknown.

The second part of this paper consists of Sectibi’s where we present a novel efficient
parameter recovery algorithm of.(l) for a sparsesampling grid. In Sectiod we sketch
the approximate Prony method in the univariate setting. nTlwe extend this method to
bivariate exponential sums in Sectién Here we suggest the new SAPM. The main idea
is to project the bivariate reconstruction problem to salvenivariate problems and combine
finally the results of the univariate reconstructions. We asly few data sampled along some
straight lines in order to reconstruct a bivariate expoiastim. In Sectior®, we extend this
reconstruction method td-variate exponential sums for moderately sized dimensioRs3.
Finally, various numerical examples are presented in 8eti

2. Stability of exponentials. The main difficulty here is known to be the reconstruction
of frequency vectors with small separation distagce- 0; see (.2). Therefore first we
discuss the stability properties of the finitely mafyariate exponentials in dependencey of
We start with a generalization of the known Ingham ineqigsjtsee 11].

LEMMA 2.1. [14, pp. 153-156] Letd € N, M € N\ {1} and N > 0 be given. If the
frequency vectorg; € R? (j =1,..., M) fulfill the gap condition orR?,

Vidr . :

(2.1) ”fj*fl”ooZ(]>
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then the exponentials?i () (j = 1,..., M) are Riesz stable i ([N, N]9), i.e., for all
complex vectors = [¢;] 1L,
M
(2.2) T lelly <113 es el OlE <y el
j=1
with some positive constanis, -, independent of the particular choice of the coefficients
cj. Here||c||» denotes the Euclidean normef C* and
1 1/2
fyz(———/ f(@)? da fe LA([-N,N]%).
Il := (g [, o H@Fd2) (7 € L2(=N.NT)

Note that ford = 1, we obtain exactly the classical Ingham inequalitiese[11]) with
the positive constants

2 w2 44/2 2
’Yl:i(l_NT(f)’ V2 = (1+4N2q2)'

™
In the casel > 2, the Lemma2.1 provides only the existence of positive constants-
without corresponding explicit expressions.
Obviously, the exponentials

(2.3) i) Gi=1,..., M)

with distinct frequency vectorg ; € R? (j =1,..., M) are linearly independent and Riesz
stable. Now we show that from the first inequali/3) it follows that the frequency vectors
f; are well-separated. The following lemma generalizes adomgsult [L7] for univariate
exponentials.

LEMMA 2.2.Letd € N, M € N\ {1} andN > 0. Furtherletf; e R* (j =1,..., M)
be given. If there exists a constant > 0 such that

M
illeld <11 e O3
j=1

for all complex vectorg = [c;]L,, then the frequency vectofs are well-separated by

j=1
271
£, fillo > Y21
forall 5,1 = 1,...,M (5 # 1). Moreover, the exponential®.3) are Riesz stable in
L2([_Na N]d)
Proof. 1. In the following proof we use similar arguments as %) Theorem 7.6.5].
We choose:; = —¢; = 1 for j # [. All the other coefficients are equal to 0. Then by the

assumption, we obtain
27 < o0 — O3

1— ei(.fl_fj)'m|2 dax

|
o
2 —
IsH
—
2

2
)d /[N,N]d|(fl f_]) .’I}| Z

@4 < = £ de,
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where we have used thedldler estimate
\(fi=Fj) =l < |fi — Flllzllee < [If1 = F5li NV
forall z € [~ N, N]?. Therefore 2.4) shows that

V21

Ao =l = 1= £5l0 = ¥

forall j,i=1,...,M (j #1).
2. We see immediately thalt/ is an upper Riesz bound for the exponenti@s3)(in
L?([-N, N]%). By the Cauchy—Schwarz inequality we obtain

M
1> ey < Mle|)3

j=1

forall c = (¢;), € CM and allz € [N, N]? such that

M
IS ¢ Oz < Mel3. O

Jj=1

By the Lemmag.1and2.2, the Riesz stability of the exponentiaks ) in L2([- N, N]%)
is equivalent to the fact that the frequency vectprsare well-separated. Now we show that
in Lemmaz2.1the square norm can be replaced by the uniform nor@@f- N, N]9).
COROLLARY 2.3. If the assumptions of Lemn2al are fulfilled, then the exponentials

(2.3 are Riesz stable ia’([-N, N]%), i.e., for all complex vectors = [¢;]}.,

M

71 T

o7 el < 1Y e efiO) < el
=1

with the uniform norm

£l == max_ [f(x)| (f€C(-N,N).

wE[—N,N]d

Proof. Lethy € C([—N, N]¢) be defined by1.1). Then|/hgll2 < ||holloc < oc. Using
the triangle inequality, we obtain that

M
hollso <D lejl-1=liels

j=1

From Lemma2.1and|c||1 < vV M ||c||2, it follows that

71
i lellr < vy llellz < flhollz. O

Now we use the uniform norm af/([-N, N]?) and estimate the errdiy — /||, be-
tween the original exponential surh.{) and its reconstruction

M ~
h(x) = Zéj efi® (x c[-N, NJ9).
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We obtain a small errdfho — /||« inthe casé "> | |c;—&;| < Land|[f; — ;0 <0 < 1
G=1...,M).

THEOREM2.4. Let M € N\ {1} andN > 0 be given. Let = [¢;]}2, ande = [¢;]}L,
be arbitrary complex vectors. If ;, fj € R4 (j =1,..., M) fulfill the conditions

3Wdr ,
. Vdr

then both(2.3) and
O (j=1,...,M)
are Riesz stable i’ ([~ N, N]%). Furthermore,
lho = hllos < lle = €|l + doN [|e]l; -

Proof. 1. By the gap condition oR? we know that
3Vdn - Vidr
2N N
Hence the original exponentialg.g) are Riesz stable i ([—N, N]¢) by Corollary 2.3,

Using the assumptions, we conclude that
1F; = Filloo 2 15 = Filloo = 1F; = F;lloo — I1Fs = Filloo
Vdr _ Vdn
—2— > —.
4N N
Thus the reconstructed exponentials

1 = fillo = ¢>

Gol=1,...,M;j#1).

i) Gi=1,...,M)

are Riesz stable i6([—N, N]%) by Corollary2.3, too.
2. Now we estimate the normwise erfift, — h|., by the triangle inequality. Then we
obtain

||ho—h||oo<HZ = &) el >||oo+|\2c (M) — e o

< Z |Cj — Ejl + ; |Cj| ZG[IEIJ%?(N](! |elfj-m _ elfj‘:n| .

Since ford; := }j — f; (j=1,...,M) and arbitraryz € [-N, N]?, we can estimate

|eifa'“5 _ei}j'“’\ = —eidﬂ"m| =4/2—2cos(d,; - x)

. X
= 2[sin L —| < |d; - a| < ||d; || [|2[s < SN
such that we obtain

lho = hllos < llc — €|l +do6N [le]. O
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3. Stability of exponentials on a grid. In the last section we studied the Riesz stability
of d-variate exponentials2(3) with respect to continuous norms. Now we investigate the
Riesz stability ofd-variate exponentials restricted on the full gé, with respect to the
discrete norm of2(Z4,). First we will show that a discrete version of Lemmd. is also true
for d-variate exponential sumg& (). If we sample an exponential surh.{) on the full grid
Z4;, then it is impossible to distinguish between the frequerentorsf; and f; + 27k for
certaink € Z4, since by the periodicity of the complex exponential

eifim — (i (Fi+2mk)m (n e Z?\,).

Therefore we assume in the following tht € [—7, )¢ (j = 1,..., M) and we measure
the distance between two distinct frequency vectpys f, € [—, o4 (j,l = 1,...,M;
j#1)by

dist(f;, f1) == min{||(f; + 27k) — fi]lc0 : k € Z%}.
Then theseparation distancef the sef{ f; € [, 7)4: j=1,..., M} is defined by
min {dist(f;, f;) : 4,0 = 1,...,M; j #1} € (0,7].
The separation distance can be interpreted as the smallestegween two distinct frequency

vectors in thed-dimensional toru§'?. Since we restrict an exponential sum on the full
sampling gridZ¢,, we use the norm

v (X )

keZd,

1/2

in the Hilbert spacé?(Z4,).
LEMMA 3.1. [15]. Letq € (0,7] and M € N\ {1} be given. If the frequency vectors
fie(r+d r—-9%(=1,...,M) satisfy

Vidr .
then the exponential@.3) are Riesz stable id*(Z%), i.e., all complex vectors = [¢;]}L,
satisfy the following Ingham-type inequalities

M

1 T

wlell < Gy 2 1o 6@ < ullel
kezd, =1

with some positive constants and-~,, independent of the particular choice af

Note that Lemma3.1 delivers only the existence of positive constamis v, without
corresponding explicit expressions.

LEMMA 3.2. Letd € N, M € N\ {1} and N € N with N > 2M + 1 be given.
Furthermore, letf; € [-m, m)¢ (j = 1,..., M). If there exists a constant > 0 such that

M
1 .
wleld < G 2 1o ek
kezd, =1
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for all complex vectorg = [cj}jM:l, then the frequency vectoys are well-separated by

. V273
dlSt(fjvfl) 2 dN
forall 5,1 = 1,..., M with j # [. Moreover, the exponential®.3) are Riesz stable in

2(24,).

The proof follows similar lines as the proof of Lemn2a2 and is omitted here. By
Lemmas3.1and3.2, the Riesz stability of the exponentias.g) in ¢2(Z4,) is equivalent to
the condition that the frequency vectgfs are well-separated.

Introducing therectangular Fourier-type matrix

F:=(2N+1)7" [eifj.k]keZ?{v,j:L...,M € CNTIHM

we improve the result of2, Theorem 4.3].
COROLLARY 3.3. Under the assumptions of LemrBél, the rectangular Fourier-type
matrix F has a uniformly bounded condition numbend. (F') for all integersN > @.
Proof. By Lemma3.1, we know that for alkc € CM

(3.1) ysefle < FPF e < v, cfle

with positive constantss, v4. LetA\; > Ay > ... > Ay > 0 be the ordered eigenvalues of
FHF ¢ cM*xM _ysing the Rayleigh-Ritz Theorem ar@l{), we obtain that

v3 cle< \ycle<FiFe< )\ cle< Y4 e
and hence
0<ys <Ay <A <y <00,

ThusF! F is positive definite and

COHdz(F):w//\)\T\ZSM%- d

REMARK 3.4. Let us consider the parameter estimation probtes) {n the special case
G = Z4; with (2N +1)9 given sampled data(n) (n € Z%). Assume that distinct frequency
vectorsf, € [-m, m)4 (j = 1, ..., M) with separation distance are determined. If we
replace {.3) by the overdetermined linear system

M
Yoeelik =h(k) (keZi),
j=1

then by Corollary3.3 the coefficient matrix has a uniformly bounded condition femfor

all N > @. Furthermore, this matrix has full rank/. Hence the least squares solution

[cj]jM:1 can be computed and the sensitivity of the least squares@oto perturbations can
be boundedT, pp. 239 — 244]. Unfortunately, this method requires too ynreampled data.
In Sections5 and 6, we propose another parameter estimation method which ardgsa
relatively small number of sampled data.
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4. Approximate Prony method for d = 1. Here we sketch thapproximate Prony
method(APM) for the casel = 1. For details see3] 23, 21]. Let M € N\ {1} andN € N
with N > 2M + 1 be given. ByZy we denote the finite s¢t N, N] N Z. We consider a
univariate exponential sum

M
ho(x) := ch efi* (€ R)
j=1

with distinct, ordered frequencies
< fi<fo<...<fu<m

and complex coefficients; # 0. Assume that these frequencies are well-separated in the
sense that

dist(f;, f;) := min{|(f; + 27k) — fil : k € Z} > %

forall j,1 =1,..., M with j # . Suppose that noisy sampled dat&) := ho(k) + e(k) €
C (k € Zy) are given, where the magnitudes of the error teefig are uniformly bounded
by a certain accuracy; > 0. Further we assume that;| > ¢ (j = 1,..., M) for a conve-
nient bound < g9 < 1.

Then we consider the followingonlinear approximation problenRecover the distinct
frequenciesf; € [—, m) and the complex coefficients so that

M
(k) =Y cjeli¥| <e (k€ Zy)
j=1

for very small accuracy > 0 and for minimal numbe\/ of nontrivial summands. This
problem can be solved by the following

ALGORITHM 4.1. (APM)

Input: L, N € N (3 < L < N, L is an upper bound of the number of exponenjials
h(k) = ho(k) + e(k) € C (k € Zn) with |e(k)| < 1, and bounds; > 0 (I = 0,1,2).

1. Determine the smallest singular value of the rectangulankel matrix
N-L,L
H = [h(k + D)= "% =0

and related right singular vector = (u;)/, by singular value decomposition.

2. Compute all zeros of the polynom@:fz0 w 2! and determine all the zeros;
(j =1,..., M) that fulfill the property |2;| — 1| < 2. Note thatl, > M.
3. Foraw; := %;/|%| (j = 1,..., M), computer; € C (j = 1,..., M) as least squares
solution of the overdetermined linear Vandermonde-tyséesy

> gk =hk) (keZy).

For large M and N, we can apply the CGNR method (conjugate gradient methotieapp
to the normal equations), where the multiplication of thetamgular Fourier-type matrix
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[zﬂf]i\’:’]‘fN’j:l is realized in each iteration step by the nonequispacedRastier transform
(NFFT); see 3.

4. Delete all thew, (I € {1,...,M}) with |&] < e and denote the remaining entries &y
(j=1,...,M)with M < M.

5. Repeat steg and computez; € C (j = 1,...,M) as least squares solution of the

overdetermined linear Vandermonde-type system
M
> &k =hk) (keZy)
j=1

with respect to the new sdtw; : j = 1,...,M} again. Setf; := Im (logw;)
(j =1,..., M), wherelog is the principal value of the complex logarithm.

Output: M € N, f; € [-7m, 71),& €C(j =1,...,M).

REMARK 4.2. The convergence and stability properties of Algorithrhare discussed
in [23]. In all numerical tests of Algorithrd.1 (see Sectiof and 23, 21]), we have obtained
very good reconstruction results. All frequencies and ficiehts can be computed such that

M
max [f; = fi| <1, Z;|Cj—5j| <1.
j:

We have to assume that the frequendigare well-separated, that te | are not too small,
that the numbeN + 1 of samples is sufficiently large, that a convenient uppemidali
of the number of exponentials is known, and that the erromdey of the sampled data is
small. Up to now, useful error estimatesiafx;—1 ..y |f; — f;| and Y72, |e; — ¢ are
unknown.

REMARK 4.3. The above algorithm has been testedX¥br< 100 and N < 10° in
MATLAB with double precision arithmetic. For fixed upper baliL and variableN, the
computational cost of this algorithm is very moderate witloat O(N log N) flops. In step
1, the singular value decomposition need$2N — L+1)(L+1)?+8 (L+ 1) flops. In step
2, the QR decomposition of the companion matrix requﬁéﬁ +1)3 flops; see 9, p. 337].
For large valuesV and M/, one can use the nonequispaced fast Fourier transforntivsya
in steps 3 and 5. Since the condition number of the Four'mseHyua\trix[w;?]g:’]‘_{]\,’j:1 is
uniformly bounded by Corollarg.3, we need finitely many iterations of the CGNR method.
In each iteration step, the product between this Fouripe-tyatrix and an arbitrary vector of
length M can be computed with the NFFT 6)(N log N + L |loge|) flops, wheres > 0 is
the wanted accuracy; se&j.

REMARK 4.4. In this paper, we use the Algoriththl for parameter estimation of
univariate exponential sums. But we can replace this pragediso by another Prony-like
method P4], such as ESPRITZE, 27] or by a matrix pencil methodl[o, 29].

REMARK 4.5. By similar ideas, we can reconstruct also all pararseiéanextended
exponential sum

M .
ho(x) = ij(x) it (z eR),

wherep; (j = 1,..., M) is an algebraic polynomial of degree; > 0; see f#, p. 169]. Then
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we can interpret the exactly sampled values
M
n) = ij(n) z; (n€Zn)
j=1

with z; := e' /i as a solution of a homogeneous linear difference equation

My

(4.1) S pho(i+k)=0 (j€Z),
k=0

where the coefficientg;, (kK =0,..., M,) are defined by

M Mo M

H(zfz ymaitl — Zpkz My = Z(mj+1).

Jj=1 Jj=1

Note that in this case; is a zero of ordern; of the above polynomial and we can cover
multiple zeros with this approach. Consequently]) has the general solution

Ty

M
Z Zcﬂk (kez).

Then we determine the coefficients; (j =1,...,M; 1 =0,...,m;) in such a way that

Z Zc]lk hk) (k€ Zn),

where we assume thaf > 2M, + 1. To this end, we compute the least squares solution of
the above overdetermined linear system.

5. Sparse approximate Prony method ford = 2. Let M € N\ {1} andN € N
with N > 2M + 1 be given. The aim of this section is to present a new efficianameter
estimation method for a bivariate exponential sum of otleusing onlyO(N) sampling
points. The main idea is to project the bivariate reconsimagroblem to several univariate
problems and to solve these problems by methods from Sedétidiinally we combine the
results from the univariate problems. Note that it is notessary to sample the bivariate
exponential sum

M
hO(xla x2) — ch ei(fj,1331+fj,2-r2) .
=1

on the full sampling gridz¢,. Assume that the distinct frequency vectors
fi=1fia fi2l €l-m ) (j=1,....,M)

arewell-separatedy

(5.1) dist(f;.1, fr1) > /N

forall j,k =1,...,M andl = 1, 2, if f;; # fr;. We solve the corresponding parameter
estimation problem stepwise and call this new procedpagse approximate Prony method
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(SAPM). Here we use only noisy valué$n,0), h(0,n), h(n,an + §) (n € Zx) sampled
along straight lines, where € Z \ {0} and € Z are conveniently chosen.
First we consider the given noisy ddtén,0) (n € Zy) of

M My
(5-2) hO(TMO) = Z Cj eifj’ln = Z Cj1,1 ei }1,1” ,

Jj=1 Jji=1
wherel < M; < M, ]"’J’»h1 € [-m, 7 (j1 = 1,...,M) are the distinct values of; 1
(j=1,...,M)andc;, 1 € C are certain linear combinations of the coefficienitsAssume
thatc;, 1 # 0. Using Algorithm4.1, we compute the distinct frequencigg | € [-m, )
(j]_ = 1,...,M1).

Analogously, we consider the given noisy daf@, n) (n € Zy) of

M Mo )
(5.3) ho(0,n) = cjetfian = 3" ¢, 5 elfiaam,

j=1 j2=1
wherel < My < M, f}, , € [-m, 7) (j2 = 1,..., Ms) are the distinct values of; »
(j=1,...,M)andc;, » € C are certain linear combinations of the coefficientsAssume

thatc;, o # 0. Using Algorithm4.1, we compute the distinct frequencigg , € [~m, )
(j2 = 17"'7M2)‘
Then we form the Cartesian product

(54) F:{[fl ;2’2]TE[—7T7 7T)22 jlzl,...,Ml,jQZL...,MQ}

Ji,1»
of the sets{f; ; : j1 = 1,....,Mi} and{f}, 5 : j2 = 1,...,Mz}. Now we test if
[f},1:f},2]T € F is an approximation of an actual frequency vecfor = [f;1, fj2] "
(j = 1,...,M). Choosing further parametets€ Z \ {0}, 5 € Z, we consider the given
noisy data(n, an + ) (n € Zy) of

M My
(55) ho(n’ an + ﬁ) — Z ¢ eiﬂfja ei(ij1+(¥fj12)n _ Z k3 eifk(a)" ,
k=1

j=1

wherel < M) < M, fy(a) € [-m, 7) (B = 1,...,M)) are the distinct values of
(fin +afje)e (j = 1,...,M). Here(f;1 + afj2)r is the symmetric residuum of
fj,l + 0[ij2 modulo2, i.e. fj,l + Ckijz € (fj,l + O[fj_yg)gﬂ— + 27 7 and(fj’l + O[fj_]g)gﬂ— €
[, 7). Note thatf;(«) € [—m, 7) and thatf; ; + «.f; » can be located outside 7, ).
The coefficients:;, 3 € C are certain linear combinations of the coefficieq,tsiﬁfﬂ. As-
sume thate, 5 # 0. Using Algorithm4.1, we compute the distinct frequencigs(«) €
[-m, m) (k=1,...,M)}).

Then we form the sef’ of all those[f;hl, f;Q)Q]T € F so that there exists a frequency
fre(e) (k=1,..., M}) with

|fr(a) = (fi, 1+ aff,0)2x] <er,
wheree; > (s an accuracy bound. Clearly, one can repeat the last stepthier parameters
o € Z\ {0} andf € Z to obtain a smaller sef := {f; = [f;1. fj2] " : j=1,....,|F|}.

Finally, we compute the coefficients (j = 1,...,|F|) as least squares solution of the

overdetermined linear system

L
(5.6) > gelim=hn) (neG),

j=1
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whereG := {(n,0), (0,n), (n,an + B); n € Zy} is the sparse sampling grid. In other
words, this linear systenb(6) reads as follows

LI

Zéj i — h(n,0) (n€Zy),
j=1

L

Y gehan = no,n) (nezy),
j=1

7| i o
Z & ez gilfintadian — pn an+B) (n€Zy).
j=1

Unfortunately, these three system matrices may possess$ egjumns. Therefore we repre-
sent these matrices as produétsM; (I = 1, 2, 3), whereF, is a nonequispaced Fourier
matrix with distinct columns and where all entries®df; are equal to 0 or 1 and only one
entry of each column is equal to 1. BY4, Theorem 4.3] the nonequispaced Fourier matrices

F, = I:eifj,ln} (l =1, 2)7

n€ly,j=1,...,|F|
Fj:= [el(fj’ﬁafm)n} nE€Zn . j=1,...,|F|
possess leftinversds. If we introduce the vectoms; := [h(n, 0)]N__ y, ha := [R(0,n)]"__,

hs := [h(n,an+B)N__y, &= [éj]gi‘l, and the diagonal matril := diag (exp(iﬁﬁz))gﬂl,

then we obtain the linear system

M, Lihg
(5.7) M, c=| Lahs
M3 D Lshg

By a convenient choice of the parameterss Z \ {0} and € Z, the rank of the above
system matrix is equal tti5|. If this is not the case, we can use sampled valués, @flong
another straight line. We summarize:

ALGORITHM 5.1. (SAPM ford = 2)

Input: h(n,0),h(0,n) € C (n € Zy), boundsg, &1 > 0,
m number of additional straight lines, parametersc Z \ {0}, 5, € Z (I =1,...,m),
hn,am+6) €C(ne€Zy;l=1,....,m).

1. From the noisy dat&(n,0) (n € Zy) and h(0,n) (n € Zy) compute by Algo-
rithm 4.1 the distinct frequencieg] |, € [-m, ) (j1 = 1,...,M;)in (5.2 and f], , €
[, 7) (j2 =1,...,Ms) in (5.3), respectively. S&& := {(n,0), (0,n) : n € Zy}.

2. Form the Cartesian produ¢b.4).

3.Fori=1,...,mdo:

From the noisy daté(n, yn + 3;) (n € Zy), compute the distinct fre-
quenciesfy(«;) € [-m, m) (k = 1,...,M}) in (5.5 by Algorithm4.1
Form the sett” := {f;: j =1,...,|F'|} of all those[f] ,,f},.]" € F
so that there exists a frequengy(a;) (k =1, ..., M}) with

|fe(on) = (fj, 1 +oufi,0)ex| <e1.

SetG :=GU{(n,aun+0;) : n € Zn}.
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4. Compute the least squares solution of the overdeterntiimegr system

[
Zc; efirm=hn) (neG)
j=1

for the frequency seft”.

5. Form the subsef’ = {f,
(k=1,...,|F'|) with |c}| > 0.

6. Compute the least squares solution of the overdeterniinedr systen{5.6) corre-
sponding to the new frequency gt

Output: M = |F| €N, f, € [-m,m)% & eC(j=1,...,M).

Note that it can be useful in some applications to choose uidts (n, on + 5;)
(n € Zy) on random straight lines.

REMARK 5.2. For the above parameter reconstruction, we have useplsd values of
a bivariate exponential sui, onm + 2 straight lines. We have determined in the step 3 of
Algorithm 5.10nly a setF” which contains the séft of all exact frequency vectors as a subset.
This method is related to a result of AéRyi [25] which is known in discrete tomography/
distinct points inR? are completely determined, if their orthogonal projecsi@mtoM + 1
arbitrary distinct straight lines through the origin areolim. Let us additionally assume that
[filla<m(j=1,...,M). Furtherletp, € [0,7) (¢ =0,..., M) be distinct angles. From
sampled datég(n cos ¢, n singy) (n € Zy) we reconstruct the parametefs; cos ¢, +
fiasingeforj=1,...,Mandl =0,...,M. Since|f;1 cosp, + fj2 sing,| < 7, we
have

j = 1,...,|F|} of F’ of all those f; € F’

(fia1 coswg + fj2singe)ar = fj1 cospe+ fio singg.

Thus f;1 cos e + fj2 singy is equal to the distance betwefqu and the linex; cospp +
T3 sinp, = 0, i.e., we know the orthogonal projection $f onto the straight line; cos ¢, —
xo sin py = 0. Hence we know thats < M — 1.

6. Sparse approximate Prony method ford > 3. Now we extend Algorithnb.1 to
the parameter estimation ofdavariate exponential suni(l), where the dimensiod > 3 is
moderately sized. Let/ € N\ {1} andN € N with N > 2M + 1 be given. Assume that
the distinct frequency vectors; = [f;.1)i, are well-separated by the condition

dist(f;1, fra) > 7/N

forallj,k=1,...,.Mandl =1,...,dwith f;; # f,.

Our strategy for parameter recovery @fJ) is based on a stepwise enhancement of the
dimension from 2 tal.

Forr = 2,...,d, we introduce the matrices

ofl el
a = : : € (Z\ {o})m->x(r=1
L ag)ml O‘s:;z,rfl
g Bl
B = S : € Zmex(r=1)
5(T) o IB(T) 1
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wherea!”) ... al(’;) Landg!?), ..., 8" are the parameters of the grid points
(n, ozl(rl)n +ﬁl(£), .. Z(TT) n+ ﬁl(rr) 1,0,...,0) € 7 (ne Zd)

lying at thel-th straight line(l = 1,...,m,). By al(r) (l=1,...,m,.), we denote thé-th
row of the matrixa.(").

Using the given valuei(n,0,0,...,0), h(0,n,0,...,0), h(n, aﬁ)n + ﬂl?,o ., 0)
(I = 1,...,my) for n € Zy, we determine frequency vectof$; |, f7,]" € [—m, )
(j=1,..., M) by Algorithm 5.1

Then we consider the noisy ddté0,0,7,0,...,0) (n € Zy) of

M Ms
. s el
ho(0,0,n,0,...,0) = E ¢ elfisn — 2 : Cia3 elfj3*3n,
Jj=1

Jjz=1

wherel < M3 < M, wheref} 5 € [-m, ) (js = 1,..., M3) the distinct values of; 3

(j = 1,...,M), and wherec;, 3 € C are certain linear combinations of the coefficients
¢;. Assume that;, 3 # 0. Using the Algorithm4.1, we compute the distinct frequencies
fiy3 € =7, ) (js = 1,..., M3). Now we form the Cartesian product

F = {[f]/',laf]/',Qafj/'g,,B]T € [771_7 7T)3 Cj= ]-a"'aM/; Jaz = 17"'7M3}

of the sets{[f},, fjo]" : j=1,...,M'}and{f},5: j =1,...,Ms}. Now we form a
subset off’ by usmg the data

h(n, a“n—l—ﬁll,al(‘? +Bl("(32)70,...70) (l=1,...,m3).

Since
3 3 3 (3
ho(n al(l)n+ﬁl(1),al(2)n+ﬂl2),0 ., 0)
- ZC e' 'Bl(gl)fj 2+ﬁ(3)f1 5) (f“ 1+f12 20‘1(31)+f 30‘1(32))”
j=1
My ]
— Z Ck 3 elfk(al(d))’n ,
k=1
wherel < M} < M and wherefk(al(g)) € [-m,m) (k=1,..., M}) are the distinct values
of ( +al(31) 2 +al(32) i ! 4)2r. The coefficients;, 5 € C are certain linear combinations of
(3)
the coefﬁuent& BI85 1) Then we form the sef := {f:j=1,...,|F|}of

all those(f;, 1, f}, 2 f},, ! 5]T € F sothat there exists afrequenﬁy(al(3)) (k=1,..., M)
with

3 3 3
(™) = (Fhy + fhy 20l + fh a0l 9)an] <e1.

Continuing analogously this procedure, we obtain

ALGORITHM 6.1. (SAPM ford > 3)
Input: ~(n,0,...,0),h(0,n,0,...,0),...,h(0,...,0,n) (n € Zy), boundseg, €1 > 0,
m, number of straight lines for dimension= 2, ..., d, parameters of straight linea(",
ﬁ(?”) e gmex(r=1)
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1. From the noisy dat#(n,0,...,0), h(0,n,0,...,0), ..., A(0,...,0,n) (n € Zxy)
compute by Algorithrd.1 the distinct frequencieg; , € [-x, 7) (j» = 1,...,M,) for
r=1,...,d.

SetG := {(n,0,...,0),...,(0,...,0,n): n € Zy}.
2. SetF .= {f]{lyl g =1,.. -7M1}-
3. Forr=2,...,ddo:
Form the Cartesian product
Fi=Fx{f] . tjr=1,...,M}={f . fi,]T :l=1,...|F|,j=1,...,M}.

)

Fori=1,...,m, do:
For the noisy data

h(n, al(rl)n—l—ﬁl(ﬁ),.. o™ 1n+ﬁl(:) 1:0,...,0) (n€Zy),

lr

compute the distinct frequenciﬁ@(al(r)) el-mm)(k=1,...,M))
by Algorithm4.1 Form the sef” of all those{f;, ,, f}, 2, - - -, f’”ﬂ]T
so that there exists a frequen¢,y(al(r)) with

[fe(ef”) = (f o+ o fiaa+ oot all) fl Dael <1
SetF := F and
G :=GU{(n, alln—kﬂl(rl),.. n 1”+5zr 10,...,0): n€Zy}.

4. Compute the least squares solution of the overdeternfiimear system

2l

(6.1) > defim=hn) (neG)

for the frequency selt = {f, : j =1,...,|F|}.

5. Formthe sef := {f, : j =1,...,|F|} of all thosef,, € F (k = 1,...,|F|) with
lck.| > €o.

6. Compute the least squares solution of the overdeternfiinear system

||

(6.2) S gelim=nn) (neG)
j=1

corresponding to the new frequency $et= {f, : j =1,...,|F|}.
Output: M = |F| €N, f, € [-m,m)4, & eC(j=1,...,M).

REMARK 6.2. Note that we solve the overdetermined linear systénis&nd ©.2) only
by using the values(n) (n € G), which we have used to determine the frequen&igslf
more valuesh(n) are available, clearly one can use these values as well ifirllestep to
ensure a better least squares solvability of the lineaesyst seeq.7) for the casel = 2
and Corollary3.3. In addition we mention that there are various possibditie combine the
different dimensions; see, e.g., Examplé.

REMARK 6.3. Our method can be interpreted as a reconstruction rdthrosparse
multivariate trigonometric polynomials from few samplesg [L6, 12, 32] and the references
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therein. More precisely, 16i4, denote the space of all-variate trigonometric polynomials
of maximal orderN. An element € 114, can be represented in the form

= Y apetmhy (ye [—% %] >

kezd,

with ¢, € C. There exist completely different methods for the recargtion of “sparse
trigonometric polynomials”, where one assumes that thebemy/ of the nonzero coeffi-
cientscg, is much smaller than the dimension Hfj{,. Therefore our method can be used
with

M

h@) = p(5) = D e f e (we [-N.N]),

j=1
andx = 2Ny and f; = nk/N if ¢, # 0. Using Algorithm6.1, we find the frequency
vectors f,; and the coefﬁuentsa and we setk := round(N f;/), ¢k = c;. By [

one knows sharp versions &f—norm equivalences for tngonometrlc polynomlals under th
assumption that the sampling set contains no holes largarttie inverse polynomial degree;
see alsof].

7. Numerical experiments. We apply the algorithms presented in Sectioto various
examples. We have implemented our algorithms iaTMAB with IEEE double precision
arithmetic. We compute the relative error of the frequesgiwen by

j= InaX ‘f]l _f]l|

e(f) = l:Irll?.).(,d ‘ max |f] 1 ’
j=

where fj,l are the frequency components computed by our algorithmsaloyously, the
relative error of the coefficients is defined by
max [cj — &

max_e;|

where¢; are the coefficients computed by our algorithms. Furtheenae determine the
relative error of the exponential sum by
() o I l) — hi@)|
max |h(x)]
where the maximum is determined by approximatelg00 equispaced points from a grid of
[~N, N4, and where

M ~
x) = E éjeli®
Jj=1

is the exponential sum recovered by our algorithms. We rkrtieat the approximation prop-
erty of h and/ in the uniform norm of the univariate method was showrfih [Theorem 3.4].
We begin with an example previously consideredZ][

ExaMPLE 7.1. The bivariate exponential surh.{) taken from P8, Example 1] pos-
sesses the following parameters

[ 0.487  0.487 [ 1
F)12, = 0487 —0487 |, [g]3, =
—0.487  0.487 1
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We sample this exponential surt.{) at the nodesh(k,0), h(0,k) and h(k,ak + (),

(k € Zn), wherea, 3 € Z are given in Tabl&.1 Therefore the number of total sampling
points used in our method are or#§2N + 1) or 4(2N + 1). Then we apply our Algorithm
5.1 for exact sampled data and for noisy sampled ddte) = (k) + 1070 e, whereey, is
uniformly distributed in[—1, 1]. The notationd = co means that exact data are given. We
present the chosen parameters and the results in Tabl®/e choose same bounés = ¢;

in Algorithm 5.1and obtain very precise results even in the case, where #reoum number
M = 3is estimated by..

TABLE 7.1
Results of Examplé.1
L N ¢ o I e(f) e(c) e(h)
5 6 10°% 1 0 oo 17e-15 5.9e-14 3.2e-13
10 20 10 1 0 o~ | 5.4e-15 4.5e-14 4.5e-14
5 25 1073 1 0 6 | 5.6e-09 1.6e-07 2.5e-07
5 25 102 1,2 0,0 6 | 1.0e-08 5.9e-07 7.4e-07
5 25 1073 1 0 5 | 1.7e-08 1.2e-06 1.3e-06

ExAamMPLE 7.2. We consider the bivariate exponential sumi) with following parame-
ters

0.1 1.2 [ 141 ]
019 1.3 2+ 3i
03 1.5 5—6i
e I O I I
—0.19 0.35 2+ 3i
-0.3 —1.5 5—6i
| 03 03 | | 02— |

For given exact data, the results are presented in TaBleNote that the condition(1) is
not fulfilled, but the reconstruction is still possible inse cases. In order to fulfilB(1), one

has to choos&V > 575z, i.e.,N > 63.

The dash- in Table7.2 means that we are not able to reconstruct the signal paresnete
In the casel. = 15, N = 30, a« = 1, 8 = 0, we are not able to find the 8 given frequency
vectors and coefficients. There are other solutions of thengtruction problem with 15 fre-
quency vectors and coefficients. However, if we choose ore tivee witha = 2, 5 = 0 or
if we choose more sampling points with = 80, then we obtain good parameter estimations.

Furthermore, we use noisy sampled datk) = ho(k)-+10~? i, whereey, is uniformly
distributed in[—1, 1]. Instead of predeterminated valuesand 3, we choose these values
randomly. We use only one additional line for sampling anespnt the results in Table3,
wheree(f), e(c) ande(h) are the averages over 100 runs. Note that in this case we lyse on
3(2N + 1) sampling points for the parameter estimation.
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TABLE 7.2
Results of Examplé.2 with exact data.
L N €0 o B e(f) e(c) e(h)
8 15 10°° 1 0 2.7e-09 5.7e-09 3.4e-09
8 15 10¢ 1,2,3 0,1,2| 2.7e-09 5.9e-09 3.3e-09
15 30 107¢ 1 0 1l.4e-13 3.4e-13 6.5e-13
15 30 2-10°! 1 0 - - -
15 30 2-107! 1,2 0,0 | 1.4e-13 4.0e-13 6.0e-13
15 80 2-107! 1 0 |35e-15 3.2e-14 7.5e-14
TABLE 7.3
Results of Exampl@.2 with noisy data.
L N & &| ef e(c) e(h)
8 35 10% 6| 1.4e-06 3.9e-06 5.5e-06
15 30 107%® 6| 1.2e-05 3.9e-05 5.3e-05
15 50 1072 5| 4.0e-07 4.1e-06 3.8e-06
15 50 102 6| 3.8e-08 3.6e-07 3.3e-07

EXAMPLE 7.3. We consider the trivariate exponential suirill with following param-

eters

J

j=17

0.1

0.19

0.4

0.45
—0.1

—-0.19

—-0.4
—-04

and present the results in Tabiel
for the parameter estimation.

1.2 0.1 7]
1.3 0.2
1.5 1.5
0.3 -0.3
1.2 0.1
0.35 —0.5

—-1.5 0.25
0.3

0.3 |

) [Cj]§:1 =

141 ]
2+ 3i
5—061
0.2 —1i
1+1
2+ 3i
5—61
0.2 —1i

We use onlys(2N + 1) or 6(2N + 1) sampling points

TABLE 7.4
Results of Examplé.3.
L N g o® o® g0 8% 5| e(f)  ele)  e(h)
8 15 100* [1] [1 1] [0 [0 0] ool 15e-10 1.7e-10 8.2e-11
8 15 10* [ [1 1] [ [1 1] oo|15e-10 1.7e-10 8.le-11
10 30 10 [ [1 1] [0 [0 0] 6 |87e-07 15e-06 2.9e-06
10 30 1073 [1] } ; [0] 8 8 6 | 7.8e-08 1.1e-06 1.5e-06
L, - 1 1 2 - O 0 =
10 30 10 [1] L 5 [0] 0 0 5 | 45e-06 1.0e-05 1.6e-05
L :1 1 2 -y 0 0 =
10 30 10 [1] L 5 [0] 0 0 4 | 1.2e-05 2.5e-05 5.2e-05
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ExamMPLE 7.4. Now we consider the 4—variate exponential sdm)(with following
parameters

01 1.2 01 045 ] [ 1+ ]
019 1.3 02 15 2+ 3i
03 15 15 -13 561
S 045 0.3 —03 04 . 0.2 —i
Filize=1 Zo1 12 o1 -15|° lEh==] 14
~0.19 035 —0.5 —0.45 2+ 3i
04 —-15 025 13 561

—04 03 —03 04 [ 0.2—1 |

Instead of using Algorithn®.1 directly, we apply Algorithm5.1 for the first two variables
and then for the last variables with the parametef¥ and 3. Then we take the tensor
product of the obtained two parameter sets and use the adalipparameters from(*) and
,6‘(4) in order to find a reduced set. Finally we solve the overdeitezthlinear system. The
results are presented in Tablé, We use only7 (2N + 1) or 10(2N + 1) sampling points for
the parameter estimation.

TABLE 7.5
Results of Examplé.4.

L N €0 a® a® B3 BW 5 e(f) e(c) e(h)

8§ 15 10 ° 1 [1 1 1] 0 [0 0 0] oo 17e-10 25e-11 1.6e-10

8 15 10°* 1 [1 1 1] 1 [1 1 1] oo 17e10 24e-11 16e-10

15 30 107* 1 [1 1 1] 0 [0 0 0] oo | 13e14 6.4e15 88e-14

15 30 1073 1 [1 1 1] 0 [0 0 0] 6 | 1.0e-06 3.2e-07 3.0e-06

15 30 10°° 1 [1 1 1] 0 [0 0 0] 5 | 1305 3.4e06 4.2e-05
_3 1 1 1 1 0 0O 0 O

15 30 10 [ 1 ] [ 11 ] [ 0 ] [ o 0 o ] 6 | 1.1e-06 27e-07 3.9e-06
4 1 1 1 1 0 0 0 0

15 30 10 { 1 ] [ 11 ] [ 0 ] [ o 0 o ] 5 | 8.8e-06 1.9e-06 3.3e-05
_3 1 1 1 1 0 0 0 0

15 50 10 [ 3 ] [ 11 -1 ] [ 0 } [ 0o 0 o } 5 | 45e-07 1.2e-07 1.6e-06
3 1 1 1 1 0 0O 0 O

15 50 10 [ -1 ] [ 2101 -1 } [ 0 ] [ 0 0 0 ] 4 | 8.0e-07 24e-07 1.1e-05
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