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ON A WEIGHTED QUASI-RESIDUAL MINIMIZATION STRATEGY
FOR SOLVING COMPLEX SYMMETRIC SHIFTED LINEAR SYSTEMS ∗

T. SOGABE†, T. HOSHI‡, S.-L. ZHANG†, AND T. FUJIWARA§

Abstract. We consider the solution of complex symmetric shifted linear systems. Such systems arise in large-
scale electronic structure simulations, and there is a strong need of algorithms for their fast solution. With the aim
of solving the systems efficiently, we consider a special caseof the QMR method for non-Hermitian shifted linear
systems and propose its weighted quasi-minimal residual approach. A numerical algorithm, referred to as shifted
QMR SYM(B), is obtained by the choice of a weight which is particularlycost-effective. Numerical examples are
presented to show the performance of the shifted QMRSYM(B) method.
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1. Introduction. In this paper we consider the solution of complex symmetric shifted
linear systems of the form

(A + σℓI)x(ℓ) = b, ℓ = 1, 2, . . . ,m, (1.1)

whereA(σℓ) := A + σℓI are nonsingularN × N complex symmetric sparse matrices, i.e.,
A(σℓ) = A(σℓ)

T 6= A(σℓ)
T , with scalar shiftsσℓ ∈ C, I is theN × N identity matrix, and

x(ℓ), b are complex vectors of lengthN . Such systems arise in large-scale electronic structure
simulations [15], and there is a strong need of algorithms for their fast solution.

Since the coefficient matrices of the given shifted linear systems (1.1) are sparse, it is nat-
ural to use Krylov subspace methods, and moreover since the coefficient matrices are complex
symmetric, one of the simplest ways to solve the shifted linear systems consists of employing
(preconditioned) Krylov subspace methods for solving complex symmetric linear systems,
such as the COCG method [16], the COCR method [13], and the QMRSYM method [3], to
all the shifted linear systems (1.1). On the other hand, denoting then-dimensional Krylov
subspace with respect toA andb asKn(A, b) := span{b, Ab, . . . , An−1b}, we observe that

Kn(A, b) = Kn(A(σℓ), b). (1.2)

This implies that once the basis vectors are generated for one of the Krylov subspaces
Kn(A(σℓ), b), these basis vectors can be used to solve all the shifted linear systems. In
other words, there is no need to generate all Krylov subspaces Kn(A(σℓ), b), and thus the
computational cost required by the basis generation, e.g.,matrix-vector multiplications, is
reduced. Here we give a concrete example: if we apply the conjugate orthogonal conjugate
gradient (COCG) method to all the linear systems (1.1), then bases forKn(A(σℓ), b) are
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generated forℓ = 1, 2, . . . ,m. On the other hand, if we apply the COCG method to just one
of the shifted linear systems (1.1) (referred to as the “seed system”), then the Krylov basis
vectors are generated from the seed system and these vectorsare used to solve the rest of the
shifted linear systems.

Based on the observation (1.2), the shifted COCG method [15] has been recently pro-
posed for solving complex symmetric shifted linear systems. The feature of the shifted COCG
method is that the method performs COCG on a seed system and makes it possible to com-
plete COCG for all shifted linear systems without further matrix-vector multiplications. The
feature is completely different from some of the other well-known shifted linear solvers such
as the shifted BiCGStab(ℓ) method [6], or the restarted shifted GMRES method [7], since they
perform BiCGStab(ℓ) (or GMRES) on a seed system, but they apply a different method on
the shifted linear systems, in order to keep the residuals collinear. The feature of the shifted
COCG method plays a very important role in the seed switchingtechnique [14], that avoids
a minor problem of the shifted COCG method: one requires the choice of a seed system,
and an unsuitable choice may lead to the undesirable result that some shifted linear systems
remain unsolved.

There is another approach to solving the shifted linear systems (1.1), which consists of
the use of Krylov subspace methods for non-Hermitian shifted linear systems, such as the
shifted BiCGStab(ℓ) method [6], the shifted (TF)QMR method [4], the restarted shifted FOM
method [10], and the restarted shifted GMRES method [7]; see also, e.g., [11]. We readily
see that the relation (1.2) holds not only for complex symmetric matrices, but also fornon-
Hermitian matrices, and these methods are based on the use ofthis shift-invariant relation.
Therefore, this can be a good approach. However, since thesemethods do not exploit the
property of complex symmetric matrices, their computational cost can be more expensive
than that of the shifted COCG method.

In this paper we consider the shifted QMRSYM method, that is a special case of the
QMR method for non-Hermitian shifted linear systems [4], and discuss the most time con-
suming part of it for a large number of shifted linear systems. Then, in order to reduce the
cost, we propose a weighted quasi-minimal residual (WQMR) approach and propose a spe-
cific weight. We experimentally show the practical efficiency of the resulting algorithm,
referred to as shifted QMRSYM(B), when the number of shifted linear systems is large
enough.

The present paper is organized as follows: in the next section, shifted QMRSYM is
described in order to specify the most time consuming part for a large number of shifted linear
systems. In Section3, we propose a WQMR approach with a specific weight for reducing
the cost of the most time consuming part. The resulting algorithm, shifted QMRSYM(B),
and its properties are given. In Section4, some results of numerical examples from electronic
structure simulations are shown to ascertain the performance of the shifted QMRSYM(B)
method. Finally, some concluding remarks are made in Section 5.

Throughout this paper, unless otherwise stated, all vectors and matrices are assumed to

be complex,M , MT , MH = M
T

denote the complex conjugate, transpose, and Hermitian
transpose matrices of the matrixM , respectively, and‖v‖W denotes theW -norm written as
(vHWv)1/2, whereW is Hermitian positive definite.

2. The QMR SYM method for solving complex symmetric shifted linear systems.
In this section, the shifted QMRSYM method and its properties for solving complex sym-
metric shifted linear systems are introduced.

The QMR method for shifted linear systems was first formulated in [4] for the case
of a general non-Hermitian matrix. Therefore, by simplifying the non-Hermitian Lanczos
process [9], as it is known from other papers, such as [3, 16], a shifted simplified QMR
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ALGORITHM 1 (Shifted QMRSYM).

x
(ℓ)
0 = p

(ℓ)
−1 = p

(ℓ)
0 = 0, v1 = b/(bT b)1/2, g

(ℓ)
1 = (bT b)1/2,

for n = 1, 2, . . . do:

(The complex symmetric Lanczos process)

αn = vT
nAvn,

ṽn+1 = Avn − αnvn − βn−1vn−1,

βn = (ṽT
n+1ṽn+1)

1/2,

vn+1 = ṽn+1/βn,

t
(ℓ)
n−1,n = βn−1, t(ℓ)n,n = αn + σℓ, t

(ℓ)
n+1,n = βn,

(Solve least squares problems by Givens rotations)

for ℓ = 1, 2, . . . ,m do:

if ‖r(ℓ)
n ‖2/‖b‖2 > ǫ, then

for i = max{1, n − 2}, . . . , n − 1 do:[
t
(ℓ)
i,n

t
(ℓ)
i+1,n

]
=

[
c
(ℓ)
i s

(ℓ)
i

−s
(ℓ)
i c

(ℓ)
i

] [
t
(ℓ)
i,n

t
(ℓ)
i+1,n

]
,

end

c(ℓ)
n =

|t
(ℓ)
n,n|√

|t
(ℓ)
n,n|2 + |t

(ℓ)
n+1,n|

2

,

s(ℓ)
n =

t
(ℓ)
n+1,n

t
(ℓ)
n,n

c(ℓ)
n ,

t(ℓ)n,n = c(ℓ)
n t(ℓ)n,n + s(ℓ)

n t
(ℓ)
n+1,n,

t
(ℓ)
n+1,n = 0,

[
g
(ℓ)
n

g
(ℓ)
n+1

]
=

[
c
(ℓ)
n s

(ℓ)
n

−s
(ℓ)
n c

(ℓ)
n

] [
g
(ℓ)
n

0

]
,

(Update approximate solutionsx(ℓ)
n )

p(ℓ)
n = vn − (t

(ℓ)
n−2,n/t

(ℓ)
n−2,n−2)p

(ℓ)
n−2 − (t

(ℓ)
n−1,n/t

(ℓ)
n−1,n−1)p

(ℓ)
n−1,

x(ℓ)
n = x

(ℓ)
n−1 + (g(ℓ)

n /t(ℓ)n,n)p(ℓ)
n ,

end if

end

if ‖r(ℓ)
n ‖2/‖b‖2 ≤ ǫ for all ℓ, then exit.

end

method (shifted QMRSYM) is readily obtained for the case of a complex symmetric matrix;
see Algorithm1. Algorithm 1 can be regarded as a natural combination of the results given
in [3, 4].

In order to know that the numerical solution is accurate enough, one may need to compute
the residual 2-norms. In that case, the following computation may be useful.
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PROPOSITION2.1 ([5]). The 2-norms of thenth residuals of the approximate solutions
x

(ℓ)
n of the shifted QMRSYM method are given by

‖r(ℓ)
n ‖2 = |g

(ℓ)
n+1| · ‖w

(ℓ)
n+1‖2, for ℓ = 1, 2, . . . ,m,

wherew
(ℓ)
n+1 = −s

(ℓ)
n w

(ℓ)
n + c

(ℓ)
n vn+1, andw

(ℓ)
1 = v1.

Proposition2.1is a result known to hold for the QMR method [5]. Therefore, it also holds
for the above specialized variant. The rest of this section describes some special properties of
the shifted QMRSYM method.

PROPOSITION2.2 ([2]). Let A ∈ R
N×N be real symmetric,σℓ ∈ C be complex shifts,

andb ∈ R
N . Then the shifted QMRSYM method (Algorithm1) enjoys the following proper-

ties:
(I) all matrix-vector multiplications can be done in real arithmetic;
(II) an approximate solution at thenth iteration step has minimal residual 2-norms for

eachℓ, i.e., the vectorsx(ℓ)
n ’s are generated in order to minimize‖r(ℓ)

n ‖2 over all

x
(ℓ)
n ∈ Kn(A, b);

(III) ‖r
(ℓ)
n ‖2 = |g

(ℓ)
n+1|, for ℓ = 1, 2, . . . ,m, n ≥ 0.

The above properties are known, since they have been proved for each individual shift;
see [2] for details. These results may be very useful for large-scale electronic structure simu-
lations [15] and a projection approach for eigenvalue problems [12], since there are complex
symmetric shifted linear systems to be solved efficiently under the assumption of Proposi-
tion 2.2.

3. An iterative method for solving complex symmetric shifted linear systems. In
this section we consider complex symmetric shifted linear systems with a large number of
shifts. For such systems, saym ≫ 1, the most time consuming part of Algorithm1 consists of
generating approximate solutions, since the cost for the recurrences is6Nm+3m per iteration
step. In this section we propose a weighted quasi-minimal residual approach with a specific
weight: in Subsection3.1 we discuss the details of the approach, and in Subsection3.2 we
propose a specific weight to achieve the reduction of the cost.

3.1. A weighted quasi-minimal residual approach.Before we formulate a Weighted
Quasi-Minimal Residual (WQMR) approach, let us recall in Algorithm 2 the complex sym-
metric Lanczos process; see, e.g., Algorithm 2.1 in [3].

ALGORITHM 2 (The complex symmetric Lanczos process).

β0 = 0, v0 = 0, r0 6= 0 ∈ C
N ,

v1 = r0/(rT
0 r0)

1/2,

for n = 1, 2, . . . ,m − 1 do:

αn = vT
nAvn,

ṽn+1 = Avn − αnvn − βn−1vn−1,

βn = (ṽT
n+1ṽn+1)

1/2,

vn+1 = ṽn+1/βn.

end

The matrix form of Algorithm2 can be formulated as follows. LetTn+1,n andTn be the
(n + 1) × n andn × n tridiagonal matrices whose entries are the recurrence coefficients of
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the complex symmetric Lanczos process, which are given by

Tn+1,n :=




α1 β1

β1 α2
. . .

. ..
. . . βn−1

βn−1 αn

βn




, Tn :=




α1 β1

β1 α2
. . .

. ..
. . . βn−1

βn−1 αn




,

and letVn be theN × n matrix with the Lanczos vectors as columns, i.e.,

Vn := (v1,v2, . . . ,vn).

Then, it follows from Algorithm2 that

AVn = Vn+1Tn+1,n = VnTn + βnvn+1e
T
n , (3.1)

whereen = (0, 0, . . . , 1)T ∈ R
n.

Now we are ready to describe the WQMR approach. Letx
(ℓ)
n be approximate solutions

at thenth iteration step for the systems (1.1), which are given by

x(ℓ)
n = Vny(ℓ)

n , ℓ = 1, 2, . . . ,m, (3.2)

wherey
(ℓ)
n ∈ C

n. Then, from the definition of residual vectorsr
(ℓ)
n := b−(A+σℓI)x

(ℓ)
n , the

update formulas (3.2), and the matrix form of the complex symmetric Lanczos process (3.1),
we readily obtain

r(ℓ)
n = Vn+1

(
g1e1 − T

(ℓ)
n+1,ny(ℓ)

n

)
, whereT

(ℓ)
n+1,n := Tn+1,n + σℓ

[
In

0
T

]
. (3.3)

Here,e1=(1, 0, . . . , 0)T is the first unit vector, andg1 = (bT b)1/2. It is natural to deter-
mine y

(ℓ)
n such that all residual 2-norms‖r(ℓ)

n ‖2 are minimized. However, this choice for
y

(ℓ)
n is unfeasible due to large computational costs. Hence, the vectorsy(ℓ)

n are determined
by an alternative approach, i.e., by solving the following weighted least squares problems:

y(ℓ)
n = arg min

z(ℓ)
n ∈Cn

∥∥∥g1e1 − T
(ℓ)
n+1,nz(ℓ)

n

∥∥∥
W H

n+1W
n+1

, (3.4)

whereWn+1 is an(n + 1) × (n + 1) nonsingular matrix. ThusWH
n+1Wn+1 can be used as

a weight since it is Hermitian positive definite. One of the simplest choices forWn+1 is the
identity matrix. In this case, fromWn+1 = In+1 we have

y(ℓ)
n = arg min

z(ℓ)
n ∈Cn

∥∥∥g1e1 − T
(ℓ)
n+1,nz(ℓ)

n

∥∥∥
2
. (3.5)

The vector that is minimized is called quasi-residual. Algorithm 1 is obtained by solving (3.5)
using Givens rotations; see, e.g., [8, p. 215].

A slightly generalized choice, proposed in [5], is

Wn+1 = Ωn+1 := diag(ω1, ω2, . . . , ωn+1),

with ωi > 0 for all i. Then, it follows that

y(ℓ)
n = arg min

z(ℓ)
n ∈Cn

∥∥∥ω1g1e1 − Ωn+1T
(ℓ)
n+1,nz(ℓ)

n

∥∥∥
2
.



ETNA
Kent State University 

http://etna.math.kent.edu

COMPLEX SYMMETRIC SHIFTED LINEAR SYSTEMS 131

Among the various possible choices forωi, a natural one isωi = ‖vi‖2, since thenΩn+1

contains the diagonal entries of the upper triangular matrix Rn+1, which corresponds to the
QR factorization ofVn+1. If we chooseWn+1 = Rn+1, whereVn+1 = Qn+1Rn+1, then
from (3.3) and (3.4) we have

min
z(ℓ)

n ∈Cn

∥∥∥g1e1 − T
(ℓ)
n+1,nz(ℓ)

n

∥∥∥
RH

n+1R
n+1

= min
z(ℓ)

n ∈Cn

∥∥∥g1Rn+1e1 − Rn+1T
(ℓ)
n+1,nz(ℓ)

n

∥∥∥
2

= min
z(ℓ)

n ∈Cn

∥∥∥Qn+1Rn+1

(
g1e1 − T

(ℓ)
n+1,nz(ℓ)

n

)∥∥∥
2

= min
z(ℓ)

n ∈Cn

∥∥∥Vn+1

(
g1e1 − T

(ℓ)
n+1,nz(ℓ)

n

)∥∥∥
2

= min
z(ℓ)

n ∈Cn

∥∥r(ℓ)
n

∥∥
2
.

By solving the above weighted least squares problems, all residual 2-norms are minimized,
henceWn+1 = Ωn+1 is a reasonable choice. For each individual shift, the resulting algorithm
is the same as [3, Algorithm 3.2].

3.2. A choice of the weight suitable for a large number of shifts. In the previous sub-
section, we have described the WQMR approach and mentioned that the choice of the weight
WH

n+1Wn+1 with Wn+1 = In+1 leads to the shifted QMRSYM method (Algorithm1). Un-
der the assumption of Proposition2.2, the shifted QMRSYM method is ideal in the sense
of Faber-Manteuffel’s Theorem [1], since it enjoys minimal residual property and requires
short-term recurrences for updating approximate solutions, and thus one may think that there
is no need to choose other possible weights. However, we willshow in this subsection that,
even under the assumption of Proposition2.2, there is a suitable weight for the WQMR ap-
proach. The motivation for the choice of the weight mainly comes from the freedom of the
numberm of complex symmetric shifted linear systems.

Now we consider the computational costs of Algorithm1 for a large number of complex
symmetric shifted linear systems, i.e.,m ≫ 1. In this case, we readily see that computing the
recurrences for updating approximate solutions in Algorithm 1 is the most time-consuming
part, due to a cost of6Nm + 3m per iteration step. Hence, we will now consider a weight
to reduce the computational cost for the recurrences ofx

(ℓ)
n . To achieve this we propose the

following choice:

Wn+1 = L
(ℓ)
n+1, such thatL(ℓ)

n+1T
(ℓ)
n+1,n =

[
B

(ℓ)
n

0
T

]
, (3.6)

whereB
(ℓ)
n is ann × n upper bidiagonal matrix of the form

B(ℓ)
n :=




t
(ℓ)
1,1 t

(ℓ)
1,2

t
(ℓ)
2,2

. . .

. . . t
(ℓ)
n−1,n

t
(ℓ)
n,n




,

andL
(ℓ)
n+1 is lower triangular and will be specified below.

Next, we derive recurrence formulas for updating the approximate solutionsx(ℓ)
n . From
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formula (3.4), with the choiceWn+1 = L
(ℓ)
n+1 of (3.6), it follows that

y(ℓ)
n = arg min

z(ℓ)
n ∈Cn

∥∥∥g1e1 − T
(ℓ)
n+1,nz(ℓ)

n

∥∥∥
(L

(ℓ)
n+1)

HL
(ℓ)
n+1

(3.7)

= arg min
z(ℓ)

n ∈Cn

∥∥∥g1L
(ℓ)
n+1e1 − L

(ℓ)
n+1T

(ℓ)
n+1,nz(ℓ)

n

∥∥∥
2

= arg min
z(ℓ)

n ∈Cn

∥∥∥∥

[
g̃

(ℓ)
n

g̃
(ℓ)
n+1

]
−

[
B

(ℓ)
n

0
T

]
z(ℓ)

n

∥∥∥∥
2

,

[
g̃

(ℓ)
n

g̃
(ℓ)
n+1

]
:= g1L

(ℓ)
n+1e1.

From the above least squares problems, we readily see thaty
(ℓ)
n =

(
B

(ℓ)
n

)−1
g̃

(ℓ)
n . Hence, it

follows from (3.2), using(p̃1 p̃2 · · · p̃n) := Vn(B
(ℓ)
n )−1, that we have the following coupled

two-term recurrence relations:

p̃
(ℓ)
n = (vn − t

(ℓ)
n−1,np̃

(ℓ)
n−1)/t(ℓ)n,n,

x(ℓ)
n = x

(ℓ)
n−1 + g̃(ℓ)

n p̃
(ℓ)
n .

The cost per iteration is now5Nm. Substitutingp(ℓ)
i = t

(ℓ)
i,i p̃

(ℓ)
i into the above recurrences,

we have the even more efficient recurrence formulas

p(ℓ)
n = vn − (t

(ℓ)
n−1,n/t

(ℓ)
n−1,n−1)p

(ℓ)
n−1,

x(ℓ)
n = x

(ℓ)
n−1 + (g̃(ℓ)

n /t(ℓ)n,n)p(ℓ)
n .

By this reformulation, the cost becomes4Nm + 2m.
Next, let us consider a choice forL

(ℓ)
n+1 satisfying (3.6). Let F (ℓ)

n (i) be ann × n matrix
of the form

F (ℓ)
n (i) :=




Ii−1

1

f
(ℓ)
i 1

In−i−1


 , (3.8)

and letT be tridiagonal. Then, by determiningf (ℓ)
i such that the(i+1, i) entry of the matrix

F
(ℓ)
n (i) · T is zero, we can fulfill (3.6) in the following way:

F
(ℓ)
n+1(n)F

(ℓ)
n+1(n − 1) · · ·F

(ℓ)
n+1(1)T

(ℓ)
n+1,n =

[
B

(ℓ)
n

0
T

]
. (3.9)

From the above formula, we see thatF
(ℓ)
n+1(n)F

(ℓ)
n+1(n − 1) · · ·F

(ℓ)
n+1(1) = L

(ℓ)
n+1, and thus

L
(ℓ)
n+1 andL

(ℓ)
n are related by

L
(ℓ)
n+1 = F

(ℓ)
n+1(n)

[
L

(ℓ)
n 0

0
T 1

]
, for n = 2, 3, . . . , (3.10)

whereL
(ℓ)
2 = F

(ℓ)
2 (1). We readily see that the matricesL

(ℓ)
n+1 are lower triangular with

all ones on the diagonals, and this property will be used in the proof of Proposition3.1.
The shifted QMRSYM method with the weight(L(ℓ)

n+1)
HL

(ℓ)
n+1 is referred to as shifted

QMR SYM(B); see Algorithm3.
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ALGORITHM 3 (Shifted QMRSYM(B)).

x
(ℓ)
0 = p

(ℓ)
−1 = p

(ℓ)
0 = 0, v1 = b/(bT b)1/2, g̃

(ℓ)
1 = (bT b)1/2,

for n = 1, 2, . . . do:

(The complex symmetric Lanczos process)

αn = vT
nAvn,

ṽn+1 = Avn − αnvn − βn−1vn−1,

βn = (ṽT
n+1ṽn+1)

1/2,

vn+1 = ṽn+1/βn,

t
(ℓ)
n−1,n = βn−1, t(ℓ)n,n = αn + σℓ, t

(ℓ)
n+1,n = βn,

(Solve weighted least squares problems)

for ℓ = 1, 2, . . . ,m do:

if ‖r(ℓ)
n ‖2/‖b‖2 > ǫ, then

for i = max{1, n − 1}, . . . , n − 1 do:

t
(ℓ)
i+1,n = f

(ℓ)
i t

(ℓ)
i,n + t

(ℓ)
i+1,n,

end

f (ℓ)
n = −

t
(ℓ)
n+1,n

t
(ℓ)
n,n

,

t
(ℓ)
n+1,n = 0,

g̃
(ℓ)
n+1 = f (ℓ)

n g̃(ℓ)
n ,

(Update approximate solutionsx(ℓ)
n )

p(ℓ)
n = vn − (t

(ℓ)
n−1,n/t

(ℓ)
n−1,n−1)p

(ℓ)
n−1,

x(ℓ)
n = x

(ℓ)
n−1 + (g̃(ℓ)

n /t(ℓ)n,n)p(ℓ)
n ,

end if

end

if ‖r(ℓ)
n ‖2/‖b‖2 ≤ ǫ for all ℓ, then exit.

end

As in the case of Proposition2.1, there is an efficient way to evaluate the residual 2-norms
as follows.

PROPOSITION3.1. Thenth residual 2-norms of the approximate solutionsx
(ℓ)
n for the

shifted QMRSYM(B) method are given by

‖r(ℓ)
n ‖2 = |g̃

(ℓ)
n+1| · ‖vn+1‖2, for ℓ = 1, 2, . . . ,m.

Proof. The proof is similar to that of Proposition2.1. It follows from (3.3), (3.6), (3.7),
and recallingy(ℓ)

n =
(
B

(ℓ)
n

)−1
g̃

(ℓ)
n , that we have

r(ℓ)
n = g̃

(ℓ)
n+1Vn+1

(
L

(ℓ)
n+1

)−1
en+1.

From (3.8) and (3.9) L
(ℓ)
n+1 is a lower triangular matrix with all ones on the diagonals. Thus,(

L
(ℓ)
n+1

)−1
is also a lower triangular matrix with all ones on the diagonals. It follows that
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(
L

(ℓ)
n+1

)−1
en+1 = en+1, and thus we haver(ℓ)

n = g̃
(ℓ)
n+1Vn+1en+1 = g̃

(ℓ)
n+1vn+1, which

concludes the proof.
When we solve a large number of shifted systems, the computational cost of the residual

2-norms for the shifted QMRSYM(B) method is much cheaper than that for the shifted
QMR SYM method, since the former cost is of orderN and the latter is of orderNm per
iteration step.

Observing the algorithms of the shifted QMRSYM and the shifted QMRSYM(B)
methods, we see that the work for the weighted least squares problems and for updating
the approximate solutions in the shifted QMRSYM(B) method is less than that in the shifted
QMR SYM method. For the casem ≫ 1, the most time-consuming part is updating the
approximate solutions. In this case, the shifted QMRSYM(B) method may be more effi-
cient than the shifted QMRSYM method, since the shifted QMRSYM(B) method requires
4Nm+2m operations per iteration step for the update, while the shifted QMRSYM method
needs6Nm + 3m operations. This difference will be clearer when we will usethe results
of Propositions2.1 and3.1 as a stopping criterion. On the other hand, in terms of number
of iterations, the convergence of the shifted QMRSYM(B) method is worse than that of the
shifted QMRSYM method, but not worse than that of the shifted COCG method, as stated
in the following proposition.

PROPOSITION3.2. Under the assumption of Proposition2.2, the shifted QMRSYM(B)
method (Algorithm3) enjoys the following properties:

(I) all matrix-vector multiplications can be done in real arithmetic;
(II) if breakdown does not occur and each matrixTn + σℓInis nonsingular, then

∥∥r(ℓ),SQ(B)
n

∥∥
2
=

∥∥r(ℓ),SCOCG
n

∥∥
2
≥

∥∥r(ℓ),SQ
n

∥∥
2
, for ℓ = 1, 2, . . . m,

where the superscripts SQ(B), SCOCG, and SQ are short for shifted QMRSYM(B),
shifted COCG, and shifted QMRSYM, respectively;

(III) ‖r
(ℓ),SQ(B)
n ‖2 = |g̃

(ℓ)
n+1|, for ℓ = 1, 2, . . . ,m, n ≥ 0.

Proof. The proof of (I) is the same as that of Proposition2.2, and is based on the fact
that, under the assumption of the theorem, the complex symmetric Lanczos process generates
real basis vectors.

Next, we give a proof of (II). Thenth residuals of the shifted COCG method [15] belong
to b − (A + σℓI)Kn(A + σℓI, b). Hence, eachr(ℓ),SCOCG

n can be written as

r(ℓ),SCOCG
n = b − (A + σℓI)Vny(ℓ),SCOCG

n ,

whereVn is the same matrix as in (3.1). Since eachr(ℓ),SCOCG
n is orthogonal to each subspace

Kn(A + σℓI, b) = Kn(A, b), i.e.,r(ℓ),SCOCG
n ⊥ Kn(A, b), we have

V T
n b − V T

n (A + σℓI)Vny(ℓ),SCOCG= 0,

and thus from (3.1) it follows that

y(ℓ),SCOCG
n = (V T

n (A + σℓI)Vn)−1V T
n b = g1(T

(ℓ)
n )−1e1,

whereT
(ℓ)
n := Tn + σℓIn. Since the shifted QMRSYM(B) method has the form (3.3), it is

sufficient to show thaty(ℓ),SCOCG
n = y

(ℓ),SQ(B)
n . From (3.7) and (3.10) it follows that

y(ℓ),SQ(B)
n = (B(ℓ)

n )−1g̃
(ℓ)
n = g1(B

(ℓ)
n )−1[In|0]L

(ℓ)
n+1[e

T
1 |0]T

= g1(B
(ℓ)
n )−1L(ℓ)

n e1 = g1((L
(ℓ)
n )−1B(ℓ)

n )−1e1.
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Since from (3.9) and (3.10) we can readily confirm the relationL(ℓ)
n T

(ℓ)
n = B

(ℓ)
n , we have

y
(ℓ),SQ(B)
n = g1(T

(ℓ)
n )−1e1, which is the same asy(ℓ),SCOCG

n . The inequality in (II) follows
from Proposition2.2, since under the given assumption the shifted QMRSYM method enjoys
the minimal residual property.

Finally, we give a proof of (III). If follows from the proof of (I) that‖vi‖2 = 1 for all i.
Thus from Proposition3.1we have

‖r(ℓ),SQ(B)
n ‖2 = |g̃

(ℓ)
n+1| · ‖vn+1‖2 = |g̃

(ℓ)
n+1|, for ℓ = 1, 2, . . . ,m, n ≥ 0.

We observe that, in property (II) of Proposition3.2, breakdown may occur due to the
choice (3.8) of the weighted least squares problems.

From Proposition3.2 we see that, in terms of the number of iteration steps, the shifted
QMR SYM(B) method never converges faster than the shifted QMRSYM method, but it
converges at the same iteration step as the shifted COCG method does. Since the efficiency of
the shifted COCG method has already been shown, and the computational cost of the shifted
QMR SYM(B) method for the casem ≫ 1 is much less than that of the shifted QMRSYM
method, the shifted QMRSYM(B) method can also be useful. This is supported by some
numerical examples in the next section.

4. Numerical examples. In this section, we report on some numerical examples con-
cerning the shifted COCG method, the shifted QMRSYM method (Algorithm1), and the
shifted QMRSYM(B) method (Algorithm3). We evaluate these methods in terms of com-
putation time. All tests were performed on a workstation with a 2.6GHz AMD Opteron(tm)
processor 252 using double precision arithmetic. Codes were written in Fortran 77 and com-
piled with g77 -O3. In all cases the stopping criterion was set asǫ = 10−12.

4.1. Example 1. The first problem comes from the electronic structure computation of
a bulk Si with 512 atoms (see [15]) which is written as follows:

(σℓI − H)x(ℓ) = e1, ℓ = 1, 2, . . . ,m,

whereσℓ = 0.400+(ℓ−1+i)/1000, H ∈ R2048×2048 is a symmetric matrix with 139264 en-
tries, e1 = (1, 0, . . . , 0)T , andm = 1001. Since the shifted COCG method requires the
choice of a seed system, we have chosen the optimal seed (ℓ = 714) in this problem; other-
wise some linear systems would remain unsolved.

Figure4.1shows the number of iterations of each method to solve theℓth shifted linear
systems. For example, in Figure4.1, the number of iterations for the shifted COCG method
at ℓ = 600 is 150, which means the shifted COCG method required 150 iterations to obtain
the (approximate) solutions of the 600th shifted linear system, i.e.,(σ600I −H)x(600) = e1.

From Figure4.1 we make three observations: first, the three methods required almost
the same number of iterations at eachℓ; second, in terms of number of iterations, the shifted
QMR SYM method often converged slightly faster than the other two methods. This phe-
nomenon is closely related to Proposition2.2, as it will become clearer later; third, for each
method the required number of iterations depends highly on the shift parametersσℓ. This
result may come from the shifted eigenvalues of the coefficient matricesσℓI − H, since if
we chooseσℓ close to an eigenvalue ofH, thenσℓI − H is close to singular. Conversely,
from the shape of the graphs in Figure4.1one may obtain a partial distribution of eigenvalues
of H.

The history of the residual 2-norm for a particular shifted system is reported in Figure4.2.
From it we see that the relative residual 2-norm of the shifted QMR SYM method decreases
monotonically, and at every iteration step the norm is less than those of the other two methods.
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FIGURE 4.1.Number of iterations for the shifted COCG method, the shifted QMRSYM method, and the shifted
QMR SYM(B) method versus the index of the shifted linear systems.
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FIGURE 4.2. Log10 of the relative residual 2-norms versus the number of iterations of the shifted COCG
method, the shifted QMRSYM method, and the shifted QMRSYM(B) method for the shifted linear system with
ℓ = 701, i.e., σ701 = 1.100 + 0.001i.

Hence, we can say that the property(II) of Proposition2.2 is experimentally supported. We
also observe that, during the first fifty iterations, the shifted COCG method and the shifted
QMR SYM(B) method behave exactly in the same way. After that, their histories varies
gradually. Hence, also the property(II) of Proposition3.2 is experimentally supported.

The computation times of the three methods are given in Figure 4.3, where the
horizontal axis denotes the numberm of shifted linear systems that are solved. For ex-
ample, in Figure4.3, the computation time of the shifted COCG method atm = 200 is
about 0.76 sec., which means that it requires about 0.76 sec.to solve the shifted linear
systems:((0.400 + 0.001i)I − H)x(1) = e1, ((0.401 + 0.001i)I − H)x(2) = e1, . . . ,
((0.599 + 0.001i)I − H)x(200) = e1. From Figure4.3we see that, as the numberm grows
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FIGURE 4.4. The ratio between each computation time and the one of the shifted COCG method, versus the
number of shifted linear systems.

larger, the shifted QMRSYM method requires more CPU time than the other two methods.
On the other hand, the shifted QMRSYM(B) method requires almost the same CPU time as
the shifted COCG method. This phenomena can be attributed tothe computational costs of
updating the approximate solutions for each method and, in particular, to the following three
facts: first, we know from Figure4.1 that the three methods require almost the same number
of iterations; second, the shifted QMRSYM(B) method has almost the same computational
cost than the shifted COCG method, while the shifted QMRSYM method tends to require
a larger cost per iteration than the other two methods; third, for largem, updating the approx-
imate solutions is one of the most time-consuming parts. In the previous two sections, we
already discussed the latter two facts.

In Figure 4.3 we can see little about the properties of the three methods for small ℓ.
We therefore display in Figure4.4 the ratio between each computation time and the timing
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of the shifted COCG method. We see that the shifted QMRSYM method and the shifted
QMR SYM(B) method converge much faster than the shifted COCG method when the num-
ber of shifted linear systems is small, say,m < 200. A possible explanation is that, for
smallm, updating the approximate solutions does not affect the CPUtime so much. Other
operations, such as matrix-vector multiplications, are now the most time-consuming parts,
since the three methods require almost the same number of iterations; see Figure4.1. From
Proposition2.2(I) and Proposition3.2(I) we know that in this case the shifted QMRSYM
method and the shifted QMRSYM(B) method require only real matrix-real vector multipli-
cations. On the other hand, the shifted COCG method requiresreal matrix-complex vector
multiplications. Moreover, dot products and vector additions of the complex symmetric Lanc-
zos process used in the shifted QMRSYM method and the shifted QMRSYM(B) method
can be done in real arithmetic. Hence, the two methods converge much faster than the shifted
COCG method.

4.2. Example 2. The second problem comes from the electronic structure computation
of bulk fcc Cu with 1568 atoms (see [15]):

(σℓI − H)x(ℓ) = e1, ℓ = 1, 2, . . . ,m,

whereσℓ = −0.5 + (ℓ − 1 + i)/1000, H ∈ R14112×14112 is a symmetric matrix with
3924704 entries,e1 = (1, 0, . . . , 0)T , andm = 1501.
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FIGURE 4.5. CPU time, in seconds, versus the number of shifted linear systems for each iterative method.

The computation times of the three methods for solving them shifted linear systems is
shown in Figure4.5. The ratio between each computation time and the timing of the shifted
COCG method is shown in Figure4.6. From these figures we see that, even if the size of this
matrix is about 7 times larger than before, the three methodsbehave similarly to the previous
example.

5. Concluding remarks. In this paper, the shifted QMRSYM method was described
as a specialization of the QMR method for general non-Hermitian shifted linear systems [4].
The advantage of the method, with respect to the shifted COCGmethod, is that there is no
need to choose a suitable seed system. On the other hand, we have found that, for a large
number of shifted linear systems, the most time-consuming part of the shifted QMRSYM
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FIGURE 4.6. The ratio between each computation time and the one of the shifted COCG method, versus the
number of shifted linear systems.

method is updating the approximate solutions, and this costis higher than that of the shifted
COCG method. We therefore have proposed the weighted quasi-minimal residual approach,
with a weight particularly suited to reduce the computational cost for updating the approxi-
mate solutions. Also the resulting method, shifted QMRSYM(B), does not require to choose
a suitable seed system, which is an advantage over the shifted COCG method. From numeri-
cal experiments we have learned that shifted QMRSYM and QMRSYM(B) are competitive
in comparison to the shifted COCG method. In particular, QMRSYM(B) can be the method
of choice for solving complex symmetric shifted linear systems with a large number of shifts,
that arise from large-scale electronic structure theory. In future work, numerical tests for gen-
eral complex symmetric shifted linear systems will be done to investigate the performance of
the method.
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