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ON A WEIGHTED QUASI-RESIDUAL MINIMIZATION STRATEGY
FOR SOLVING COMPLEX SYMMETRIC SHIFTED LINEAR SYSTEMS *

T. SOGABE, T. HOSHF, S.-L. ZHANG! AND T. FUJIWARAS

Abstract. We consider the solution of complex symmetric shifted lineateays. Such systems arise in large-
scale electronic structure simulations, and there is agtneed of algorithms for their fast solution. With the aim
of solving the systems efficiently, we consider a special cisbe QMR method for non-Hermitian shifted linear
systems and propose its weighted quasi-minimal residual approA numerical algorithm, referred to as shifted
QMR_SYM(B), is obtained by the choice of a weight which is particuladgt-effective. Numerical examples are
presented to show the performance of the shifted QBMM(B) method.

Key words. Complex symmetric matrices, shifted linear systems, Krylov m#gh6€OCG, QMRSYM.

AMS subject classifications.65F10.

1. Introduction. In this paper we consider the solution of complex symmetritted
linear systems of the form

(A+o DNz =b, £=1,2,...,m, (1.1)

whereA(oy) := A + 0,1 are nonsingulalV x N complex symmetric sparse matrices, i.e.,
A(oy) = A(ay)T # A(oy)T, with scalar shiftsr, € C, I isthe N x N identity matrix, and
x(®) | b are complex vectors of lengfii. Such systems arise in large-scale electronic structure
simulations 5], and there is a strong need of algorithms for their fasttsmiu

Since the coefficient matrices of the given shifted lineatems {.1) are sparse, it is nat-
ural to use Krylov subspace methods, and moreover since#iéaient matrices are complex
symmetric, one of the simplest ways to solve the shiftedilirsgstems consists of employing
(preconditioned) Krylov subspace methods for solving clexgymmetric linear systems,
such as the COCG methoild], the COCR method1[3], and the QMRSYM method B], to
all the shifted linear systemd.(l). On the other hand, denoting thedimensional Krylov
subspace with respect tbandb asK,, (A, b) := spar{b, Ab, ..., A"~'b}, we observe that

This implies that once the basis vectors are generated ®obthe Krylov subspaces
K, (A(o¢),b), these basis vectors can be used to solve all the shiftedrlgyestems. In
other words, there is no need to generate all Krylov subspaGggA(oy), b), and thus the
computational cost required by the basis generation, matrix-vector multiplications, is
reduced. Here we give a concrete example: if we apply theugatg orthogonal conjugate
gradient (COCG) method to all the linear systerhsly, then bases fof,,(A(c¢),b) are
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generated fof = 1,2, ..., m. On the other hand, if we apply the COCG method to just one
of the shifted linear system4 () (referred to as theseed system”), then the Krylov basis
vectors are generated from the seed system and these va®arsed to solve the rest of the
shifted linear systems.

Based on the observatiof.p), the shifted COCG method p] has been recently pro-
posed for solving complex symmetric shifted linear systefie feature of the shifted COCG
method is that the method performs COCG on a seed system aqabntgossible to com-
plete COCG for all shifted linear systems without furthertmxavector multiplications. The
feature is completely different from some of the other vkelbwn shifted linear solvers such
as the shifted BiCGStabmethod ], or the restarted shifted GMRES metha@, [since they
perform BiCGStal) (or GMRES) on a seed system, but they apply a different naetio
the shifted linear systems, in order to keep the residudlisear. The feature of the shifted
COCG method plays a very important role in the seed switctengnique 4], that avoids
a minor problem of the shifted COCG method: one requires Huéce of a seed system,
and an unsuitable choice may lead to the undesirable résulsome shifted linear systems
remain unsolved.

There is another approach to solving the shifted linearesyst(.1), which consists of
the use of Krylov subspace methods for non-Hermitian shifiigear systems, such as the
shifted BiCGStalf{) method f], the shifted (TF)QMR method], the restarted shifted FOM
method [LO], and the restarted shifted GMRES methali gee also, e.g.1[1]. We readily
see that the relatiorl(2) holds not only for complex symmetric matrices, but alsorfon-
Hermitian matrices, and these methods are based on the tisis shift-invariant relation.
Therefore, this can be a good approach. However, since theteods do not exploit the
property of complex symmetric matrices, their computatlorost can be more expensive
than that of the shifted COCG method.

In this paper we consider the shifted QMM method, that is a special case of the
QMR method for non-Hermitian shifted linear system} pnd discuss the most time con-
suming part of it for a large number of shifted linear systeffilsen, in order to reduce the
cost, we propose a weighted quasi-minimal residual (WQMRy@gch and propose a spe-
cific weight. We experimentally show the practical efficigraf the resulting algorithm,
referred to as shifted QMIYM(B), when the number of shifted linear systems is large
enough.

The present paper is organized as follows: in the next sgctibifted QMRSYM is
described in order to specify the most time consuming pad farge number of shifted linear
systems. In SectioBl, we propose a WQMR approach with a specific weight for reducing
the cost of the most time consuming part. The resulting &lyor shifted QMRSYM(B),
and its properties are given. In Sectiyrsome results of numerical examples from electronic
structure simulations are shown to ascertain the perfocmaithe shifted QMESYM(B)
method. Finally, some concluding remarks are made in Sebtio

Throughout this paper, unless otherwise stated, all ve@nd matrices are assumed to

be complex M, MT, MH = M’ denote the complex conjugate, transpose, and Hermitian
transpose matrices of the matriX, respectively, andlv||y, denotes théV -norm written as
(v Ww)'/2, whereW is Hermitian positive definite.

2. The QMR_SYM method for solving complex symmetric shifted linear sytems.
In this section, the shifted QMIYM method and its properties for solving complex sym-
metric shifted linear systems are introduced.

The QMR method for shifted linear systems was first formulate [4] for the case
of a general non-Hermitian matrix. Therefore, by simplifyithe non-Hermitian Lanczos
process 9], as it is known from other papers, such &s 16|, a shifted simplified QMR



ETNA
Kent State University
http://etna.math.kent.edu

128 T. SOGABE, T. HOSHI, S.-L. ZHANG, AND T. FUJIWARA
ALGORITHM 1 (Shifted QMRSYM).

g =pl) = p’ =0, vi = b/("0)"/2, g{ = (b"B)"/2,
forn_ 1,2,... do:

(The complex symmetric Lanczos process)

oy, = vz;Afvn,

Vpt1 = Avy, — apvy — Br_1Vn_1,

Bn = (57{+1%n+1)1/27
Unt1 = 6n-‘rl/ﬂna
’Ez 1n = = Bn-1, 'Ef)n = Qp + 0y, tgﬁ-l,n = Bn,
(Solve least squares problems by Givens rotations)
for £=1,2,...,mdo:

if |](f ||2/||b||2 > ¢, then

for i = max{l,n —2},...,n —1do:
23(4) (f) (1’) t(f)
t(f) - 7(5) (4) (4) ’
i+1,n H‘l n
end
[
C(Z) B ‘t( )
no ) ’
VIS 160, 2
+0
50 — ntln (0
[
tn = ch> 0, + st s
[
'Eh)tl,n = 07

4 ¢ 4
gé) — cs’l (2) |:gn):|
i

(Update approximate solutionéf)

4 4
pgzi) (tsz)Q rb/tn 2,n— 2)p’El)2 ( n— 1n/tn 1,n— 1)p’EL)1’
4
zlf) = m< L (00,
end if
end

if [[9]12/||b]l2 < € for all ¢, then exit.
end

method (shifted QMRSYM) is readily obtained for the case of a complex symmetrétrix;
see Algorithml. Algorithm 1 can be regarded as a natural combination of the results given
in[3, 4].

In order to know that the numerical solution is accurate ghpane may need to compute
the residual 2-norms. In that case, the following compatathay be useful.
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PrRoPOSITION2.1 ([5]). The 2-norms of thath residuals of the approximate solutions
z'? of the shifted QMESYM method are given by

lrOlz = lg4 )| - w2 ]2, fore=1,2,....m,
wherewgﬁl = —sgf)wgf) + C'Ef)anrl, andwge) = v;.

Propositior2.1is a result known to hold for the QMR methdg] [ Therefore, it also holds
for the above specialized variant. The rest of this sectestdbes some special properties of
the shifted QMRSYM method.

PROPOSITION2.2 ([2]). Let A € RV*¥ be real symmetricg, € C be complex shifts,
andb € R". Then the shifted QMBYM method (Algorithrh) enjoys the following proper-
ties:

(I) all matrix-vector multiplications can be done in realitmmetic;

() an approximate solution at theth iteration step has minimal residual 2-norms for
each/, i.e., the vectors’s are generated in order to minimiz‘biﬁf)ng over all
mg) S Kn(Av b)v

)y (e e =g, ], for e =1,2,...,m,n > 0.

The above properties are known, since they have been provezth individual shift;
see P] for details. These results may be very useful for largdesekectronic structure simu-
lations [L5] and a projection approach for eigenvalue probleir, [since there are complex
symmetric shifted linear systems to be solved efficientlgarthe assumption of Proposi-
tion 2.2

3. An iterative method for solving complex symmetric shifta linear systems. In
this section we consider complex symmetric shifted lingatesns with a large number of
shifts. For such systems, say>> 1, the most time consuming part of Algorithbtonsists of
generating approximate solutions, since the cost for thi@rences i§ Nm-+3m per iteration
step. In this section we propose a weighted quasi-mininsdival approach with a specific
weight: in Subsectio3.1 we discuss the details of the approach, and in Subse8tibwe
propose a specific weight to achieve the reduction of the cost

3.1. A weighted quasi-minimal residual approach.Before we formulate a Weighted
Quasi-Minimal Residual (WQMR) approach, let us recall in éithm 2 the complex sym-
metric Lanczos process; see, e.g., Algorithm 2.13]n [

ALGORITHM 2 (The complex symmetric Lanczos process).

Bo=0,v9=0, rg#0ecCV,
vy = 7o/ (rgro)*/?,
form=1,2,...,m—1do:
a, = v,TLA'vn,
Vpy1 = Avy — vy, — Bn1Vn—1,
Bn = (6Z+15n+1)1/27
Vpt1 = Unt1/Bn.
end

The matrix form of Algorithm?2 can be formulated as follows. L&t ; ,, andT;, be the
(n+ 1) x n andn x n tridiagonal matrices whose entries are the recurrencdiciests of
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the complex symmetric Lanczos process, which are given by

o b ay B
B
B az :
Thyin = . . 3 , T, = ,
. . 1 . .
E o P
ﬁnfl Qp ﬁ 1 ;
Bn " "

and letV,, be theN x n matrix with the Lanczos vectors as columns, i.e.,
Vi = (v1,v2,...,0y,).
Then, it follows from Algorithm?2 that
AV = Vo1 Toi1m = VT + Bovnyiel, (3.1)

wheree,, = (0,0,...,1)T € R".
Now we are ready to describe the WQMR approach.atﬁé)t be approximate solutions
at thenth iteration step for the systems.{), which are given by

2 =V, (=12 m, (3.2)
whereygf) € C™. Then, from the definition of residual vectmg) =b— (A+0gf)ac£f), the

update formulas3.2), and the matrix form of the complex symmetric Lanczos pssde. 1),
we readily obtain

I,
rgf) = Vit1 (9161 — Tffgl’nyg)), whereTffﬁLn =Tht1n + 00 {OT] . (3.3

Here,e;=(1,0,...,0)7 is the first unit vector, ang; = (b b)'/2. It is natural to deter-
mine ) such that all residual 2—norrﬂb~§f’|\2 are minimized. However, this choice for

ySf) is unfeasible due to large computational costs. Hence,ehmnsy,(f) are determined
by an alternative approach, i.e., by solving the followingjghted least squares problems:

. 4
yl)) = arg min gre; — T a2

Z,f)E(C” ’W7{{+1Wn+l

) (3.4)

whereW,, ;. is an(n + 1) x (n + 1) nonsingular matrix. ThusV;2 W, ;. can be used as
a weight since it is Hermitian positive definite. One of th@glest choices folV,, 1, is the
identity matrix. In this case, fro,,,1 = I,,4+1 we have

grer =T, 20

(0 — i
Y, = arg miun n+1n~n

Zﬁf)EC"

\2. (3.5)

The vector that is minimized is called quasi-residual. Aiton 1 is obtained by solving3.5)
using Givens rotations; see, e.@, p. 215].
A slightly generalized choice, proposed bj,[is

WnJrl = Qn+1 = diag(wl,w% e ,wn+1),

with w; > 0 for all 7. Then, it follows that

. ¢
y%) =arg mm |wigiey — Qn+1T7(l+)1,nzg)

Z%) cCn

’2'
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Among the various possible choices foy, a natural one isy; = ||v;||2, since therf),,
contains the diagonal entries of the upper triangular mari,,, which corresponds to the
QR factorization ofV,,; 1. If we chooseW,, .1 = R, 11, WhereV,, 11 = Q11 R,+1, then
from (3.3) and 3.4) we have

; () ‘
min - |igie; — Tn_H’nsz) .
Z,EL)E(C" Rn+1Rn+1
: ) ‘
- I}lln gan+1€1 - Rn-‘rlTn_t,_l_’nng)
Z%)GC" 2
: () [
= 1min Qn+1Rn+1 (g161 — Tn+1,nz£l))
zPecn 2
; () [ ; ¢
= o Vata (9161 - Tn+1,nzgi)) = _m |‘T£L)H2'
zPecn 2 zPecn

By solving the above weighted least squares problems, gilual 2-norms are minimized,
hencelV,,.1 = Q,41 isareasonable choice. For each individual shift, the tiegsuhlgorithm
is the same as3[ Algorithm 3.2].

3.2. A choice of the weight suitable for a large number of shi§. In the previous sub-
section, we have described the WQMR approach and mentioatththchoice of the weight
W$1Wn+1 with W, 1 = I,,11 leads to the shifted QMSYM method (Algorithml). Un-
der the assumption of Propositi@2, the shifted QMRSYM method is ideal in the sense
of Faber-Manteuffel's Theorend], since it enjoys minimal residual property and requires
short-term recurrences for updating approximate solsatiand thus one may think that there
is no need to choose other possible weights. However, weshallv in this subsection that,
even under the assumption of Propositib8, there is a suitable weight for the WQMR ap-
proach. The motivation for the choice of the weight mainlynes from the freedom of the
numberm of complex symmetric shifted linear systems.

Now we consider the computational costs of Algorithror a large number of complex
symmetric shifted linear systems, i.e:,>> 1. In this case, we readily see that computing the
recurrences for updating approximate solutions in Al¢onitl is the most time-consuming
part, due to a cost dfNm + 3m per iteration step. Hence, we will now consider a weight
to reduce the computational cost for the recurrences,0f To achieve this we propose the
following choice:

n+1 (36)

(6)
W1 =LY, suchthat.") Tf,QLn = [%} ] .

whereB'" is ann x n upper bidiagonal matrix of the form

Br(f) =

andeQ1 is lower triangular and will be specified below.
Next, we derive recurrence formulas for updating the apprate solutionSch). From
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formula (3.4), with the choicelV,,,; = L"), of (3.6), it follows that

0 — ; _7® () ‘ 3.7
Y, arg zg?()ueréjn giéx n+1,nzn (L.Efll)HLEfll ( )
= arg min glLfﬁ_lel — Lgﬁ_lelQan%)
z{Pecn '
=(0) (€) =(0)
=arg min N — z N =q1L, €.
2z ecn [97(3-1 [ g 2 7(121 i

From the above least squares problems, we readily segiﬁat: (Bff))_lgﬁf). Hence, it
follows from (3.2), using(p; Py - - P,,) := Vn(B,(f))—l, that we have the following coupled
two-term recurrence relations:

(¢ DI~
P;) = (v, — t’ELll,np;ll)/tSf’)n’

) =), + B,

The cost per iteration is no&N m. Substitutingpy) = tgfi)ﬁgé) into the above recurrences,
we have the even more efficient recurrence formulas

14 14 4
pg) =Un — (tnll,n/t%zl,nfl)pizl’
2 =a ) + G0 0P

By this reformulation, the cost becoméd m + 2m.

Next, let us consider a choice f(b}fﬁl satisfying B8.6). Let £ (1) be ann x n matrix
of the form

I;
FO@G) = (3.8)
In—i—l
and letT be tridiagonal. Then, by determinirftj@ such that the€i + 1, 7) entry of the matrix
F,(f)(z') - T is zero, we can fulfill 8.6) in the following way:

[ 0 0 0 B,(f)
@ -1 R, = | 5] 3.9

From the above formula, we see t Ql(n)Ffﬁl(n 1) Ffﬁl(l) = Lff}rl, and thus
Lﬁf}rl andZ! are related by

LY o
Lffllegﬁl(n){oT L forn=23.. (3.10)

WhereLél) = FQ(Z)(l). We readily see that the matricééf}rl are lower triangular with
all ones on the diagonals, and this property will be used engtoof of Propositior3.1
The shifted QMRSYM method with the weigh(Lffﬂ)rl)HL;Q1 is referred to as shifted
QMR_SYM(B); see Algorithm3.
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ALGORITHM 3 (Shifted QMRSYM(B)).

¢ ¢ ¢ ~(¢
zp) =p) =py) =0, vi = b/(6b)"/?, G = ("),
forn=1,2,... do:

(The complex symmetric Lanczos process)

a, = ’UZ;A’U,L,

5n+1 = A'Un — 0pUp — ﬂn—l'vn—lv

671 = (ag+15n+1)1/27

Unp+1 = 6n+1/ﬂn7

¢

tEL) 1n — =0Bn-1, t g)n =ap + oy, tEL-’rl n = Bn,
(Solve weighted least squares problems)
for¢=1,2,...,mdo:

it |75 /|\b||2 > ¢, then

fOI’szaX{l n—l},...,n—ldo:
end
0 _ i,
f i %é?ni b
¢
t’ELJ)rl n 0
~(£
g'EL)l = f(Z)ggz 9

(Update approximate solutioméf))

pg):vn_(n ln/tn 1,n— 1)p’I(’L)17

2 =)+ G0 /0L,
end if
end
if ||()]|2/[|b]|2 < € for all ¢, then exit.
end

As in the case of Propositidh 1, there is an efficient way to evaluate the residual 2-norms
as follows.
PROPOSITION3.1. Thenth residual 2-norms of the approximate solutiaeig) for the
shifted QMRSYM(B) method are given by
Il = G0l - lonsalla, fore=1,2,....m

Proof. The proof is similar to that of Propositichl. It follows from (3.3), (3.6), (3.7),
and recallingy!’ = (B,(f)f g\¥, that we have

4 —1
(f) — g(() Vn+1(Lgi1) €nii.

From (3.8) and 3.9 LnJrl is a lower triangular matrix with all ones on the diagonalbug;,
(Lﬁf}rl)_ is also a lower triangular matrix with all ones on the diagsnadt follows that
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(¢ (¢ .
= 3 Vas1eni1 = G vn 1, which

(Liﬁl)‘lem = e,41, and thus we have'!
concludes the proofl

When we solve a large number of shifted systems, the compuo#ttost of the residual
2-norms for the shifted QMESYM(B) method is much cheaper than that for the shifted
QMR_SYM method, since the former cost is of ord¥rand the latter is of ordeNm per
iteration step.

Observing the algorithms of the shifted QM&RYM and the shifted QMESYM(B)
methods, we see that the work for the weighted least squaoddems and for updating
the approximate solutions in the shifted QMIYM(B) method is less than that in the shifted
QMR_SYM method. For the casex > 1, the most time-consuming part is updating the
approximate solutions. In this case, the shifted QBRM(B) method may be more effi-
cient than the shifted QMESYM method, since the shifted QMBYM(B) method requires
4Nm+ 2m operations per iteration step for the update, while theethiQMR SYM method
needss Nm + 3m operations. This difference will be clearer when we will tise results
of Propositions2.1 and 3.1 as a stopping criterion. On the other hand, in terms of number
of iterations, the convergence of the shifted QMRM(B) method is worse than that of the
shifted QMR SYM method, but not worse than that of the shifted COCG methsdstated
in the following proposition.

PrROPOSITION3.2. Under the assumption of Propositi@?2, the shifted QMESYM(B)
method (Algorithn8) enjoys the following properties:

(1) all matrix-vector multiplications can be done in realitmmetic;
(I if breakdown does not occur and each matfix + o, 1,,is nonsingular, then

R R I e R

where the superscripts SBJ, SCOCG, and SQ are short for shifted QMR M(B),
shifted COCG, and shifted QMBYM, respectively;
y (e, = 169, | fore=1,2,...,m,n > 0.
Proof. The proof of () is the same as that of Propositidr?, and is based on the fact
that, under the assumption of the theorem, the complex syrith@nczos process generates
real basis vectors.

Next, we give a proof ofIl). Thenth residuals of the shifted COCG methdd] belong

tob— (A+ o¢I)K,(A+ o.1,b). Hence, each'/)5°°“®can be written as

rgfLSCOCG: b (A+ agI)Vnyif)’SCOCG,

whereV/, is the same matrix as ir3(1). Since eaclfrﬁf)’scoceis orthogonal to each subspace
(£),SCOCG

K,(A+5.0,b) = K,(A,b),ie.,ry, 1 K,(A,b), we have
VIb — VI(A + 0,0)V,y9-SCOCC= g,
and thus fromg.1) it follows that
Y5O = (VT (A + 0e1)V,) " VTb = g1 (T) ey,

whereT,(L@ =T, + o¢I,. Since the shifted QMESYM(B) method has the fornB(3), it is

sufficient to show thayﬁf)’scocez ygf)’SQ(B). From 3.7) and 3.10 it follows that

_1~(2 _ Y4
yOSRB— (BO)~1g") — g (B [1,|0]LY), [T [0)"
= g1 (BY) ' LWey = g (L) BO) ey
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Since from 8.9) and 3.10 we can readily confirm the relationl’ 7" = B, we have
y,Sf)’SQ(B) =g (T,(f))—lel, which is the same aygf)’SCOCG. The inequality in {I) follows
from Propositior?.2, since under the given assumption the shifted QBN method enjoys
the minimal residual property.

Finally, we give a proof of {I7). If follows from the proof of () that ||v;||» = 1 for all i.

Thus from Propositio3.1we have
~(0 ~(¢
IrOS9B) y = G - onsalle = [Gh2], fore=1,2,...,m, n>0. 0O

We observe that, in propertyl() of Proposition3.2, breakdown may occur due to the
choice B.8) of the weighted least squares problems.

From Propositior8.2 we see that, in terms of the number of iteration steps, theeshi
QMR_SYM(B) method never converges faster than the shifted Q8MM method, but it
converges at the same iteration step as the shifted COCGdetes. Since the efficiency of
the shifted COCG method has already been shown, and the tatiopal cost of the shifted
QMR_SYM(B) method for the case: >> 1 is much less than that of the shifted QM&Y M
method, the shifted QMESYM(B) method can also be useful. This is supported by some
numerical examples in the next section.

4. Numerical examples.In this section, we report on some numerical examples con-
cerning the shifted COCG method, the shifted QI8RM method (Algorithm1l), and the
shifted QMRSYM(B) method (Algorithm3). We evaluate these methods in terms of com-
putation time. All tests were performed on a workstatiorhveit2.6GHz AMD Opteron(tm)
processor 252 using double precision arithmetic. Codes wetten in Fortran 77 and com-
piled with g77 ©3. In all cases the stopping criterion was set as10~'2.

4.1. Example 1. The first problem comes from the electronic structure comtpurt of
a bulk Si with 512 atoms (se&f]) which is written as follows:

(UgI*H).’B(é) =e, (=1,2,...,m,

wheres, = 0.400+ (¢—141i)/1000, H € R?048x2048 j5 3 symmetric matrix with 139264 en-
tries,e; = (1,0,...,0)7, andm = 1001. Since the shifted COCG method requires the
choice of a seed system, we have chosen the optimal $éeed’(4) in this problem; other-
wise some linear systems would remain unsolved.

Figure4.1shows the number of iterations of each method to solvétthshifted linear
systems. For example, in Figudel, the number of iterations for the shifted COCG method
at/ = 600 is 150, which means the shifted COCG method required 15&titers to obtain
the (approximate) solutions of the 600th shifted lineateysi.e. (o600l — H)2(%?) = e;.

From Figure4.1 we make three observations: first, the three methods rebalreost
the same number of iterations at edg¢lsecond, in terms of number of iterations, the shifted
QMR_SYM method often converged slightly faster than the other tmethods. This phe-
nomenon is closely related to Propositidr2, as it will become clearer later; third, for each
method the required number of iterations depends highlyhershift parameters,. This
result may come from the shifted eigenvalues of the coeffiaieatriceso,I — H, since if
we chooser, close to an eigenvalue df, theno,I — H is close to singular. Conversely,
from the shape of the graphs in Figyrd one may obtain a partial distribution of eigenvalues
of H.

The history of the residual 2-norm for a particular shiftgstem is reported in Figure 2
From it we see that the relative residual 2-norm of the sthi@MR_SYM method decreases
monotonically, and at every iteration step the norm is lean those of the other two methods.
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FIGURE4.1. Number of iterations for the shifted COCG method, the shiiMR SYM method, and the shifted
QMR.SYM@B) method versus the index of the shifted linear systems.
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FIGURE 4.2. Log of the relative residual 2-norms versus the number of iteret of the shifted COCG
method, the shifted QMRYM method, and the shifted QMIYM(B) method for the shifted linear system with
£ ="701,i.e.,0701 = 1.100 + 0.001.

Hence, we can say that the propefly) of Proposition2.2 is experimentally supported. We
also observe that, during the first fifty iterations, the t&lifCOCG method and the shifted
QMR_SYM(B) method behave exactly in the same way. After that, theilohis varies
gradually. Hence, also the prope(t§f) of Proposition3.2is experimentally supported.

The computation times of the three methods are given in Eigu8 where the
horizontal axis denotes the number of shifted linear systems that are solved. For ex-
ample, in Figure4.3, the computation time of the shifted COCG methodhat= 200 is
about 0.76 sec., which means that it requires about 0.76tsesnlve the shifted linear
systems: ((0.400 + 0.001i)I — H)z™ = ey, ((0.401 + 0.0014)] — H)x? = ey, ...,
((0.599 + 0.0014) I — H)x(?°%) = e,. From Figure4.3we see that, as the numbergrows
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FIGURE 4.3.CPU time, in seconds, versus the number of shifted lineaesyssfor each iterative method.
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FIGURE 4.4. The ratio between each computation time and the one of tliiedl€OCG method, versus the
number of shifted linear systems.

larger, the shifted QMEBSYM method requires more CPU time than the other two methods.
On the other hand, the shifted QM&RYM(B) method requires almost the same CPU time as
the shifted COCG method. This phenomena can be attributddetoomputational costs of
updating the approximate solutions for each method andaiitiqolar, to the following three
facts: first, we know from Figuré.1that the three methods require almost the same number
of iterations; second, the shifted QMRYM(B) method has almost the same computational
cost than the shifted COCG method, while the shifted QBRI method tends to require
a larger cost per iteration than the other two methods; thardargem, updating the approx-
imate solutions is one of the most time-consuming parts.hénprevious two sections, we
already discussed the latter two facts.

In Figure 4.3 we can see little about the properties of the three methodsnfall 2.
We therefore display in Figuré.4 the ratio between each computation time and the timing
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of the shifted COCG method. We see that the shifted Q8 method and the shifted
QMR_SYM(B) method converge much faster than the shifted COCG methed e num-
ber of shifted linear systems is small, say, < 200. A possible explanation is that, for
smallm, updating the approximate solutions does not affect the @RE so much. Other
operations, such as matrix-vector multiplications, are tioe most time-consuming parts,
since the three methods require almost the same numberatiotes; see Figuré.1. From
Proposition2.2 () and Propositiors.2 (I) we know that in this case the shifted QMRYM
method and the shifted QMBYM(B) method require only real matrix-real vector multipli-
cations. On the other hand, the shifted COCG method reqresdsnatrix-complex vector
multiplications. Moreover, dot products and vector addiis of the complex symmetric Lanc-
zos process used in the shifted QMM method and the shifted QMBYM(B) method
can be done in real arithmetic. Hence, the two methods cgaeveuch faster than the shifted
COCG method.

4.2. Example 2. The second problem comes from the electronic structure atatipn
of bulk fcc Cu with 1568 atoms (seé&f)):

(ol —H)x'Y =€y, (=1,2,...,m,

whereo, = —0.5 + (£ — 1 + i)/1000, H € R112x14112is 3 symmetric matrix with
3924704 entriesg; = (1,0,...,0)T, andm = 1501.

160 ;
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FIGURE 4.5. CPU time, in seconds, versus the number of shifted lineaesysfor each iterative method.

The computation times of the three methods for solvingrthghifted linear systems is
shown in Figurel.5. The ratio between each computation time and the timing etiifted
COCG method is shown in Figure6. From these figures we see that, even if the size of this
matrix is about 7 times larger than before, the three methetave similarly to the previous
example.

5. Concluding remarks. In this paper, the shifted QMBYM method was described
as a specialization of the QMR method for general non-Hémghifted linear systemd]|
The advantage of the method, with respect to the shifted C@@od, is that there is no
need to choose a suitable seed system. On the other hand yve/éoliad that, for a large
number of shifted linear systems, the most time-consumartygf the shifted QMRSYM
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FIGURE 4.6. The ratio between each computation time and the one of tliedl€OCG method, versus the
number of shifted linear systems.

method is updating the approximate solutions, and thisisdggher than that of the shifted
COCG method. We therefore have proposed the weighted quiasial residual approach,
with a weight particularly suited to reduce the computadlarost for updating the approxi-
mate solutions. Also the resulting method, shifted QERM(B), does not require to choose
a suitable seed system, which is an advantage over thedsBifcG method. From numeri-
cal experiments we have learned that shifted QBN and QMR SYM(B) are competitive
in comparison to the shifted COCG method. In particular, QBNRVI(B) can be the method
of choice for solving complex symmetric shifted linear gyst with a large number of shifts,
that arise from large-scale electronic structure thearjuture work, numerical tests for gen-
eral complex symmetric shifted linear systems will be danievestigate the performance of
the method.
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