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A WEAKLY OVER-PENALIZED SYMMETRIC
INTERIOR PENALTY METHOD*

SUSANNE C. BRENNERY, LUKE OWENS¥, AND LI-YENG SUNG$

Abstract. We introduce a new symmetric interior penalty method for symmetric positive definite second order
elliptic boundary value problems, where the jumps across element boundaries are weakly over-penalized. Error esti-
mates are derived in the energy norm and the Lg norm for both conforming and nonconforming meshes. Numerical
results illustrating the performance of the method are also presented.
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1. Introduction. In this paper we study a new symmetric interior penalty method for
second order symmetric positive-definite elliptic boundary value problems. For simplicity, we
focus on a two dimensional model problem, but the results can be extended to more general
problems and three dimensional domains.

Let © C R? be a bounded polygonal domain. Consider the weak formulation of the
Poisson problem with Dirichlet boundary condition:

Find u € H* () such that

(1.1a) a(u,v) = / fvdz Yo € Hy(Q),
Q
(1.1b) u=¢ on 0,

where f € Ly(Q), ¢ € H2(Q) and
(1.2) a(w,v) = / Vw - Vudz.
Q

This problem can be solved numerically by symmetric or nonsymmetric interior penalty
methods. Let 7, be a simplicial triangulation of € with mesh parameter

h = max diam 7,
TeTh

and V}, be the discontinuous P; finite element space associated with 7, i.e.,

Vi ={v € Ly(N): v, = U|T € P(T) VT €T}
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The discrete problems for the standard interior penalty methods are:

Find uf such that

af(uf,v) =/vadxi Z

6652 ¢

Javop-Eebds+ 3 L [l Blds voei,
ecEd €

where the bilinear form af (+,-) is defined by

af (w,v) = Z /TVw-Vvda:— Z {Vw} - [v] ds

TeTh ecEp v e

Yy / (Vo) - [ulds+ 3

e€ép € ecéy

o [l Eeds.

Here &, (resp. E,’;) is the set of the edges (resp. boundary edges) in T}, |e| is the length of e,
{Vv} denotes the mean of the gradient of v (which is defined to be the gradient of v on a
boundary edge), [v] denotes the jump of v, and 5 > 0 is a penalty parameter.

Note that the jump of a function is actually a vector [4]. More precisely, let e be an
interior edge shared by the triangles T 1,T¢,» € 7. Then we define on e,

[v] = V1M1 + V2N 2,

where v; = v|T V2= 11|T ) and n. 1 (resp. m.,2) is the unit normal of e pointing towards
the outside of Te’,l (resp. Te,2). On an edge e along 012, we define

[v] = (v],)ne,

where 1, is the unit normal of e pointing outside 2.

The discrete function u; is the solution of the symmetric interior penalty method [27, 3]
and uz is the solution of the nonsymmetric interior penalty method [26]. Both methods are
consistent in the sense that

o (u, v) =/vadx:|: > /E{{Vv}}-ﬂgo]]ds—l- ) %/@[[go]][[v]]ds Vo € Vh.

ecel ecel

The nonsymmetric method is stable for any positive 7, and the symmetric method is stable
if n is sufficiently large. Therefore uf (when the methods are stable) satisfy a quasi-optimal
error estimate in the norm || - || defined by

(3 ol = Y IVolliary + Do el VoRZae +2 D lel ™ IllZa)-

TETH e€EEp e€€p

In particular, we have

+ .
o=l < € ing vl

where C' > 0 depends only on the shape regularity of 75, as long as the penalty parameter
satisfies the condition

(1.4) n>mn > 0.



ETNA

Kent State University
http://etna.math.kent.edu

A WEAKLY OVER-PENALIZED SYMMETRIC INTERIOR PENALTY METHOD 109

For the symmetric method the lower bound 7 for the penalty parameter must be sufficiently
large, while for the nonsymmetric method it can be arbitrary. From here on we use C' to
denote a generic positive constant that can take different values at different occurrences.

The fact that the stability of the symmetric method requires the tuning of a penalty pa-
rameter can be considered a drawback of the method. On the other hand, the symmetric
method is adjoint consistent while the nonsymmetric method is not. Hence the L error for
u,, gains a power of h (depending on the elliptic regularity) over the error in || - || 5, but there
is no such gain for the Ly error of u;

Our goal is to develop a symmetric interior penalty method that satisfies the correct
error estimates in both the energy norm and the Lo norm, and at the same time is stable
for any choice of the penalty parameter. This is achieved by abandoning the consistency
of the method and at the same time applying a weak over-penalization to the jumps of the
discontinuous finite element functions across the edges. The discrete problem of the weakly
over-penalized symmetric interior penalty (WOPSIP) method is: Find u, € V}, such that

45 awno) = [ fode+n Y o [Me) lds Vo,
Q e€Ep €

where

(1.6) ap(w,v) = Z /TVw-Vvdx—}-n Z

1
o [ Tl - el s
TETn ecén
I19 is the orthogonal projection from [Ly(e)]? onto [Py (e)]? (the space of constant vectors on
e), and the penalty parameter 7 satisfies (1.4) for an arbitrary positive lower bound 7.

Intuitively, the weak over-penalization forces the scheme (1.5) to behave like the classical
nonconforming P; finite element method [20], which is known to satisfy the correct error
estimates for the Poisson problem. Of course, unlike the classical nonconforming P; finite
element method, the WOPSIP method can handle meshes with hanging nodes. It is important
to note that the ill-conditioning resulting from the over-penalization can be remedied by a
simple block-diagonal preconditioner (see Section 5 below).

REMARK 1.1. A symmetric interior penalty method was introduced in [7], where an
appropriate lifting of the jump was penalized. It is equivalent to the approach in [27, 3] with
a built-in edge-by-edge numerical estimate of the penalty parameter. Consequently, the lower
bound for the penalty parameter in the approach of [7] becomes explicit (cf. the discussion
in [4]). In contrast, the stability of the WOPSIP method does not require an edge-by-edge
numerical estimate of the penalty parameter.

The rest of the paper is organized as follows. We first review the regularity of the solution
of (1.1) in Section 2. We then establish energy error estimates in Section 3 and Ly error
estimates in Section 4. In Section 5 we construct a simple block-diagonal preconditioner
that offsets the ill-conditioning due to the weak over-penalization in (1.6). The extension of
these results to grids with hanging nodes and equations with variable coefficients is given in
Section 6. Numerical results are reported in Section 7, followed by some concluding remarks
in Section 8.

2. Regularity. The analysis of the scheme (1.5) involves the regularity of the solution
u of (1.1), which we briefly summarize below. Details can be found in [23, 21, 24].
Letcy,...,cr be the corners of Q and wy be the (interior) angle at ¢,. We can write

Q2.1 u=ug + us,
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where the regular part ur € H2(f2) and the singular part us is supported near the reentrant
corners of 2. More precisely, let § > 0 be small enough so that the neighborhoods

Nes={z €Q: |z —¢ <6} for 1<{(<L

are disjoint. Then we have

(2.2) ug = Z Ko rzr/‘” sin ((m/we)0) x(re),

wWe>T

where (¢, 0;) are the local polar coordinates at ¢, such that the two edges emanating from ¢,
are given by 8, = 0 and 0y = wy, k¢ € R is the (generalized) stress intensity factor at ¢¢, and
X (t) is a smooth cut-off function that equals 1 for ¢ < /2 and vanishes for ¢t > 35 /4.

It follows from the singular function representation (2.1) and the definition (2.2) of the
singular part that

uwe HX(Q) ifQisconvex and we HF(/“)=¢(Q) if Q is nonconvex,

where w is the maximum of the interior angles at the reentrant corners and € is any positive
number. More precisely, when Q is nonconvex, u is H? away from the reentrant corners of
Q, and at the reentrant corner ¢y,

ue HWT/wo=¢(\, 5) forany e > 0.
Furthermore, we have

(2.3) lullzrz) < C(I1F o) + el a2 ()

if © is convex. For a nonconvex (2, we have

2.4 llull gri+ae) < Ca(llfllLa) + llelluz@)),

where « is any number strictly less than 1 + (7 /w),

2.5) lurllm2 o) + Z kel < C(IfllLace) + ol m2(0)) 5

we>T

and, at a reentrant corner ¢y,

(2.6) lullgriscnroo—e a5y < Ce(lfllpag@) + lellaz))-

A useful consequence of the representation (2.1) is the following lemma on integration
by parts involving u.
LEMMA 2.1. Let u be the solution of (1.1), T € T, andv € H'(T). Then we have

2.7 / Vu-Voudr = Vu-vnds + / fudx,
T T

oT

where m is the unit outward normal along OT.

Proof. Since C'(T) is dense in H'(2) and all three terms in (2.7) are bounded linear
functionals on H' () (because u € H'+*(Q) for some a > 1/2), it suffices to prove (2.7)
forv € CY(T).

If T does not touch any of the reentrant corners of €2, then u € H 2(T), —Au=finT
and (2.7) is standard.
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Suppose only one of the vertex of T is a reentrant corner ¢, of 2. (The case where more
than one of the vertices of T are reentrant corners can be handled similarly.) For a sufficiently
small positive number vy, we have the standard integration by parts formula

(2.8) / Vu-Vudr = Vu-vnds + / fudz,
T, T,

8T,

where T, = {z € T : |x — ¢¢| > v}. We can recover (2.7) by letting v | 0 in (2.8), provided
that we have

2.9) lim Vu-vnds =0,
740 /4,

where A, isthearc {z € T : |z — ¢¢| =7}
In order to prove (2.9), we use (2.1) and (2.2) to write

Vu-n = Vug - n — ke(r/w)r™“D 1 sin ((we/7)8),

and hence, by the Cauchy-Schwarz inequality, the trace theorem and direct calculation,

[ vuonds| < (19 nllnaga,) + leel(r/o0n™ ) ol
< ((ywe)'?|IVur - nllpy(a,)y + kel (7 /we)y™“ we) o]l Lo ()
< (COywe) " lugllmzery + |sel(m/we)y™ < we) 0]l L (7).

which immediately implies (2.9). O
The following trace estimates are consequences of the trace theorem and scaling:

(2.10) lel Mol omy < C (070l + 11Vl 1)),
(2.11) lellIVoll,omy < Cs(IIVOll7,0r) + BTV 5 (1)

where s is any number in the interval (1/2, 1]. In view of (2.3), (2.4) and (2.11), we have

(2.12) D elllVullf e < CUI T a0 + 1€l @))-
ecéy

3. Energy error estimates. Let the mesh-dependent norm || - ||, be defined by

G ol = D IVl + X el Vollizae +n Y lel I, o)

TeTh ecép ec&p

For v € V},, since { Vu}} is a constant vector on each e, it is easy to see that

Do lellf Vol <C Y IVolliyqy Vo€ Va,

e€céh TeTh

and hence, in view of (1.6),
(3.2) Cllvll; < an(v,0) Vv € Vi
In the other direction, we have the obvious estimate

(3.3) an(w,v) < flwlln ol
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for all v, w that are piecewise H® with respect to 7, for some s > 3/2.

Furthermore, the norm || - ||, dominates the norm || - || defined in (1.3) because of the
following lemma.

LEMMA 3.1. There exists a positive constant C, depending only on the shape regularity
of T, and no, such that

G4 Y lel MMl < € 3 196l + 3 lel M2, } < Clol

e€eép TeTh e€éhn

for any v that is piecewise H' with respect to Ty,
Proof. Let v be the piecewise constant function that takes the mean value of v on each
T € Ty. We have, by (2.10) and a standard interpolation error estimate [19, 18],

S el B <2 3 lel™ (Mo = 01120 + 112012,y )

e€&p e€éhp
<C Y NVollg ey +2 D lel M Im2elll
TETh ec&p
<O Vol +4 Y lel (I = ol ) + IMCTTIE, )
TETh e€lp
<C Y Vol +4 D lel IS0l - D
TETH e€ER

The following lemma provides an abstract estimate for the discretization error in the

mesh-dependent norm || - || .
LEMMA 3.2. Let u € H'(Q) (resp. up € V3) be the solution of (1.1) (resp. (1.5)).
Then the following error estimate holds:

(3.5 lle = wnlln < C[vien‘lﬁh llw = wlln + Al f | 222y + ||80||H2(Q))]-

Proof. Letv € V}, be arbitrary. It follows from (3.2) and (3.3) that

v —unlln < lu —vlln + lv — uslln
ap(v — up, w)

(3.6) =lumvler© BN
I Il wEV,\{0} llwll
ah(u — Up, U))
<Cqlw—-v|p+ max ——m—
<Oflu=vln+ | max =

From (1.1a), (1.2), (1.5), (1.6) and Lemma 2.1, we have

3.7 ap(u — up,w) = Z Vu - [w] ds

ecEy V€
- ¥ [(V@-0} [wlds+ Y [{To) Wfulds.
e€ly ¢ e€&p 7 ¢

Using (2.12), (3.1), (3.4) and the Cauchy-Schwarz inequality, the two terms on the right-hand
side of (3.7) can be estimated as follows:

Y [{V@-v)}-[w]ds

ec&, V€
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1/2 B 1/2
(3.8) < (D IV @@= M) (3 el D)
e€€y e€éhp

< Cllu = vlfallwll,

> [4vh whulds

ec&p €

< (1l IV ) (3 lelImeLul i, )

e€€ ecéhp

(3.9) <(X |e|3||{{V(u—u)}}||i2(e))1/2( > |e|‘3||HSHw]]I|iZ<e>)1/2

e€€y e€&hp

(S 1T w) " (3 eIl )

e€éy e€éh
< Ch(llu = vlln + 1 fllza) + ll@llm2@) lwlln-

The estimate (3.5) follows from (3.6)—(3.9). 0

In order to derive concrete error estimates from (3.5), we need a good interpolation
operator for the finite element space V},. Let the Crouzeix-Raviart interpolation operator
O : HY(T) — Py(T) be defined by

1/2

/2

/HTst:/Cds fort=1,2,3,

i i

where e;, e2 and e3 are the three edges of the triangle T'. This weak interpolation operator
satisfies the estimate [20]

(3.10) |¢ = Ixlllro(ry + hrlIV(C = Tr Q)| 1oy < ChEH* | itacry V¢ € HTX(T),

for any a between 0 and 1, where hy = diam 7.
We can define a global interpolation operator ITj, : H'(Q) — V}, by piecing the local
interpolation operators together:

(3.11) M)y =Tr(¢|;) VT € Th.
Note that

(3.12) MC-Tp(=0 V(e H'(Q), e €&,
(3.13) (] =0 V(e Hy(), e € n.

It follows from (3.5) that

(3.14) lu = wnlln < € [llu = Maulln + A(I | zac@) + llelle@)]
and, in view of (3.1) and (3.12),
2 2 1/2
(3.15) Ju—Tauln = (3 IV@ =)0y + Y lel IV @-Tw)}E,e)
TETh e€E

Using (2.3), (2.4), (2.11), (3.10) and (3.15), we can obtain immediately the following
lemma on interpolation errors for IIp,.
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LEMMA 3.3. Let Ty, be a quasi-uniform mesh on Q) with mesh parameter h = maxreT;, hr.
We have the following interpolation error estimates:

(3.16) lu = Mhulln < Ch(|IfllLo(0) + lella20))
(3.17) llu — hull o) < CB* (1 £ Loy + lellrze))

if Q0 is convex, and

(3.18) lu —TMpulln < Cob®(1flLa) + lella2@))
(3.19) llu — Mpul ra0) < Cab™ (| £l Loy + ol m2(0))

if  is nonconvex, where « is the index of elliptic regularity that appears in (2.4).

We can then derive the following theorem using (3.14), (3.16) and (3.18).

THEOREM 3.4. For a quasi-uniform Ty, with mesh parameter h = maxyer, hr, we
have

(3.20) lu —unlle < Ch(|fllLace) + el a2@))

if Q is convex, and

(3.21) lw — unlln < Cab®([Ifllo@) + llella2@)

if ) is nonconvex and « is the index of elliptic regularity that appears in (2.4).

For a nonconvex domain with corners ¢y, . . ., cr, a better error estimate can be obtained
by using meshes that are graded around the reentrant corners of €2, i.e., meshes whose trian-
gles satisfy the condition

(3.22) hy ~ ®,(T)h VT € Th,

where the constants in the equivalence (3.22) are independent of h, u = (p1,-- -, pr) is the
vector containing the grading parameters, and the weight ®,(T') is given by

(3.23) ®,(T) =T}, |c; — cr|*7He.

Here cr is the center of T' and the grading parameters p1, . . . , pg are chosen according to
pe =1 if we<m

(3.24) .
e < mfwp if we>mn

The choice (3.24) guarantees that

1
(3.25) / P2(0-0) (/)22 g < o,
0

It follows from (3.22) and (3.23) that
(3.26) hy ~ B/
if the corner ¢y is a vertex of T' € T}, and hence

(3.27) |Inhr| ~ |Inh| VYT €T,
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where the constants in the equivalence (3.27) are independent of h. The construction of
graded meshes that satisfy these conditions can be found for example in [23, 2, 1, 10, 5].
Note that, for any given grading parameters, the graded meshes satisfy the minimum angle
condition and

(3.28) the number of triangles in a graded mesh 7, is proportional to h~ 2.

Below are the key estimates related to graded meshes.
Let 7p,¢ be the collection of triangles in 7}, that touch a corner ¢, of 2,

Ti=J The and 7' =Tp\Tj.

we>T

Then (2.1), (2.2), (2.5), (2.6) and (3.25) imply

(3.29) D Bu@Pluliery < C(IF a0 + 19l52w),
TeT,)
(3.30) D lulisn, () < C(If o) + el g))-
TETh,e

LEMMA 3.5. Let Ty, be a graded mesh satisfying (3.22)—(3.24). The following interpo-
lation error estimates are valid:
(3.31) llu — Whulln < CR([Ifllzac0) + llella29)),
(3.32) llu — Mhull o) < CR* (I lza) + el 2 (@)

Proof. On the one hand, we have by (3.10), (3.22) and (3.29),

(3.33) SV —Tau)ll3 0y <C Y Wlulfpe
TeT,) TeT)

< Ch? Z [@,( ] |U|H2(T) < Ch2(||f||L2(Q) + ||<P||H2(Q))
TeT)!

On the other hand, we have by (3.10), (3.26) and (3.30),

(3.34) DIV -T)F,m <C D Y b |ulbpsn

TET, we>T TETh ¢

SCOW Y D by < ORI 7a@ + lellEe)-

we>T TETh,,

Furthermore, it follows from (2.11) and (3.33)—(3.34) that

> lellV (u — hw) B2,

e€ép

(3.35) <CR Y [@u(T)Plulieiy +CR* D D [ulbism r

TeTy we>TTETh 4
< CR (1f 1750 + lelzra(oy ) -
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The estimates (3.33)—(3.35) together with (3.15) imply (3.31).
Similarly, we have

> llu—=Thullf, oy <C Y hplulier
TET, TeT,

<Ch' Z (@, (TP |uliz(ry < CR*(I1F11700) + 1ol ()
TeT!

and

Do llu=Thull,my <C Y > h2T+2M|“|§11+w(T)

TeT, we>T TETh e

<SCh Y 37 ulynery < OB (IF117500) + llellFr0))s

we>m TETh ¢

which together imply (3.32). 00

In view of (3.14) and (3.31), we have established the following theorem.

THEOREM 3.6. Let Ty, be a graded mesh satisfying (3.22)—(3.24). The following dis-
cretization error estimate holds:

lu —unlln < Ch(If Loy + el o)) -

4. L+ Error estimates. We can obtain a better estimate for the discretization error in
the Lo norm through a duality argument.
THEOREM 4.1. For a quasi-uniform mesh Ty, we have

4.1) llu = unllLs@) < CR* (|| fllzaey + el a2@))

if Q0 is convex, and

(4.2) lu — unllLo@) < Cah®*(IfllLae) + llellmz(0)

if Q) is nonconvex, where « is the index of elliptic regularity that appears in (2.4).
If Q is nonconvex and Ty, is a graded mesh satisfying (3.22)—(3.24), we have

(4.3) Il = unllzo(0) < CR (I fla@) + lloll 2 (a))-
Proof. Let ¢ € Hy(Q) and ¢, € V), satisfy
4.4 a(v,¢) = / v(llpu — up) dx Yu e Hy(Q),
Q

4.5) ap(v, () = / v(Ilpu — up) dz Yov e V.
Q

For a quasi-uniform mesh 7y, it follows from (4.4)—(4.5), the symmetry of a(-,-) and
anp(-,-), Lemma 3.3 and Theorem 3.4 that

(4.6) I¢ = allln < ChlMpu — up|| Lo ()
4.7 I = Crlln < Ch|lIThu — unl|r, (),
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if Q is convex, and
4.8) I¢ = Trclln < Cah®||Mpu — unl| L)
(4.9) 1€ = Culln < Cab®|Ihu — unllry (),

if Q is nonconvex.
For a graded mesh on a nonconvex domain, it follows from Theorem 3.6 that

(4.10) I¢ = Tr¢lln < Ch||Mpu — un|| L),
(4.11) I¢ = Culln < Ch||ITau — upl| 1, (0)-
From (1.5), (3.3), (3.13) and (4.5) we see that
|ITTpu — Uh”%Z(Q) = ap(Ipu — up, Cp)
(4.12) = ap(ITpu — up, Cp — IpC) + an(lpu — up, k()

< T — wn i — TRl — / S0z + ap (T, ).

Furthermore, (1.1a), (1.6), Lemma 2.1 and (3.4) imply that
— | £0)da + an(Thes 0
(4.13) == /Q F(MpQ)dz + ap(Tpu — u, MxC) + ap (u, Mx()

=3 [ {Vu}- [MacDds + an(Muu — u, TIxQ).

ecEy V€

We can use (3.4) and (3.13) to estimate the first term on the right-hand side of (4.13) as
follows:

> [4Tuh-Maclds = Y- [ 490 - M} - [uc] ds

ecéh ecEp V€

(4.14) =Y [{V@u-Tu)}- [T - (] ds

ec&y Ve

< (3 el - i,) " (3 eI = i)

e€&hp e€€y
< flu = TMpuf|pITh¢ = Cll-

For the second term on the right-hand side of (4.13), we have, by (3.12), (4.4) and
Lemma 2.1 (applied to (),

ap(Mpu — v, Ix¢) = an(Tpu — u, 1 ¢ — ) + an(ITpu — u, ()

< My = wJTInC = Clln + / (T — ) (W — up) de
Q

(4.15) + > [ [Mhu — u]{ VR ds,

ecéy €
< MMpw — uflaTn ¢ = Clla + IThu — ul| Ly @) 1HTaw — unll L)

+ 3 [ [Mhu— a] V¢ ds.

ec&, U



ETNA

Kent State University
http://etna.math.kent.edu

118 S. BRENNER, L. OWENS, AND L. SUNG

It follows from (3.12) that, as in (4.14),

@o Y [Ma-afvehds= Y |- ul4(C - L0} ds

ec&y V¢ ec& V¢

< I€ = WadlalTau — ulln-

Combining (3.17), (3.19), Theorem 3.4, Lemma 3.5, Theorem 3.6 and (4.6)—(4.16), we
find

(4.17) [IThw = wnl|za(2) < CH*(Ifllza() + ol m2(0)

if €2 is convex and T}, is quasi-uniform, or if €2 is nonconvex and 7y, is a graded mesh satisfying
(3.22)—(3.24), and

(4.18) IThu — wnll Loy < Cah®* (| fllLs@) + ol m2(0))

if Q is nonconvex and 7T}, is quasi-uniform.
The estimates (4.1)—(4.3) follow from (3.17), (3.19), (3.32) and (4.17)—(4.18). 0

5. A simple preconditioner. Let A, : Vj, — V) be the linear operator representing
the bilinear form ay (-, -), i.e.,

(5.1) (Apw,v) = ap(w,v) Yo,w€ Vp,

where (-, -) is the canonical bilinear form on V}} x V},. In this section we construct a simple
block diagonal preconditioner By, for Ap,.
Let the symmetric positive-definite bilinear form by (-, -) be defined by

62w = 3 3 wrlmrimg +n Y o [l W] ds
TETh e€ET ecéhn €

for all v, w € V}, where E7 is the set of the three edges of T and m, is the midpoint of e, and
let By, : Vj, — V! be defined by

(5.3) (Brw,v) = bp(w,v) Vv,w € V.

Note that the operator By, is block diagonal with respect to the nodal basis associated
with the midpoints of the edges of 7, and its dual basis. This is due to the midpoint rule

H2v=|%|/vds=v(me) Vv € P(e),

which implies

= [l s = X0

lef? le]?
if e is a boundary edge and

# /Hg[[w]] -TRv] ds = é(“ﬁ(me)vl (me) + w2 (me)va (me)

— wi (me)v2(me) — w2(me)vl(me))
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if eis an interior edge shared by the triangles T, ; and T¢, » and w; = w| T (resp. v; = U| T i)
for i = 1, 2. In fact, the diagonal blocks are either 1 x 1 (corresponding’to the midpoints on
0Q) or 2 x 2 (corresponding to the interior midpoints).

We begin by analyzing the operator B;lAh for quasi-uniform meshes.

LEMMA 5.1. For a quasi-uniform mesh Ty, we have
Amax(Bj * An)

6 Amin (By, " An)

< Ch 2.

Proof. From the obvious estimate
IVol2, 0 <C 3 v(m,)
e€&r
we have
(Apv,v) < C{(Bpv,v) Yv €V,
and hence, by the Rayleigh quotient formula [22],

(AhU, U) <C

5.5 Amax (B YAL) = ASklAe R
(5-5) ax(By, " An) veVir(o} (Brv,v) —

In the other direction, we first observe that the quasi-uniformity of 73, implies
(5.6) hr =~ h ~ |e| VT €T, and Veefl.
It then follows from the Poincaré-Friedrichs inequality for piecewise H® functions [8] that
(5.7) lol1Z, 0y < C( Z IVollZ, ) + Z |€|71||H2[[U]]||%2(e)) Vv € Vh,
TeTh e€éy

which together with (1.4), (3.2), (5.1)—(5.3) and (5.6) imply that
h?(Bpv,v) < C{Apv,v) Yv € V.

Hence, by the Rayleigh quotient formula, we have

(5.8) Amin(By'Ay) = min (Anv;v)

12 s OR2.
veVi\{0} (Bpv,v) —

The estimate (5.4) follows from (5.5) and (5.8). O
Next we analyze the operator B;lAh for graded meshes.
LEMMA 5.2. For a graded mesh Ty, we have

/\max(Bh_lAh)

69 Amin(By ' Ap)

< Ch~2(1+ |Inhl).
Proof. Since the estimate (5.5) remains valid, we only need an estimate for A, (B h ! Ap).

Observe that, because of (3.28),

(5.10) S D v (me) <3l D 1< Ch ol o) Vv € Va
TETh e€ET TET
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Furthermore we have the following discrete Sobolev inequality [9]

GID ol <CO+ |1nh|)( Sl + Iel‘lllﬂﬂﬂvﬂlliz<e>)

TET e€€y

for all v € V. (The result in [9] was derived under the assumption that 7} is quasi-uniform.
But the proof also applies to the case where T}, is regular and (3.27) holds.)
Combining (1.4), (3.2), (5.1)-(5.3), (5.7), and (5.10)—(5.11), we find

(Bpv,v) < Ch™2(1 + |In h|){Apv,v) Yv € Vp,
which implies through the Rayleigh quotient formula
(5.12) Amin(By, *Ap) > Ch*(1 + |Inh|)~h

The estimate (5.9) follows from (5.5) and (5.12). 0
REMARK 5.3. The condition number estimate (5.9) is identical with the condition num-
ber estimate for conforming finite element methods on graded meshes [6].

6. Extensions. The results in previous sections can be extended to a grid 7 with hang-
ing nodes. We assume that if an edge of a triangle in 7} contains a hanging node, then it is
subdivided by the edges of other triangles in 7. An example of such a grid is depicted in
Figure 6.1.

For such grids the only modification of (1.6) occurs in the definition of £,. An (open)
edge of a triangle in 7T}, belongs to &, if and only if it satisfies one of the following conditions:
(i) it contains a hanging node, (ii) it is a subset of 912, or (iii) it is the common edge of two
triangles in 7. Then the interpolation operator Il defined by (3.11) still satisfies (3.12)—
(3.13) and the analysis in Section 3 and Section 4 remains valid.

FIG. 6.1. Example of a grid with hanging nodes

Under the new definition of &, the preconditioner By, defined by (5.2) and (5.3) is still a
block diagonal preconditioner and the condition number estimates in Section 5 remain valid.
(The constants in the estimates will depend on the maximum number of hanging nodes that
can appear on any edge.) But now the block corresponding to an edge e with hanging nodes
is n x m, where n is the number of midpoints (of edges of triangles of 7) that belong to
e. For example, for the edge in Figure 6.1 that connects the center to the lower right corner,
the corresponding diagonal block is 5 x 5 (one midpoint from the large triangle and four
midpoints from the small triangles).

The WOPSIP method can also be applied to elliptic boundary value problems with vari-
able coefficients that are Lipschitz continuous. Consider the problem where the bilinear form
a(,-) in (1.1a) is defined by

a(w,v) = /Q [(KVw) - Vv + bwv]dz.
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Here K () is a Lipschitz continuous 2 x 2-matrix-valued function on Q such that
K(z)z-z>cz -2 Ve e, ze R,
where ¢ > 0 is a constant independent of  and z, and b(z) is a Lipschitz continuous nonneg-

ative scalar function defined on Q. The corresponding bilinear form for the WOPSIP method
is then given by

ap(w,v) = Z /T [(KVw) - Vv + bwv|dz + 7 Z

TeTh e€elp

o [ Tl ] s

The results in Section 3 and Section 4 also hold for this problem. The only significant
modification occurs in the handling of the analog of (3.7):

6.1) ap(u — up,w) = Z KVu - [w] ds

ec&p €
-3 / KVu-[w]ds+ S [ (K —K)Vu-[u] ds
ecén € ecéh €

where, on each e € &}, K denotes the mean value of K on e.

We can proceed as in Section 3 to obtain the following estimate for the first term on the
right-hand side of (6.1):

62) > /KVU-[[W]] ds < C[|||u_v|||h+h(”f”Lz(Q)+||‘P||H2(Q))] lwln Yo € Va.

ecEp V¢

The second term on the right-hand side of (6.1) can be estimated as follows:

Z /(K - K)Vu - [w] ds

ecEp V€

<O Y lellVaull oo 1Twlllzace)

eeéy

/ /
©3) < on( X lellVulltw) (X e i)

e€€y, e€ép
< Ch([Ifll ooy + el (@) lwlln,

where we have used (2.12), (3.1), and Lemma 3.1.

It follows from the estimates (6.2)—(6.3) that Lemma 3.2 remains valid. The modifica-
tions for the proofs of Theorem 3.4, Theorem 3.6 and Theorem 4.1 are straightforward. Note
that for a nonconvex domain the singularity of the solution u at a reentrant corner depends
on the value of K at that corner. But we can still obtain optimal error estimates in both the
Il - l|» norm and the Lo norm by choosing the grading factor y, at any reentrant corner to be
less than 1/2.

REMARK 6.1. The WOPSIP method can also be applied to mixed (Dirichlet and Neumann)
boundary conditions. The analysis is similar but more complicated, since singularities also
appear in the neighborhood of points on 0€2 where the boundary condition changes type.
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7. Numerical results. In this section we report the results of some numerical experi-
ments involving the WOPSIP method. The computation is performed using the nodal bases
associated with the midpoints of the edges of the triangles.

In the first set of experiments we take 2 to be the unit square (0,1) x (0, 1) and the exact
solution of (1.1) to be

u(z,y) = zy(1 —z)(1 — y).

We solve (1.1) using the WOPSIP method with different penalty parameters n = 0.1, 1, 10
and 100, on uniform grids 71, . .., 7s, where the length of a horizontal/vertical edge in T} is
hi, = 27%. The relative errors

Vrer IV =)l )
B ”VUHLz(Q)

Ek

in the piecewise H! semi-norm and the relative errors

A\ = l|lu — uk”Lz(Q)
o = 1 RlL2(R)
[l o)

in the Ly norm are computed. The results are presented in Table 7.1. The error bounds (3.20)
and (4.1) are clearly visible. Furthermore, the constant in the H! error bound is relatively
independent of  when hj, is small. On the other hand, the constant in the Lo error bound
becomes noticeably smaller as 7 increases.

TABLE 7.1
Relative errors on S in the piecewise H' semi-norm and the La norm for 1 < k < 8 and n =
0.1, 1, 10 and 100.

n=0.1 n=1 n =10 n =100
Ek/hk /\k/h?c Ek/hk /\k/hi Ek/hk /\k/hi Ek/hk /\k/h?c
1.092 33.863 | 0.659 4.030 | 0403 0.700 | 0.392 0.401
1.687 29.665 | 0.545 3.827 | 0.373 0.767 | 0.370 0.514
1.644 30.129 | 0.434 3.628 | 0.372 0.785 | 0371  0.572
1.113  30.895 | 0.390 3.495 | 0.373 0.784 | 0.372  0.588
0.680 30941 | 0.377 3.420 | 0.373 0.779 | 0373  0.592
0.473 30.778 | 0.374 3.381 | 0.373 0.776 | 0.373  0.593
0.400 30.640 | 0.373 3.361 | 0.373 0.775 | 0.373  0.593
0.380 30.556 | 0.373 3.350 | 0.373 0.739 | 0373  0.566

0N N R~ W =R

We also compute the condition number x(Bj ' Ay) for1 < k < 8 andn = 0.1, 1, 10
and 100. The numbers hﬁm(Bk_lAk), tabulated in Table 7.2, clearly demonstrate the estimate
(5.4).

In the second set of experiments we analyze the performance of the WOPSIP method
on some nonconforming partitions of the unit square. This is a first step in evaluating the
effectiveness of an adaptive mesh refinement algorithm.

We consider three different nonconforming partitions of the unit square. The first three
levels of mesh refinement for each of these partitions is shown in Figure 7.1-Figure 7.3.
The methodology for the first two nonconforming partitions is simple. The coarsest mesh
(k = 0) is given and each subsequent mesh is obtained by uniform subdivision. The mesh
refinement in the third nonconforming partition is slightly more complicated. The k™ level
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TABLE 7.2
h2k(By ' Ay) for 1 < k < 8andn = 0.1, 1, 10 and 100.

n=01 n=1 n=10 n=100
17.6 3.87 2.10 1.77
5.18 2.23 1.84 1.80
2.67 1.91 1.83 1.82
2.04 1.84 1.82 1.82
1.88 1.83 1.82 1.82
1.84 1.83 1.82 1.82
1.83 1.82 1.82 1.82
1.83 1.82 1.82 1.82

[o =B e NNV, N RO I S e

k=0 k=1 k=2

F1G. 7.1. First three levels of the first nonconforming partition on Q.

is obtained from the (k — 1)*' level by refining the largest triangles in the partition and the
lower left triangle. In all cases refinement on any particular triangle is obtained by connecting
the midpoints of the edges of that triangle. Also, the length of the longest horizontal/vertical
edge is hy = 27 for all of the partitions considered.

k=0 k=1 k=2

FIG. 7.2. First three levels of the second nonconforming partition on 2.

We have compared the relative errors of the conforming triangulation with those of the
three nonconforming partitions. Since the dependence on 7 in each of the nonconforming
partitions is very similar to the dependence in the conforming triangulation, we present the
numerical results only for = 1 in Table 7.3 and Table 7.4.

In view of Figure 7.1, we expect the error for the first nonconforming partition at level
k to be smaller than the conforming triangulation at level k, but larger than the conforming
triangulation at level k£ 4+ 1. The results in Table 7.3 and Table 7.4 demonstrate this result.
Furthermore, Figure 7.2 suggests that the errors of the second nonconforming partition at
level k should be between the errors of the conforming triangulation at levels k and k + 2.
This is confirmed by the numerical results. Finally, from Figure 7.3 we expect that the errors
for the third nonconforming partition at level k£ should be less than or equal to the errors of
the conforming triangulation at that same level. The numerical results very nearly satisfy this
observation.

In addition, we have computed the condition number hi(Bk_lAk) for the second noncon-
forming partition for 0 < k < 7and 5 = 0.1, 1, 10 and 100. The numbers h2x(B;, ' Ay,) are
tabulated in Table 7.5. The estimate (5.4) is clearly demonstrated as it was with the conform-
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F1G. 7.3. First three levels of the third nonconforming partition on L.

TABLE 7.3
Comparison of relative errors in the piecewise H' semi-norm of the nonconforming partitions and the con-
forming triangulation (n = 1).

k NCl1 NC2 NC3 C

0| 549E-01 548E—-01 2.51E400 -

1| 286E-01 290E-01 5.32E-01 3.30E-01
2 | 1.20E-01 1.24E—-01 1.99E-01 1.36E—01
3 | 459E-02 4.56E—02 6.83E—02 5.42E—02
4 | 1.98E—02 1.88E—02 2.67E—02 2.44E—02
5| 939%—-03 874E—03 1.21E-02 1.18E—02
6 | 463E—-03 4.29E—03 5.88E—03 5.84E—03
7| 231E-03 2.13E-03 292E-03 291E-03
8 - - - 1.46E—03

ing triangulation, however, the constant is larger in the nonconforming case.

Our numerical results suggest that the WOPSIP method will work well when imple-
mented using an adaptive mesh refinement algorithm. The introduction of hanging nodes has
seemingly no adverse effects on the method’s performance, which is a very attractive feature
of this method.

In our final set of numerical experiments we solve (1.1) on the L-shaped domain Q, with
vertices (—1,—1), (1,-1), (1,0), (0,0), (0,1) and (—1,1). The exact (singular) solution is

(7.1) w =13 sin (g(o_ ).

where (r, §) are the standard polar coordinates. As on the unit square we solve (1.1) using the
WOPSIP method with varying penalty parameters n = 0.1, 1, 10 and 100, on uniform and
graded meshes Ty, . .., Tz (cf. Figure 7 where 75 is depicted for both the uniform mesh and
the graded mesh). The mesh parameter is hy = 27*.

FI1G. 7.4. Uniform and graded meshes on the L-shaped domain 21,

Let Zyu € V}, be the piecewise linear interpolant that agrees with u at all the midpoints
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TABLE 7.4
Comparison of relative errors in the Lo norm of the nonconforming partitions and the conforming triangulation

(n=1)

NC 1 NC2 NC3 C
2.81E+00 2.60E4+00 2.41E+01 -
6.48E—01 5.80E—01 1.09E+00 1.01E+400
1.50E-01 1.31E-01 2.53E-01 2.39E-01
3.59E—-02 3.13E-02 5.81E—-02 5.67E—02
8.68E—03 7.57E—03 1.38E402 1.37E—02
2.13E—03 1.85E—03 3.35E—03 3.34E—03
5.26E—04 4.58E—04 8.26E—04 8.25E—-04
1.31E-04 1.14E—04 2.05E—04 2.05E—-04

- - - 5.11E-05

01NN A W= O

TABLE 7.5
hin(B,;lAk)jbr 0< k< T7andn = 0.1, 1, 10 and 100 on the second nonconforming partition.

n=01 n=1 n=10 n=100
8422 3431 2541 22.68
4123 2637 2214 21.41
28.25 2148 20.15 19.99
22.59  20.04 19.71 19.68
2042 19.69 19.61 19.60
19.79  19.60  19.58 19.58
19.63  19.58  19.58 19.57
19.58  19.57 19.57 19.57

NN bW = O

of the edges of Tj. For convenience we have computed the absolute errors

/
el = ( 3 ||V(Iku—uk)||%z(T))l 2

TETw

in the piecewise H! semi-norm and the absolute errors

A = 1 Zhu — ug|nocor)

in the Ly norm. The rate of convergence is given by a = log,(ef_, /e}) for the piecewise
H' semi-norm and by 3§ = log,(A{_, /i) for the Ly norm.

The results for uniform meshes with n = 1 are presented in Table 7.6. The asymptotic
convergence rate of 2/3 (resp. 4/3) in the piecewise H! semi-norm (resp. the L norm)
predicted by Theorem 3.4 (resp. Theorem 4.1) is clearly demonstrated. The results for graded
meshes with 7 = 1 are presented in Table 7.7, and it is clear that the convergence rate is 1
in the piecewise H' semi-norm and 2 in the Lo norm, as predicted by Theorem 3.6 and
Theorem 4.1. The dependence on 7 is very similar to the dependence observed for the unit
square, so we have omitted those results.

8. Concluding remarks. We have developed a weakly over-penalized symmetric inte-
rior penalty (WOPSIP) method that satisfies optimal order error estimates in both the energy
norm and the Lo norm. This method is stable for any positive penalty parameter, as long as
it is bounded away from zero. At the same time, there exists a simple block-diagonal precon-
ditioner for the resulting discrete system so that it behaves like a typical discrete system for a
second order elliptic boundary value problem.
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TABLE 7.6
Absolute errors and convergence rates on Qg with uniform meshes in the piecewise H' semi-norm and the Lo

normfor0 <k < 7andn=1.

T R
1.04E+00 - 2.78E-01 -

6.42E—-01 0.694 124E-01 1.166
2.63E—-01 1.288 4.07E—-02 1.605
973E—-02 1.435 1.25E-02 1.701
470E—-02 1.048 4.10E-03 1.610
2.79E-02 0.752 144E—-03 1.513
1.74E—-02 0.678 5.28E—04 1.446
1.10E-02 0.667 1.99E—04 1.403

NN R W - O

TABLE 7.7
Absolute errors and convergence rates on g, with graded meshes in the piecewise H semi-norm and the Lo

normfor0 < k < 7andn = 1.

g oy N B
1.04E+00 - 2.78E—01 -

7.01E—-01 0.567 1.12E-01 1.308
347E-01 1.017 4.22E-02 1.411
1.22E-01 1.503 1.26E-02 1.744
4.18E—02 1.548 3.41E-03 1.886
1.76E—02 1.249 8.98E—-04 1.923
8.73E—-03 1.012 2.35E—-04 1932
4.56E—03 0.938 6.15E—05 1.936

NN kW= O

The results in this paper provide the foundation for the study of fast solvers for second

order elliptic boundary value problems based on the WOPSIP formulation [17, 25], which

will

complement the work in [16, 15] that is based on a weakly over-penalized nonsymmetric

interior penalty (WOPNIP) formulation.

It is well-known that the conforming P; finite element method does not work for either

the time-harmonic (frequency-domain) Maxwell equations or the Maxwell eigenproblem.

But

there are methods [13, 12, 11, 14] based on weakly continuous P; vector fields that do

work for such problems. Therefore the techniques developed in this paper and [16, 15, 17]
are also relevant for problems in computational electromagnetics.
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