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ANALYSIS ON THE UNIT BALL AND ON THE SIMPLEX
�

YUAN XU
�

Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. Many results on the unit ball and those on the simplex can be deduced from each other or from
the corresponding results on the unit sphere. The areas in which such a connection appears include orthogonal
polynomials, approximation, cubature formulas and polynomial interpolation. We explain this phenomenon in some
detail.
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1. Introduction. Recent studies show that, for several problems in analysis, results on
the unit ball �������
	���
�	�
������ in ��� and those on the standard simplex� � ����	���	���� �"!
#$#
#�!%	 � � �"!$�'&(	��)&+*$*
*�&(	 � �,�-�
in � � can often be deduced from each other or deduced from results on the unit sphere. � �/�
	+�0
1	2
3�4�5� in � �76 � , making use of elementary maps between the three domains
and symmetry of the polynomial spaces on these domains. Here and in the following, 
1	2

denote the Euclidean norm. Problems for which that has occurred all involve polynomials in
one form or other. They appear in the areas of orthogonal polynomials, approximation theory,
cubature formulas, and polynomial interpolation. The purpose of this paper is to explain this
phenomenon in some detail. We will mainly take orthogonal polynomials and best approxi-
mation by polynomials as examples, but will mention what else is known in this regard.

The unit sphere is a manifold without a boundary, it is homogeneous in the sense that
any point can be translated to any other point by a simple rotation. In contrast, the unit ball
and the simplex are manifolds with a boundary, points near the boundary are different from
points inside. Analysis on these two domains will have to catch the boundary behavior. This
consideration seems to indicate that the results on �8� and

� � should not be deducible from
those on

. � . The key, however, lies in the notion of weighted spaces. More specifically, we
will work with weighted 90: spaces on these domains. For the domain

. � we will consider
mainly the weight function ;=<> , where

(1.1) ; >�? 	=@A� �76 �BCED � F 	 C F >�G ! H C � �"!
which becomes zero on the coordinate plane 	 C �I� if H C8J � . Consequently, a functionK(L 9�: ? . �NM ;�<> @ can have singularities on the intersections of the sphere and the coordinates
planes. When we work with the weighted spaces, these intersections play the role of the
boundary on the sphere

. � . Corresponding to ;�<> , we have the weight function

(1.2) O�P>5Q R ? 	�@S� �BCED � F 	 C F > G ? �T&U
1	2
 < @ RWV �YX < !ZH C �+�[!]\(� �"!^
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defined on � � , where \_�`H �76 � , and the weight function

(1.3) Oba>5Q R ? 	=@A� �BCED � 	 > G V �YX <C ? �T&c	 � &,*
*$*�&(	 � @ RWV �YX < !ZH C �,�[!]\(�+�[!
defined on

� � . These are the weight functions that will be used in this paper. Many results
that we will discuss hold for more general weight functions, mainly for those weight functions
that are invariant under a finite reflection group. The weight function ; > in (1.1) is a special
case, which is invariant under the group d �e6 �< , and O P>5Q R in (1.2) is invariant under the groupd �< . We will not discuss the most general case in order to keep our exposition simple and keep
the main idea clear.

These three weight functions are closely related and the relation extends to orthogonal
polynomials and cubature formulas with respect to these weight functions, as explored in
[26, 27]. More recently, it has been realized that we can get a complete characterization for
the best approximation on � � and on

� � this way [34, 35, 36]. It is this latter development
that we choose as examples for the main idea. Our goal is to explain how results on the ball� � and on the simplex

� � can be derived. We will not give a complete survey of the results
known on these domains, neither will we state the results in their most general form.

The paper is organized as follows. The background and the basic relation between the
three domains are given in the next section. The results on orthogonal polynomials and ap-
proximation on the unit sphere are discussed in Section 3. The way to obtain results on the
unit ball and on the simplex is explained in Section 4 and in Section 5, respectively. Finally,
in Section 6, we give a brief account on other problems for which results on � � and on

� �
can be obtained from each other or from those on

. � .
2. Basic relations. Let f � ���'g 	��"!$#
#$#$!Y	 �$h be the space of polynomials of i real vari-

ables and let f �j be the subspace of polynomials of degree at most k . We also denote by l �j
the space of homogeneous polynomials of degree k . It is known thatm"npo l �j �rq ktsuiv&,�iw&,� x and

m-npo f �j �yq kzs{ii x #
2.1. Polynomial spaces on

. � and on � � . Denote by l j ? . � @ and f j ? . � @ the re-
striction of l �76 �j and f �76 �j on

. � , respectively. The polynomials in l j ? . � @ may not be
homogeneous. In fact, we havel �j � |}
~ <�� ~ j 
�	�
 j V <�� l j V <�� ? . � @
so that 
1	2
 j V <��1l j V <�� ? . � @���l �j . Let

. �6 denote the upper hemisphere of
. � . A simple-

minded relation between
. �6 and � � is as follows:

(2.1) 	 L � ���8� ? 	�!%	 �76 �
@ L�. �6 !�	 �76 ����� �T&U
1	2
 < #
Clearly, a similar relation holds for the lower hemisphere. The domain

. �6 induces a sym-
metry in the polynomial space. Let l 6j ? . � @ denote the subspace of elements in l j ? . � @ that
are even in its ? i�s`��@ -th coordinates. The mapping (2.1) leads immediately to the following
basic result:

LEMMA 2.1. For each k(� � the equation

(2.2) l j ? . � @0�`f �j�� 	 �76 �1f �j V �
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holds in the sense that for each � L l j ? . � @ there exist unique elements � L f �j and � Lf �j V � such that � ? 	�!%	 �76 � @0��� ? 	=@�s�	 �76 � � ? 	=@1! ? 	�!%	 �76 � @ L�. � #
In particular, there is a one-to-one correspondence between f �j and l 6j ? . � @ .

Proof. Let � L l j ? . � @ . We can write � ? 	�!%	 �76 �$@z����� � ? 	=@�	 � �76 � for some � � Lf �j V � . Using the fact that 	�<�76 � ����&�
1	2
�< , we have � ? 	�!Y	 �76 �
@0��� ? 	=@"s_	 �76 �1� ? 	�@ , where� L f �j and � L f �j V � . Clearly � and � are unique.
Using (2.1) as a change of variables leads immediately to the relation

(2.3) �[�W� K ?�� @�i5� ?�� @0� �� � P �w� K�� 	�!
� �T&U
1	2
 <$� s K�� 	�!$&v� �T& 
�	�
 <$�=  iN	� �T& 
�	�
 < !
where i5� is the surface measure on the sphere

. � .
These simple observations have important applications for orthogonal polynomials and

approximation by polynomials, as will be discussed in Section 4.

2.2. Polynomial spaces on � � and on
� � . We start with a simple mapping between� � and

� � . Let � �6 �¡�¢�
	 L � � �-	��3���"!
#$#$#$!%	 � ���"� be the positive quadrant of � � . A
simpleminded relation between � � and

� � is as follows:

(2.4) ? 	£��!$#
#$#$!Y	 � @ L � �6 �8� ? 	 < � !
#$#
#�!%	 < � @ L � � #
A polynomial � of the form � ? 	=@t�¤� ? 	=<� !$#$#
#$!Y	�<� @ is invariant under sign changes of its
coordinates; that is, it is invariant under the group ¥��¦d �< . Let § denote the map

(2.5) §U� ? 	£��!$#$#
#�!%	 � @ L � ��¨© ? 	 < � !$#
#$#$!Y	 <� @ L � � #
The domain � �6 can be looked upon as the fundamental domain for the polynomials invariant
under d �< . Let us define ¥ªf �< j �¡�b�Y� L f �< j ��� invariant under d �< �W#
The relation (2.4) leads to a correspondence between polynomial spaces:

LEMMA 2.2. The map § introduces a one-to-one correspondence between f �j and¥ªf �< j ; more precisely, � L f �j corresponds to �3«A§ L ¥ªf �< j .
Proof. If � L ¥ªf �< j then � is even in each of its variables. Hence, it is easy to see that� ? 	�@T�,� ? 	=<� !
#$#
#$!%	=<� @)� ? ��«)§'@ ? 	�@ for some � L f �j . The correspondence between � and� is evidently one-to-one.
Using (2.4) as a change of variables leads immediately to the relation

(2.6) � P � K ? 	 < � !$#$#
#�!%	 < � @�iN	���� a � K ? 	 � !
#$#$#$!%	 � @ iN	¬ 	���*
*$*%	 � #
These observations will play important roles in the study of orthogonal polynomials and

approximation by polynomials, which will be discussed in Section 5.

3. Analysis on the unit sphere. In this section we review results for orthogonal poly-
nomials and approximation with respect to the weight function ;�<> on the unit sphere

. � . The
weight function ; > is given in (1.1), which has singularity at the intersections of the sphere
and coordinate planes.
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3.1. Orthogonal polynomials on the sphere. Let ; > be defined as in (1.1). We con-
sider orthogonal polynomials with respect to the inner product­ K !�®"¯ > �°�U± > �"�W� K ? 	�@²® ? 	�@%; <> ? 	=@%i�� ? 	=@1!
where ±-³ is a constant such that ± V �>µ´ � � ;�<> ? 	=@�i5�/�µ� . Let ¶ j ? ;[<> @ denote the subspace
of orthogonal homogeneous polynomials of degree k with respect to this inner product. It
is known that

m-nEo ¶ j ? ;[<>W@3� m-nEo l �j & m-npo l �j V < . The elements of this space are called; -harmonics. If ; >�? 	�@¸·¤� , ¶ j ? ;�<> @ is the space of ordinary spherical harmonics of degreek . The weight function ; > in (1.1) is an example of a family of weight functions invariant
under reflection groups, for which the corresponding ; -harmonics enjoy properties similar to
those of ordinary spherical harmonics; see [9, 10] and the references therein.

We state the basic properties of ; -harmonics below. The essential ingredient is the Dunkl
operator ¹ � which, for ; > in (1.1), is defined by [9]

¹ � K ? 	=@0�¦º � K ? 	�@�s{H � K ? 	�@2& K ? 	���!$#
#$#�!
&T	 � !
#$#$#
!%	 �76 ��@	 � !»�ª�(¼½� i�s`�5#
These are first order differential-differenceoperators that maps l �j to l �j V � and they commute
with each other; that is, ¹ C ¹ � �¾¹ � ¹ C for ����¿7!À¼u�¾i3sb� . The ; -Laplacian is defined
by Á8Â_�¢¹3<� s�#$#
#Ns+¹3<�76 � ! which plays the role of the usual Laplacian: If � L ¶ j ? ;�<>N@ ,
then Á8ÂN�Ã�¢� . Furthermore, in spherical-polar coordinates 	{��ÄÅ	�Æ , Ä J � , 	=Æ L+. � , the; -Laplacian takes the form [30]

(3.1) Á Â � º�<º=Ä < s �5Ç s`�Ä ºº=Ä s �Ä < Á Â Q } ! where
Ç �¡� F H F s iª&+�� !

a formula similar to the spherical-polar form of the usual Laplacian. The operator Á]Â Q } is
called the spherical ; -Laplacian. When restricted to

. � , ; -harmonics are eigenfunctions ofÁ8Â Q } , that is,

(3.2) Á8Â Q }
È ? 	=@S��&Tk ? kzs �5Ç @ È ? 	=@�! 	 L_. � ! È L ¶ j ? ; < > @�#
The basic Hilbert space theory shows that 9'< ? ;�<> M . � @ can be decomposed as

9 < ? ; < > M . � @0�ZÉÊj D } ¶ j ? ; < > @)� K �ËÉ|j D }�Ì"ÍeÎ�Ï�ÐAÑ K !
where Ì"ÍeÎ�Ï%ÐAÑ is the projection operator from 9A< ? ;�<> @ onto ¶ j ? ;�<> @ . It is known that

(3.3) Ì"ÍeÎ�Ï%ÐAÑ K �¦± > � �Ò� K ?�� @�� j ? ; < > M 	�! � @%O <> ?Ó� @�i � !
where � j ? ; < > @ is the reproducing kernel of ¶ j ? ; < > @ (zonal ; -harmonic). The reproducing
kernel turns out to satisfy a compact formula [25]

(3.4) � j ? ; < > M 	�! � @0� Ç sukÇ Ô >zÕ×ÖªØj ? ­ 	�!$*¡¯%@²Ù ?Ó� @1!
where Ö Øj is the Gegenbauer polynomial of degree k and Ô > is the intertwining operator,
which is a linear operator uniquely determined by Ô > �¸��� and ¹ � Ô > �¦Ô > º � , ����¼½�+i�s]� .
For ; > in (1.1), it is known that Ô > satisfies [24]

(3.5) Ô > K ? 	=@A�`Ú > ��Û V � Q �²Ü ��ÝÒÞ K ? 	£�7ßY�Å!
#$#
#$!%	 �76 �7ß �76 ��@ �76 �BCED � ? �Asuß C @ ? ��&(ß <C @ > G V � i5ß1#
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The formula (3.4), just like the classical zonal harmonics, plays an important role in the
study of ; -harmonic expansions, which points out a connection to Gegenbauer expansions
and indicates a possible connection to functions of one variable.

3.2. Weighted approximation. We work with the space 90: ? ;�<> M . � @ that is equipped
with the norm


 K 
 >5Q : �¡� q ± > � �W� F K ? 	=@ F : ; < > ? 	=@%i�� x �%X :
for �à�(��á â and 
 K 
 É �UãYä Ì[å5æ � � F K ? 	=@ F for �]��â .

The equation (3.3) and the explicit formula (4.6) suggests the definition of the following
weighted convolution: For

K_L 9 � ? ;�<> M . � @ and ® L 9 � ?Óç Ø !�g×&ª�N!$� h @ ,
(3.6) ? K�è > ®"@ ? 	=@S�¦± > �"�Ò� K ?�� @%Ô > g ® ? ­ *p!Y	=¯%@ h ?Ó� @%; < > ?Ó� @�i5��#
For the surface measure ( ; > ? 	=@��¢� ), this is the spherical convolution in [8]. It satisfies the
usual properties of convolution. In particular, it satisfies Young’s inequality:

PROPOSITION 3.1. For
K�L 9)é ? ;[<> @ and ® L 9Aê ?Óç Ø M g×&ª�N!$� h @ ,
 K8è > ®£
 >�Q : ��
 K 
 >5Q é 
1®£
$ë=ì Q ê #

where ��!e�Ò!%Äw��� and � V � �UÄ V � su� V � &,� .
This shows that ? K½è > ®"@ ? 	=@ is finite for

K(L 9 � ? ;[<>W@ and ® L 9 � ?�ç Ø !
gp&ª�5!
� h @ . We note
that the projection operator Ì"ÍeÎ�Ï�Ð)Ñ in (3.3) can be written as a convolution of

K
with the

Gegenbauer polynomial Ö Øj , which indicates a possible reduction in the study of ; -harmonic
expansions to that of Gegenbauer expansions. We shall not pursue this line of study here; see,
for example, [29]. Instead, we use the convolution to define a weighted spherical means,

� >í ,
which is defined implicitly as follows:

Ú Ø �uî} � >í K ? 	�@²® ?Óï Î ã"ðN@ ? ã npñ ðW@ < Ø i5ð8�°� ? K�è > ®-@ ? 	�@1!
where ® is any 9 É ? gp&ª�5!$� h @ function and �8�{ð8�,ò . Young’s inequality can be used to show
that
� >í is well-defined. In the case of Hó��� , the weighted spherical means coincides with

the classical spherical means

(3.7)
� í K ? 	=@S� �ô � V � ? ã nEñ ðN@ � V � �=õ å Q ö$÷ D£ø�ùeú í K ?�� @%i���!

which was studied in [5, 18]. The weighted spherical means shares essentially all properties
of the classical spherical means [34], including those listed below:

PROPOSITION 3.2. The means
� >í K satisfy the following properties:

1. Let
K } ? 	�@S�b� ; then

� >í K } ? 	=@S��� .
2. If

K�û � Éj D } Ì[ÍYÎ5Ï Ð Ñ K , then� >í K]û É|j D } Ö Øj ?Óï Î ã-ðN@Ö Øj ? �Å@ Ì"ÍYÎ5Ï�Ð Ñ K #
3. For

K�L 9�: ? ;�<>N@ , �ª�c��á`â , or
KüL Ö ? . � @ ,
 � >í K 
 >5Q : ��
 K 
 >5Q : and ý nEoí7þ } 
 � >í K & K 
 >5Q : �U�[#
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The last property suggests immediately the following definition of a weighted modulus
of smoothness: For Ä J � and �ª�c���Uâ ,

(3.8) � ê ? K !%ß%@ >5Q : �°�»ãYä Ì}
ÿ í ~�� 
 ? � & � >í @ ê X < K 
 >5Q : #
For H,�/� , this coincides with the classical modulus of smoothness on the sphere that has
been used by many authors; see, for example, [5, 17, 18, 20] and the references therein. It
satisfies the usual properties of modulus of smoothness.

There is also a weighted K-functional, defined using the spherical ; -Laplacian Á]Â Q } in
(3.1): For Ä J � and �ª�ü���`â ,

(3.9) � ê ? K !Yß%@ >5Q : �°� nEñ��� � 
 K &c®£
 >5Q : s�ß ê 
 ? &¸Á Â Q } @ ê X < ®£
 >�Q :	� !
where the infimum is taken over the space of all ® L 90: ? ;�<> @ for which 
$Á Â Q } ® 
 : is finite.

Just as in the classical approximation theory, the weighted modulus of smoothness and
the weighted K-functional are equivalent [34].

THEOREM 3.3. For Ä J � , �ª�(���Uâ , and
KüL 90: ? ;[<> M . � @ ,Ú
�1� ê ? K M ß%@ >�Q : �
� ê ? K M ß%@ >5Q : �+Ú < � ê ? K M ß%@ >�Q : ! �8á{ß)á,ò�� � !

where Ú�� and Ú < are constants independent of
K

.
These two equivalent gadgets can be used to characterize the best approximation by

polynomials [34]. For
K�L 9 : ? ; < > M . ��@ , �ª�ü���`â , we denote by

(3.10) 
 j ? K @ >5Q : �°� nEñ���� 
 K &ó�z
 >5Q : �5� L f j ? . � @��
the error of best approximation by polynomials in the weighted 9S: space.

THEOREM 3.4. For
K_L 9�: ? ;�<> M . � @ , �ª�c���Uâ ,

(3.11) 
 j ? K @ >5Q : � Ú=� ê ? K M k V � @ >5Q :
and, on the other hand,

� ê ? K !%k V � @ >5Q : � Ú�k V ê j|³ D } ?�� sU�Å@ ê V � 
 ³ ? K @ >5Q : #
In other words, both direct and inverse theorems for the best approximation hold.

These results provide a complete characterization of the best approximation by polyno-
mials. For the surface measure on

. � ( H]�`� ), they were proved in [20], which brings a long
investigation with various early results obtained by many other authors to a completion. See
the results in [5, 15, 17, 18, 20] and the references therein. The proof of these two theorems
are rather involved.

Let us mention one result that will be used to explain how to obtain results on the ball
and on the simplex. Let � L Ö ³ g �"!7sªâ,@ be a function defined by � ? 	=@��¤� for ���b	u���
and � ? 	=@A�U� if 	_� � . Define a sequence of operators � j for k J � by

(3.12) � j K �¡� É|³ D } � � �k � Ì[ÍYÎ5Ï Ð�� K #
Since � ?�� � k�@)��� if � � � k , the series is finite and � j K is a spherical polynomial of degree
at most

� k�& � . Furthermore, the operator � j preserves polynomials of degree k . The main
properties of � j are given in the following proposition:

PROPOSITION 3.5. Let
K�L 9�: ? ;�<>N@ , �à�c���Uâ . If � ��� Ç�� s`� then
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1. � j KüL f < j V � ? . � @ and � j �b�¦� for � L f j ? . � @ ;
2. for k J � , 
�� j K 
 >5Q : � Ú5
 K 
 >�Q : ;
3. for k J � , 
 K &�� j K 
 >5Q : � Ú�
 j ? K @ >5Q : #

This proposition was proved in [34], where we assume that � is in Ö É . The proof is
based on the boundedness of the Cesàro ? Ö !���@ -means for the ; -harmonic expansions, which
holds if � J Ç as shown in [24]. This gives the condition � ��� Ç�� s�� . For the Lebesgue
measure ( H,�/� ), the definition of the operator � j K appeared first in [14] and it played an
important role in [20].

4. Analysis on the unit ball. Our goal in this section is to show how the results on � �
can be deduced from those on

. � . We consider analysis in the weighted space 90: ? O P>5Q R @ on� � , where O P>5Q R is given in (1.2), which has the norm


 K 
� "!#�$ % Q : �°�yq[± P>5Q RT� P � F K ? 	�@ F : O P>5Q R ? 	=@%i5	 x
�YX :

for �z� �uá â , and 
 K 
 É ��ãYä Ì å5æ P � F K ? 	=@ F for �ó�¢â , where ± P >5Q R is the normalization
constant of the weight function O P>5Q R .

Frequently we will refer to the results in the previous section. For this purpose it is more
convenient for us to refer to those results in terms of the weight function

; >�Q R ? 	=@'�°� �BCED � F 	 C F >�G F 	 �76 � F R �'& ; > ? 	���!$#$#
#$!Y	 � @ F 	 �76 � F R !
which is the weight function ; > defined in (1.1) with H �76 �ª��\ , where we use the notation& ; > ? 	=@'�)( �CED � F 	 C F > G for 	 L � � . Note that & ; > is ; > in (1.1) with iàs`� replace by i . Thus,
when we refer to the results in the previous section, we will replace ; > by ; >5Q R . Furthermore,
whenever we refer to a notion that appeared in the previous section and denoted by a notation
that contains a subindex H , we will then replace H by H�!%\ . For example, we will use Ô >5Q R
to denote the intertwining operator in (3.5) associated with ; >�Q R and use

è >5Q R to denote the
convolution in (3.6) associated with ; >5Q R .

4.1. Orthogonal polynomials on � � . Under the mapping (2.1), the weight functionsO P³ Q R at (1.2) is related to the weight function ; >�Q R by the following relation:

(4.1) ; < >5Q R ? 	�!Y	 �76 � @1! ? 	�!%	 �76 � @ L�. �6 �8� O P>5Q R ? 	�@1!Ë	 L � � #
We consider the inner product on the unit ball­ K !�®"¯ P �¦± >5Q R � P � K ? 	=@²® ? 	�@%O P>5Q R ? 	=@%i5	�!
where ± >5Q R is the normalization constant of O >5Q R . Let * j ? O P>�Q R"@ denote the space of orthog-
onal polynomials of degree k with respect to

­ K !�®"¯ P . Several explicit bases of * j ? O P>�Q R"@ are
known explicitly; see, for example, [10]. In the case of the classical weight functionO R ? 	=@S� ? �T&U
1	2
 < @ RWV �YX < ! 	 L � � !
which is the same as O P} Q R ? 	=@ , some of these bases can be traced back to Hermite; see [3, 11].
What we need, however, is the relation between orthogonal polynomials on � � and those on. � . This relation follows as a consequence of Lemma 2.1.

PROPOSITION 4.1. Write � �UÄ ? 	�!%	 �76 � @ , Äv� 
 � 
 and 	 L � � . Then¶ j ? ; < >5Q R M . � @0�+* j ? O P>5Q R"@-,u	 �76 �.* j V � ? O P>5Q R 6 � @1#
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More precisely, if ��� j/ � is a basis of * j ? O P>5Q R-@ and �10 j V �/ � is a basis of * j V � ? O P>�Q R 6 � @ , then
the functions Ä j � j/ ?�� � !$#
#$#
! � � @ and Ä j � �76 � 0 j V �/ ?Ó� � !
#$#$#
! � � @ are homogeneous polynomials
and their restriction on

. � form a basis for ¶ j ? ;�<>5Q R�! . � @ .
The proposition establishes the relation between orthogonal polynomials on the sphere

and those on the unit ball. It shows, in particular, that

* j ? O P>�Q R @0�¦ã Ì	2 ñ � � � 	�!
� �T& 
�	�
 < � �½� L ¶ j ? ; < >5Q R M . � @�!Y� is even in 	 �76 � � #
In other words, orthogonal polynomials with respect to O P>5Q R on � � correspond one-to-one
to spherical ; -harmonics associated with ;�<>�Q R that are even in 	 �76 � . Note that the ordi-
nary spherical harmonics on

. � corresponds to the orthogonal polynomials with respect toO } ? 	�@(� ? ��&¢
1	2
�<
@ V �YX < on � � , while the orthogonal polynomials with respect to the
Lebesgue measure iN	 on � � correspond to the ; -spherical harmonics associated to

F 	 �76 � F i5�
on
. � .

The mapping (2.1) goes deeper than just inducing a correspondence. It turns out that,
under this mapping, the spherical ; -Laplacian Á Â Q } in (3.1) becomes [30]

(4.2) 3tP>�Q R �¡��Á Â & ­ 	�!548¯ < & �5Ç R ­ 	�!�48¯1! Ç R �°� F H F su\½s iv&+�� !
where 4 � ? º[�Å!$#
#$#
!Yº � @ is the gradient and Á½Â is the ; -Laplacian associated to & ; > . The
orthogonal polynomials in * j ? O P>5Q R"@ become eigenfunctions of 3 P>5Q R , see (3.2),

(4.3) 3 P>5Q R ����&Tk ? kzs �NÇ R @��'! � L * j ? O P>�Q R @�#
For the classical weight function O R , H�� � , this is the second order partial differential
equation satisfied by the classical orthogonal polynomials on � � .

Because of the equation (2.3) and the mapping (2.1), we define an operator

(4.4) Ô P>5Q R K ? 	�!%	 �76 � @A�UÚ R � �V � &Ô > g K ? *p!Y	 �76 � ß%@ h ? 	=@ ? ��&cß < @ RWV � iNß1!�	 L � � !
where &Ô > is the intertwining operator for & ; > and it is given explicitly in (3.5) with i8s �
replaced by i . Recall that Ô >5Q R denote the intertwining operator for ; >5Q R . The new operator
is simply g Ô >�Q R�? 	�!%	 �76 � @�s{Ô >5Q R£? 	�!$&T	 �76 � @ h � � .

Using (2.3) and (3.4), the reproducing kernel � j ? O P>5Q R M 	�! � @ of * j ? O P>5Q R @ becomes

(4.5) � j ? O P>�Q R M 	�! � @0� kts Ç RÇ R Ô P>5Q R Õ Ö Øj ? ­ *E! È ¯Y@ Ù ?76 @1!
where 6 � ? 	�! � �T&U
1	�
 < @ and È � ?�� ! � �T&U
 � 
 < @ with 	�! � L �3� , which is an integral
formula according to the explicit formula (3.5). In particular, for the classical weight functionO R , the explicit integral formula becomes [28]

� j ? O R M 	�! � @0�¦Ú R kts Ç RÇ R � �V � Ö Ø %j � ­ 	�! � ¯�s¦� �T&U
1	2
 < � �T&U
 � 
 < ß � ? �T&(ß < @ RWV � i5ß1!
where

Ç R �U\ts � V �< . The projection operator 9)< ? O P>5Q R @ © * j ? O P>
R @ is defined by

(4.6) Ì"ÍeÎ�Ï985Ñ;: P�< K ? 	�@)�¡�¦± >5Q R � P � K ?�� @�� j ? O P>5Q R M 	�! � @%O P>�Q R ?Ó� @�i � #
The explicit formula (4.5) of the reproducing kernel plays an important role in the study of
the convergence of orthogonal expansions on � � .
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4.2. Weighted approximation on the ball. The operator Ô P>5Q R can be used to define,
setting 	 �76 �_� � �T&U
1	2
 < , a convolution structure

è P >5Q R between
K L 9 � ? O > @ and ® L9 � ?�ç Ø % M gp&ª�5!$� h @ , just as in (3.6),

(4.7) ? K8è P>5Q R ®"@ ? 	�@S� � P � K ?�� @%Ô P>5Q R g ® ? ­ *p! 6 ¯%@ h ? È @%O P>5Q R ?Ó� @�i � ! 6 � � 	�!
� �T&U
1	�
 < � #
The equation (4.5) and (4.6) show that Ì"ÍeÎ�Ï 8NÑ;: P�< can be written as a convolution of

K
with

the Gagenbauer polynomial Ö Ø %j under
è P >5Q R . It turns out that this convolution structure is

related to the convolution structure
è >5Q R on the unit sphere:

(4.8) ? K8è P>5Q R�®-@ ? 	=@A� ?�= è >�Q R ®-@ � 	�!
� �T&U
1	�
 <$�
where = is defined by =½? 	�!%	 �76 �
@½�°� K ? 	=@ . Clearly we can also take this equation as the
definition of

è P >�Q R . It follows immediately from (2.3) that
Küè P>5Q R ® also satisfies Young’s

inequality. We can define an analogue of the weighed spherical means,
� Pí , as follows: ForKüL 9 � ? O P>5Q R"@ , the operator

� Pí K is defined implicitly by

(4.9) > Ø �uî} � Pí K ? 	=@�® ? ï Î ã"ðN@ ? ã nEñ ðN@ < Ø 6 < R iNðv� ? K8è P>5Q R�®-@ ? 	=@
for every ® L 9 � ?�ç Ø !
gp&ª�5!
� h @ . Since the convolutions on � � and on

. � are related by (4.8),
it follows readily that the following relation holds:

(4.10)
� Pí K ? 	=@A� � >í = � 	�!
� �T& 
�	�
 < � ! 	 L � � !

where =½? 	�!Y	 �76 �$@0� K ? 	�@ , which can also be taken as the definition of
� Pí . As a consequence

of this relation, the properties of this operator follows immediately from those of
� >5Q Rí in

Proposition 3.2:
PROPOSITION 4.2. The means

� Pí K satisfy the following properties:
1. Let

K } ? 	�@S�b� ; then
� Pí K } ? 	=@S��� .

2. If
K�û � Éj D } Ì[ÍYÎ5Ï 85Ñ?: P�< K , then� Pí K�û É|j D } Ö Øj ?Óï Î ã-ðW@Ö Øj ? ��@ Ì"ÍeÎ�Ï@8 Ñ : P�< K #

3. For
K�L 9 : ? O P>�Q R @ , �ª�ü��á`â , or

KüL Ö ? ���Å@ ,
 � Pí K 
� !#.$ % Q : �b
 K 
� !#.$ % Q : and ý nEoí7þ } 
 � Pí K & K 
A !#.$ % Q : �`�[#
The operator

� Pí is called the generalized translation operator in [36], since the prop-
erty 2 in the Proposition 4.2 implies that

Ì[ÍYÎ5Ï98 Ñ : P�< � Pí K � Ö Øj ?Óï Î ã[ðN@Ö Øj ? ��@ Ì"ÍeÎ�Ï@8 Ñ : P�< K
which becomes, when iu�r� and H+�4� , the property satisfied by the translation operator�-B

for the Gegenbauer weight function ç Ø ? ß%@v� ? ��&,ß�<
@ Ø V �%X < on gp&ª�5!
� h . The translation
operator

�-B
is usually defined by

(4.11)
� B K ? ß%@0�C> Ø V �YX < � �V � K��1D ß£sFE � �T& D < � �T&cß <
� ? �T&�E < @ Ø V � iGE�!
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which plays an important role in the study of orthogonal expansions in Gegenbauer polyno-
mials; see, for example, [4, 5, 7, 18, 22]. For i+� � and H¦�r� , we have

� Pí � � ø�ùeú í .
Furthermore, in [36] an analogue of (4.11) is found for the classical weight function O R :

PROPOSITION 4.3. Let H ? 	=@ be the unitary matrix whose first column is 	I�"
�	�
 and3 ? 	�@w� m-n 2KJ � � �T&U
1	2
 < !
�5!$#
#$#�!
��� . Then the generalized translation operator for O R is
an integral transform� Pí K ? 	=@S�`± R � P � K ? ï Î ã-ð�	�s{ã nEñ ð � 3 ? 	=@LH ? 	=@Y@ ? �T& 
 � 
 < @ RWV � i � !
where � is considered as a row vector and � 3 ? 	�@ is the matrix multiplication.

The mapping (2.1) and (4.10) can be used to give an integral equation for the weighted
spherical means

� >í for the weight function ; >�? 	=@à� F 	 �76 � F R on the sphere
. � . We do not

know if such an integral formula holds for
� Pí with respect to the weight function O P>5Q R or

equivalently for
� >í for ;�<> defined in (1.1).

As a consequence of the property 3 of the Proposition 4.2 we can define a modulus of
smoothness on � � as follows: For Ä J � , �ª�c���Uâ , and

KüL 90: ? O P>5Q R"@ ,
(4.12) � ê ? K !%ß%@L !#.$ % Q : � ãYä Ì}
ÿ í ~M� 
 ? � & � Pí @ ê X < K 
A !#.$ % Q : #
By (4.10), this modulus of smoothness is related to the modulus � ê ? K M ß%@ >5Q RWQ : associated with; >5Q R as defined in (3.8). In fact, we have

(4.13) � ? K M ß%@� !#.$ % Q : �U� ê ?N= M ß%@ >5Q RWQ : ! =½? 	�!%	 �76 �$@0� K ? 	�@1#
Hence, properties of � ê ? K M ß%@  !#.$ % Q : follow from those satisfied by � ê ? K M ß%@ >�Q RWQ : .

Using the differential-difference operator 3 P>5Q R in (4.2), we can also define a K-functional
as follows: For

KüL 9 : ? O P>5Q R @ , Ä J � ,
(4.14) � ê ? K M ß%@L !#.$ % Q : �°� nEñ�� � 
 K &c® 
� !#.$ % Q : suß ê 
 ? &O3 P>5Q R @ ê X < ® 
� !#.$ % Q : � !
where the infimum is taken over all ® L 90: ? O P>�Q R @ for which 
 ? &O3 P>5Q R @%ê X <�®£
A "!#.$ % Q : is finite.
Since the operator 3 P>�Q R is deduced from that of Á½Â Q } , there is also a connection between the
K-functionals � ê ? K M ß%@� "!#.$ % Q : and � ê ? K M ß%@ >�Q RWQ : associated with ; >5Q R as defined in (3.9). If
fact, we also have

(4.15) � ? K M ß%@L P!#.$ % Q : �Q� ê ?N= M ß%@ >5Q RWQ : ! =½? 	�!%	 �76 � @0� K ? 	�@1#
Consequently, the following equivalence follows from Theorem 3.3 right away:

THEOREM 4.4. For
K_L 9�: ? O P>5Q R @ , �à�(��� â ,Ú��7� ê ? K M ß%@  "!#.$ % Q : �R� ê ? K M ß%@  P!#.$ % Q : �,Ú < � ê ? K M ß%@  "!#.$ % Q : !

where Ú�� and Ú < are constants independent of
K

.
Again these two gadgets can be used to characterize the best approximation by polyno-

mials. For
K_L 9�: ? O P>5Q R @ , �à�c���Uâ , let


 j ? K @  !#.$ % Q : �¡� nEñ�� � 
 K &ó�z
  !#.$ % Q : �N� L f �j �
denote the error of the best approximation by polynomials of degree at most k . Using the
basic relations (2.1) and (2.2), we can prove that
 j ? K @L !#.$ % Q : �Q
 j ?�= @ >5Q RWQ : ! =½? 	�!Y	 �76 �
@0� K ? 	=@�#
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Consequently, the following theorem follows immediately from Theorem 3.4.
THEOREM 4.5. For

KüL 9�: ? O P>5Q R @ , ���(��� â ,


 j ? K @� !#.$ % Q : � Ú=� ê ? K M k V � @L !#.$ % Q : #
On the other hand,� ê ? K M k V � @� !#.$ % Q : �+Ú�k V ê j|³ D } ?S� sU�Å@ ê V � 
¸³ ? K @� !#.$ % Q : #

To further illustrate how the results on the unit ball can be derived from those on the
sphere, we state and prove a theorem analogous to Proposition 3.5. Let � L Ö ³ g �"!1â{@ as in
(3.12). We define a sequence of operators � Pj by

(4.16) � Pj K �¡� É|³ D } � � �k � Ì"ÍeÎ�Ï 8 � : P�< K #
PROPOSITION 4.6. Let

K�L 9�: ? O P>5Q R"@ , �c���¦áÃâ , and
K�L Ö ? � � @ if � � â . If� ��� Ç�� s`� then

1. � Pj KüL f < j V � and � Pj ���`� for � L f j ;
2. for k J � , 
�� Pj K 
� !#�$ % Q : �+Ú5
 K 
A !#.$ % Q : ;
3. for k J � , 
 K &�� Pj K 
  P!#.$ % Q : �,Ú�
 j ? K @  P!#.$ % Q : #

Proof. Using the definition of the operator Ô P> , it follows easily from (3.4) and (4.5) that

� j ? ObP>5Q R�M 	�! � @0� �� � � j ? ; < >�Q R=M ? 	�!�� �T& 
�	�
 < @1! ?Ó� !
� �T& 
 � 
 < @%@(4.17) s�� j ? ; < >�Q R M ? 	�!�� �T&U
1	2
 < @1! ?Ó� !$&v� �T& 
 � 
 < @%@   !
from which we derive from (3.3) and (4.6) that the following relation holds:

Ì[ÍYÎ5ÏT8 Ñ : P�< K ? 	�@0� Ì"ÍeÎ�Ï Ð)Ñ = � 	�!
� �'&U
�	�
 <�� ! =½? 	�!%	 �76 ��@T�¡� K ? 	=@�#
Consequently, � Pj K ? 	=@0�Q� j =½? 	�! � �T&U
1	�
 < @ , from which the stated results follow from the
equation (2.3) and Proposition 4.6.

5. Analysis on the simplex. In this section we show how results on the simplex can be
deduced from those on the ball. Since the basic relation (2.4) amounts to a non-linear change
of variables, the deduction is more complicated than the deduction from the sphere to the ball.

Recall the weight function O a>5Q R given in (1.3). We will consider 90: ? O a>5Q R @ space with
norm 
)*N
A "U#.$ % Q : defined similarly as 
A*W
A P!#.$ % Q : . Recall the map § in (2.5). Using (2.6), it is
easy to see that

K�L 9�: ? O a>5Q R @ is equivalent to
K «A§ L 9�: ? O P>5Q R @ ; furthermore, we have
 K 
� PU#.$ % Q : ��
 K «A§�
A "!#.$ % Q :

5.1. Orthogonal polynomials on the simplex. Under the mapping § , O a>5Q R ? 	=@ ,	 L � � , becomes O P>5Q R ? 	�@ , 	 L � � , since the Jacobian of changing variables from 	 ¨© § ? 	=@
is
� V � ? 	£�2*
*$*%	 � @ V �YX < . Let * j ? O a>5Q R @ denote the space of orthogonal polynomials of degreek with respect to the inner product­ K !�®"¯ a �°�`± >5Q R � a � K ? 	�@²® ? 	=@YOba>5Q R ? 	=@%i5	
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on
� � . Under the mapping (2.5), the inner product

­ *E!$*¡¯ a is related to
­ *E!$*¡¯ P by­ K !�®"¯ a � ­ K «A§¸!%®à«A§)¯ P !

from which the relation between * j ? O a>5Q R @ and * j ? O P>5Q R @ follows immediately. Let us define¥V* < j ? O P>�Q R @)�°�+* < j ? O P>5Q R @IW]¥ªf < j on � � , which contains polynomials in * < j ? O P>�Q R @ that
are invariant under d �< (invariant under sign changes).

PROPOSITION 5.1. The mapping (2.5) induces an one-to-one correspondence betweenX L * j ? O a> @ and
X «A§ L ¥V* < j ? O > @ .

Since
K «Ò§ is invariant under d �< , the mapping § also translates the operator 3 P>5Q R defined

in (4.2) to the differential operator 3 a>5Q R [30] defined by

(5.1) 3za>5Q R �¡� �| CED � 	 C ? �T&(	 C @�º <C & � |� ~ C ÿ � ~ � 	 C 	 � º C º � s
�| CED � q � H C s �� � & Ç R 	 C x º C !

and the orthogonal polynomials in * j ? O a>5Q R @ are the eigenfunctions of 3 a>5Q R ,
3za>2�b��&Tk ? kzs Ç R @��'! � L * j ? Oba>�Q R"@�#

This is the classical partial differential equations satisfied by orthogonal polynomials on
� � .

Since the elements in ¥V* < j ? O a>5Q R @ are of the form
X «5§ with

X L * j ? O a>5Q R @ , the reproducing
kernel of * j ? O a>5Q R @ satisfies

(5.2) � j ? Oba>5Q R M 	�! � @0� � V � |Y æ[Z �\ � < j ? O P>�Q R M 	 �YX < !@] � �YX < @
where 	 �%X <,�¡� ? ¬ 	��Å!
#$#
#$! ¬ 	 � @ and ]1E�� ? ]N��E£� !$#$#
#$!9] � E � @ . This equation suggests the
definition of the following operator defined on functions on � �76 � ,
(5.3) Ôva>�Q R =½? 	�!%	 �76 � @0� � V � |Y æ[Z �\ Ô P>5Q R =½? ] 	�!%	 �76 � @1!
where Ô P>�Q R is defined in (4.4). Using the fact that Ö Øj ? ß%@���Ú�� : Ø V �YX < Q¡V �YX < <j ? � ß�<¸&U��@ , whereÚ is a constant and � : / Q ^ <j denotes the orthonormal Jacobi polynomial of degree k , it follows
from (5.2) and (5.3) that

(5.4) � j ? O a>5Q R M 	�! � @0�u� : Ø % V Þ\ Q¡V Þ\ <j ? �Å@%Ô a>5Q R � � : Ø % V Þ\ Q¡V Þ\ <j � � ­ *E! È �YX < ¯ < &,� ��  ?N6 �%X < @1!
where 6 �YX <ª�`_ ¬ 	£� !
#$#
#$! ¬ 	 � ! ¬ �T&c	£�)&,*
*$*N&c	 �Aa and È �YX < is defined similarly. By the
definition of Ô P>5Q R and the equation (3.5), this gives an explicit compact formula for the kernel.
Again, the projection operator 9 < ? O a>5Q R @ © * j ? O a>5Q R @ is defined by

Ì"ÍYÎ5Ï 8 Ñ : a < K ? 	�@)�¡�¦± >5Q R � a � K ?�� @�� j ? Oba>5Q R M 	�! � @%Oba>�Q R ?Ó� @�i � #
The formula (5.4) of the reproducing kernel plays an essential role in the study of orthogonal
expansions on

� � . It shows, in particular, that the expansions on
� � are connected to Jacobi

expansions, rather than Gegenbauer expansions.
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5.2. Weighted approximation on the simplex. Using the operator Ô a>5Q R , we can define
a convolution

KTè a>5Q R ® for
K_L 9 � ? O > @ and ® ? � �W*×�Å<�&���@ L 9 � ?�ç Ø !
gp&ª�5!$� h @ on

� � as in (4.7).
The basic mapping (2.5) shows that

(5.5) _ ? K8è a>5Q RT®"@�«A§ a ? 	�@S� � ? K «A§'@ è P >5Q RT® � � �W*×� < &+� �£� ? 	�@1!
which can also be taken as a definition of

è a >5Q R . The equations (5.4) shows that Ì"ÍeÎ�Ï 8 Ñ : a < can
be written as a convolution of

K
and the Jacobi polynomial. Using the convolution, we can

define an analogue of a generalized translation operator
� aí by

(5.6) > Ø � î} � aí K ? 	=@²® ?Óï Î ã � ðN@ ? ã npñ ðN@ < Ø % iNðw� ? K�è a>�Q R ®-@ ? 	�@
for every ® L 9 � ?�ç Ø !
gp&ª�5!$� h @ . Note that we have ® ? ï Î ã � ðN@ in contrast to ® ?Óï Î ã-ðN@ in (4.9),
which comes from

� ï Î ã%<£ðª&+��� ï Î ã � ð . From the relation (5.5) it follows that

(5.7) _ ? � aí K @ «A§ a ? 	=@S� � Pí ? K «A§'@ ? 	�@1! 	 L � � !
from which the properties of

� aí follows from those in Proposition 4.2.
PROPOSITION 5.2. The means

� aí K satisfy the following properties:
1. Let

K } ? 	�@S�b� ; then
� aí K } ? 	=@S��� .

2. If
K�û � Éj D } Ì[ÍYÎ5Ï98 Ñ : a < K , then

� aí K�û É|j D } � : Ø V
Þ\ Q¡V Þ\ <j ?Óï Î ã � ðW@� : Ø V Þ\ Q¡V Þ\ <j ? ��@ Ì"ÍeÎ�Ï 8 Ñ : a < K #

3. For
K�L 9�: ? O a>�Q R-@ , �ª�ü��á`â , or

KüL Ö ? � � @ ,
 � aí K 
  U#.$ % Q : �b
 K 
  U#.$ % Q : and ý nEoí7þ } 
 � aí K & K 
  U#.$ % Q : �U�[#
Just like the case of � � , the last property of this proposition suggests the following

definition of a modulus of smoothness on
� � : For Ä J � and �ª�ü���`â ,

(5.8) � ê ? K !Yß%@L U#�$ % Q : �»ãYä Ì}
ÿ í ~�� 
 ? � & � aí @ ê X < K 
A U#.$ % Q : #
Under the mapping (2.5) the relation (5.7) and (4.12) immediately show that

(5.9) � ê ? K !%ß%@  U#.$ % Q : �+� ê ? K «A§¸!Yß%@  !#�$ % Q : #
As in the case of � � , we can use the operator 3 a>5Q R in (5.1) to define a K-functional as

follows: For
K�L 9 : ? O a>5Q R @ , Ä J � ,

(5.10) � ê ? K M ß%@L "U#�$ % Q : �¡� npñ�� � 
 K &ü® 
� "U#�$ % Q : suß ê 
 ? &O3 a>5Q R @ ê X < ®£
A "U#.$ % Q : � !
where the infimum is taken over all ® L 90: ? O a>5Q R @ for which 
 ? &O3 a>5Q R @�ê X <�®£
  "U#.$ % Q : is finite.
Since 3 a>5Q R is obtained from 3 P>5Q R by a change of variable (2.5), it follows that

(5.11) � ê ? K M ß%@� U#.$ % Q : �+� ê ? K «A§ M � ß%@� !#.$ % Q : !
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Consequently, the following equivalence follows from Theorem 3.3 right away:
THEOREM 5.3. For

K_L 9�: ? O a>5Q R @ , �à�(��� â ,Ú��7� ê ? K M ß%@L U#.$ % Q : �R� ê ? K M ß%@L U#.$ % Q : �,Ú < � ê ? K M ß%@� U#.$ % Q : !
where Ú�� and Ú < are constants independent of

K
.

As before, the two gadgets can be used to characterize the best approximation by poly-
nomials. For

KüL 9�: ? O a>5Q R @ , �à�(��� â , let


 j ? K @  U#.$ % Q : �¡� nEñ�� � 
 K &ó�z
  U#.$ % Q : �N� L f �j �
denote the error of the best approximation by polynomials of degree at most k . Using (2.5)
and taking into consideration of the symmetry of � «A§ , we can show that


 j ? K @  "U#.$ % Q : �b
 j ? K «A§)@  "!#.$ % Q : #
Hence, the following characterization follows immediately from Theorem 4.5 and (5.9):

THEOREM 5.4. For
K_L 9�: ? O a>5Q R @ , �à�(��� â ,


 j ? K @L U#.$ % Q : �,Ú=� ê ? K M k V � @� U#.$ % Q : #
On the other hand,� ê ? K M k V � @� U#.$ % Q : �,Ú�k V ê j|³ D } ?�� s`��@ ê V � 
 ³ ? K @L U#�$ % Q : #

5.3. Additional difficulty for analysis on the simplex. In the above discussion we put
our emphasis on the similarity between results on the ball and on the simplex. In fact, most of
the results on these two domains appear to be equivalent in the sense that they can be deduced
from each other, and both can be deduced from the results on the sphere. However, for certain
problems, the simplex is more difficult to work with. The difficulty appears in the connection
between � j ? O a>5Q R M *p!
* @ and � < j ? O P>5Q R M *E!$*¡@ shown in (5.2), which forces us to switch fromÖ Øj ? ß%@ to � : Ø V �%X < Q �%X < <j ? ß%@ as in (5.4). As a consequence, the results for certain problems on

� �
will not follow as an exact consequence of those on � � . This is so especially for the study of
orthogonal expansions.

To illustrate this point, let � L Ö ³ g �"!7â,@ as in (3.12) and define operators � aj by

(5.12) � aj K �°� É|³ D } � � �k � Ì"ÍeÎ�Ï 8 � : a < K #
The main properties of � aj K is the following theorem analogous to Proposition 4.6:

PROPOSITION 5.5. Let
K�L 9�: ? O a>5Q R @ , �c����á4â , and

K�L Ö ? � � @ if �`� â . If� �c� Çd� s`� then
1. � aj KüL f < j V � and � aj ���¦� for � L f j ;
2. for k J � , 
�� aj K 
� U#.$ % Q : �+Ú5
 K 
A U#.$ % Q : ;
3. for k J � , 
 K &�� aj K 
  "U#�$ % Q : �+Ú�
 j ? K @  "U#�$ % Q : #

This theorem, however, does not follow as a consequence of Proposition 4.6. In fact,
the relation (5.4) shows that Ì"ÍeÎ�Ï 8 � : a < is related to Ì[ÍYÎ5Ï 8 \ � : P�< , which shows that there is no
direct relation between � aj and � Pj , as each is a sum over � from � to k . The proof of this
theorem can be modeled after the proof of Proposition 3.5 in [34], which goes back to [14].

The same phenomenon also appears when we try to find the critical index of the Cesàro? Ö !���@ -means of the orthogonal expansions. In fact, for O P>�Q R on � � , the sharp critical index
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was established in [16], whiles for O a>5Q R on
� � the result was not established for all parameter

ranges. The study of ? Ö !L��@ -means of orthogonal expansions on
� � does not follow from the

one on � � . See [16] for details.
For i+��� , O a> ? 	=@t� 	 > Þ V �%X < ? �w&+	=@ > Þ V �%X < is the Jacobi weight function on g �"!$� h .

However,
� aí is not the usual translation operator associated with the product formula of the

Jacobi series. In fact, it corresponds to the “wrong” product formula

� : / Q ^ <j ? 	=@%� : / Q ^ <j ?�� @0�¦Ú j � �V � � �V � Ö / 6 ^ 6 �< j ?Ne=? ß1! D !%	�! � @%@ ? �T& D < @ / V �YX < ? �¸&cß < @ ^"V �%X < i D i5ß
where e=? ß1! D ! ï Î ãÒð"! ï Î ã	f�@)� ï Î ã-ð ï Î ã	f D suã nEñ ð0ã nEñ f[ß . Finally, we mention that it would be
interesting to find if

� aí can be written as an integral transform, like the formula of
� Pí forO R in Proposition 4.3.

6. Other problems on the unit ball and on the simplex. Besides orthogonal polyno-
mials and approximation discussed in the previous sections, the connection between

. � , � �
and
� � can be useful in several other problems in analysis. In this section we briefly discuss

three other problems.

6.1. Polynomial of least deviation from zero. For 	,� ? 	 � !$#
#$#�!Y	 � @ L � � and g��? g � !$#$#
#�!Lg � @ Lih �} , we define the monomial 	 / �¦	 / Þ� *
*$*�	 / �� . The degree of the monomial	 / is
F g F �jg � s�#
#$#[s)g � . Let k be a region in � � . If � � ? 	�@ is a polynomial of best

approximation to the monomial 	 / in the uniform norm on k , then 	 / &�� � ? 	=@ is called the
polynomial of least deviation from zero. We shall also call � � ? 	=@ a least polynomial.

Using the basic relations (2.1) and (2.5) between the three domains and the relations
between polynomial spaces as given in Lemma 2.1 and Lemma 2.2, one can often reduce the
problem of finding least polynomials on �½� to that of

. � and to that of
� � . As an illustration

we state one such result [32].
THEOREM 6.1. Let g L'h �} and write

� g � ? � g���!$#
#$#�! � g � @ and
F g F �¢k . If � � ? 	=@ is

a least polynomial for 	 / on
� � , then � � ? 	�<� !$#
#$#
!%	�<� @ is a least polynomial for 	�< / on � � ;

conversely, if � � is a least polynomial for 	�< / on � � in the form � � ? 	�@���� � ? 	=<� !
#$#$#
!%	=<� @ ,then � � ? 	�@ is a least polynomial for 	 / on
� � .

For i+� � , the least polynomials to 	 j �;l from f�<j 6 l V � on the domain �3< and
� <

were known. Their relation as stated in the theorem was used in [6]. For i J � , only a few
examples of least polynomials were known, see [1, 2, 19, 21, 32]. The above theorem can be
used to find least polynomials for monomials of lower degrees. It shows, in particular, that in
order to find a least polynomial for 	�< / on � � , it is enough to work with 	 / , which has lower
degree, on

� � . For example, one least polynomial for 	��1	 < 	Mm on
� m is given by [32]X m ? 	�@S�)n � 	 � 	 < 	 m &po ? 	 � s(	 < s(	 m @�sqo ? 	 � só	 < só	 m @ < &sr ? 	 � 	 < s�	 < 	 m s(	 � 	 m @£s+�5!

which gives immediately a least polynomial for 	 < � 	 << 	 <m on � m using the theorem.

6.2. Cubature formula. The formulas (2.3) and (2.6) relate the integral in three regions.
Together with the connection of the polynomials on these domains, they lead to relations
between cubature formulas on

. � , � � and
� � . These relations were discussed in [26, 27] and

they were used in [12, 13] to generate new cubature formulas. We state only one theorem that
captures the spirit of such a result.

THEOREM 6.2. If there is a cubature formula of degree t on
� � giving by

(6.1) � a � K ? E�@YOba>5Q R ? E£@�iGE��vu| CED � Ç C K ? E C @1!
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with all E C L � � , then there is a cubature formula of degree
� t sU� on � � given by

(6.2) � P � ® ? 	=@%O P>5Q R ? 	�@�iN	��vu| CpD � Ç C �-V ³ :xw G < |Y æ[Z �\
K ? ]5� ¬ E C Q �Å!
#$#$#9] � ¬ E C Q � @

where �£? E�@ denote the number of non-zero components in E . Moreover, a cubature formula
of degree

� t s¦� in the form of (6.1) on � � implies a cubature formula of degree t in the
form of (6.2) on

� � .
A similar result holds for cubature formulas on

. � and on � � , which also extends to a
relation between cubature formulas on

. � and on
� � . We note that a cubature for the surface

measure on
. � corresponds to a cubature for “Chebyshev” weight function O } ? 	=@ on � � ,

which in turn corresponds to a cubature for “Chebyshev” weight function O a} ? 	�@ on
� � .

6.3. Polynomial Interpolation. The relation (2.1) between polynomial spaces on � �
and those on

. � can also be used in the problem of polynomial interpolation.
Let t �j � m-nEo f �j . We consider the following interpolation problem on � � :

PROBLEM 1. Let 
 be a set of t��j points on ��� . Find conditions on 
 such that, for any
given data � K C � , there is a unique polynomial 0 L f �j satisfying 0 ? 	 C @0� K C , for 	 C L 
 and�à�,¿A�
t �j !

Let y �j � m-nEo f j ? . � @ . The interpolation problem on
. � that we consider is:

PROBLEM 2. Let 6 be a set of y �j distinct points on
. � . Find conditions on 6 such that,

for any given data � K C � , there is a unique polynomial
.,L f j ? . � @ satisfying

. ?Ó� C @S� K C , for� C L 6 and �ª�{¿A�
yc�j #
We call the point set 6 on

. � symmetric if 	�� ? 	 Æ !%	 �76 ��@ L 6 implies that ? 	 Æ !$&T	 �76 ��@ L6 , where 	 Æ � ? 	£� !
#$#$#
!%	 � @ . From the relation (2.1) between polynomials spaces, solutions
of these two problems are related as follows [33]:

THEOREM 6.3. Let 
 be a set of t �j points on � � that solves Problem 1. Assume
that 
 contains exactly t �j &
t �j V � points on the boundary

. � V � of � � and that 
{z_�°�
Q| ? 
QW . � V � @ solves Problem 1 for f �j V � . Define

6"} �b� ? 	 Æ !Y�W@S�N	 Æ L 
bW . � V � ��~ � ? 	 Æ !5��	 �76 ��@)��	 �76 ����� �T&U
1	 Æ 
 < !�	 Æ L 
 z � #
Then 6 } solves Problem 2. On the other hand, if 6 solves Problem 2, 6 is symmetric,
and there are exactly t �j &'t �j V � points on the hyperplane ��	 L � �76 � �"	 �76 � � �-� , then
O�����
	 Æ � ? 	 Æ !%	 �76 �$@ L 6 W . �76 �6 � solves Problem 1.

The relation (2.5) and the relation between the polynomial spaces on � � and
� � as

described in Lemma 2.2 can also be used for interpolation problem. However, because the
mapping 	 ¨© § ? 	�@ is nonlinear, a polynomial of degree k that interpolates on y �j points on� � corresponds to an interpolation polynomial on � � that belongs to a subspace of f �< j ; see
[33] for a discussion in the case of i3� � .
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[23] G. SZEGŐ, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Providence, 4th edition, 1975.
[24] YUAN XU, Orthogonal polynomials for a family of product weight functions on the spheres, Canad. J. Math.,

49 (1997), pp. 175–192.
[25] YUAN XU, Integration of the intertwining operator for � -harmonic polynomials associated to reflection

groups, Proc. Amer. Math. Soc., 125 (1997), pp. 2963–2973.
[26] YUAN XU, Orthogonal polynomials and cubature formulae on spheres and on balls, SIAM J. Math. Anal.,

29 (1998), pp. 779–793.
[27] YUAN XU, Orthogonal polynomials and cubature formulae on spheres and on simplices, Methods Anal. and

Appl., 5 (1998), pp. 169–184.
[28] YUAN XU, Summability of Fourier orthogonal series for Jacobi weight on a ball in ��� , Trans. Amer. Math.

Soc., 351 (1999), pp. 2439–2458.
[29] YUAN XU, Orthogonal polynomials and summability in Fourier orthogonal series on spheres and on balls,

Math. Proc. Cambridge Phil. Soc., 31 (2001), pp. 139–155.
[30] YUAN XU, Orthogonal polynomials on the ball and on the simplex for weight functions with reflection sym-

metries, Constr. Approx., 17 (2001), pp. 383–412.
[31] YUAN XU, Approximation by means of � -harmonics polynomials on the unit sphere, Adv. in Comp. Math.,

21 (2004), pp. 37–58.
[32] YUAN XU, On polynomials of least deviation from zero in several variables, Experimental Math., 13 (2004),

pp. 103–112.



ETNA
Kent State University 
etna@mcs.kent.edu

ANALYSIS ON THE UNIT BALL AND ON THE SIMPLEX 301

[33] YUAN XU, Polynomial interpolation on the unit sphere and on the unit ball, Adv. in Comp. Math., 20 (2004),
pp. 247–260.

[34] YUAN XU, Weighted approximation of functions on the unit sphere, Const. Approx., 21 (2005), pp. 1–28.
[35] YUAN XU, Almost Everywhere Convergence of orthogonal expansion of several variables, Const. Approx.,

22 (2005), pp. 67–93.
[36] YUAN XU, Generalized translation operator and approximation in several variables, J. Comp. Appl. Math.,

178 (2005), pp. 489–512.


