AN INTEGRAL REPRESENTATION OF SOME HYPERGEOMETRIC FUNCTIONS*

K. A. DRIVER† AND S. J. JOHNSTON‡

Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. The Euler integral representation of the \(_2F_1 \) Gauss hypergeometric function is well known and plays a prominent role in the derivation of transformation identities and in the evaluation of \(_2F_1(a, b; c; 1) \), among other applications. The general \(_{p+q}F_{p+q} \) hypergeometric function has an integral representation where the integrand involves \(_qF_p \). We give a simple and direct proof of an Euler integral representation for a special class of \(_{q+1}F_q \) functions for \(q \geq 2 \). The values of certain \(_3F_2 \) and \(_4F_3 \) functions at \(x = 1 \), some of which can be derived using other methods, are deduced from our integral formula.

Key words. \(3F_2 \) hypergeometric functions, general hypergeometric functions, integral representation

AMS subject classification. 15A15

*Received April 21, 2005. Accepted for publication October 31, 2005. Recommended by I. Pritsker.
†The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa (kathy@maths.wits.ac.za). This material is based on research supported by the National Research Foundation under Grant Number 2053730.
‡School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa (sjohnston@maths.wits.ac.za).