ANOTHER APPROACH TO VIBRATION ANALYSIS OF STEPPED STRUCTURES

IGOR FEDOTOV, STEVE JOUBERT, JULIAN MARAIS, AND MICHAEL SHATALOV

Abstract. In this paper a model of an N-stepped bar with variable cross-sections coupled with foundation by means of lumped masses and springs is studied. It is assumed that the process of vibrations in each section of the bar is described by a wave equation. The analytical tools of vibration analysis are based on finding eigenfunctions with piecewise continuous derivatives, which are orthogonal with respect to a generalized weight function. These eigenfunctions automatically satisfy the boundary conditions at the end points as well as the non-classical boundary conditions at the junctions. The solution of the problems is formulated in terms of Green function. By means of the proposed algorithm a problem of arbitrary complexity could be considered in the same terms as a single homogeneous bar. This algorithm is efficient in design of low frequency transducers. An example is given to show the practical application of the algorithm to a two-stepped transducer.

Key words. PDE with discontinuous coefficients, numerical approximation of eigenvalues, stepped structure, transducers, waveguide, variable cross-section, non-classical boundary conditions, Green function, resonance

AMS subject classifications. 35B34, 35R05, 34B27, 34L16

Received January 7, 2005. Accepted for publication November 17, 2005. Recommended by J. Arvesu.

Department of Mathematical Technology, P.B.X680, Pretoria 0001 FIN-40014 Tshwane University of Technology, South Africa (igor@techpta.ac.za).

CSIR Manufacturing and Materials P.O. Box 395, Pretoria 0001, CSIR, South Africa and Department of Mathematical Technology P.B.X680, Pretoria 0001 FIN-40014 Tshwane University of Technology, South Africa (mshatlov@csir.co.za).