A QUADRATICALLY CONVERGENT BERNOULLI-LIKE ALGORITHM FOR SOLVING MATRIX POLYNOMIAL EQUATIONS IN MARKOV CHAINS

C. HE †, B. MEINI ‡, N.H. RHEE §, AND K. SOHRABY ¶

Abstract. A quadratically convergent algorithm is developed for solving matrix polynomial equations arising in M/G/1 and G/M/1 type Markov chains. The algorithm is based on the computation of generalized block eigenvalues/vectors of a suitable pair of matrices by means of a Bernoulli-like method. The use of the displacement structure allows one to reduce the computational cost per step. A shifting technique speeds up the rate of convergence.

Key words. polynomial matrix equations, Markov chains, generalized eigenvalues/eigenvectors, displacement structure.

AMS subject classifications. 15A24, 60J22, 65F15.

*Received May 16, 2003. Accepted for publication March 2, 2004. Recommended by Martin Gutknecht.
†Sprint Corporation, Network Planning and Design, 7171 West 95th Street Overland Park, KS 66212, U.S.A.
‡Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, 56127 Pisa, Italy.
§Dept. of Mathematics and Statistics, University of Missouri-Kansas City, Kansas City, MO 64110, U.S.A.
¶Dept. of Computer Science and Telecommunications, University of Missouri-Kansas City, Kansas City, MO 64110, U.S.A. This research was supported by DARPA under Grant F0316.