

ON THE ESTIMATION OF THE *Q*-NUMERICAL RANGE OF MONIC MATRIX POLYNOMIALS*

PANAYIOTIS J. PSARRAKOS[†]

Abstract. For a given $q \in [0, 1]$, the q-numerical range of an $n \times n$ matrix polynomial $P(\lambda) = I\lambda^m + A_{m-1}\lambda^{m-1} + \cdots + A_1\lambda + A_0$ is defined by $W_q(P) = \{\lambda \in \mathbb{C} : y^*P(\lambda)x = 0, x, y \in \mathbb{C}^n, x^*x = y^*y = 1, y^*x = q\}$. In this paper, an inclusion-exclusion methodology for the estimation of $W_q(P)$ is proposed. Our approach is based on i) the discretization of a region Ω that contains $W_q(P)$, and ii) the construction of an open circular disk, which does not intersect $W_q(P)$, centered at every grid point $\mu \in \Omega \setminus W_q(P)$. For the cases q = 1 and 0 < q < 1, an important difference arises in one of the steps of the algorithm. Thus, these two cases are discussed separately.

Key words. matrix polynomial, eigenvalue, q-numerical range, boundary, inner q-numerical radius, Davis-Wielandt shell.

AMS subject classifications. 15A22, 15A60, 65D18, 65F30, 65F35.

1

^{*}Received February 21, 2003. Accepted for publication June 30, 2003. Recommended by D. Szyld.

[†] Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens, Greece. E-mail: ppsarr@math.ntua.gr