CONTINUOUS Θ-METHODS FOR THE STOCHASTIC PANTOGRAPH EQUATION

CHRISTOPHER T.H. BAKER and EVELYN BUCKWAR

Abstract. We consider a stochastic version of the pantograph equation:
\[dX(t) = \{aX(t) + bX(\eta t)\} \, dt + \{\sigma_1 + \sigma_2 X(t) + \sigma_3 X(\eta t)\} \, dW(t), \]
\[X(0) = X_0, \]
for $t \in [0, T]$, a given Wiener process W and $0 < \eta < 1$. This is an example of an Itô stochastic delay differential equation with unbounded memory. We give the necessary analytical theory for existence and uniqueness of a strong solution of the above equation, and of strong approximations to the solution obtained by a continuous extension of the Θ-Euler scheme ($\Theta \in [0, 1]$). We establish $O(h)$ mean-square convergence of approximations obtained using a bounded mesh of uniform step h, rising in the case of additive noise to $O(h^2)$. Illustrative numerical examples are provided.

Key words. stochastic delay differential equation, continuous Θ-method, mean-square convergence.

AMS subject classifications. 65C30, 65Q05.

Received May 12, 2000. Accepted for publication December 4, 2000. Recommended by L. Reichel.

1Department of Mathematics, University of Manchester, Manchester M13 9PL, UK.

2Department of Mathematics, University of Manchester, Manchester M13 9PL, UK. This research was supported by Marie Curie Individual Fellowship HPMF-CT-1999-00090.

131