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SYMBOL-BASED PRECONDITIONING FOR RIESZ DISTRIBUTED-ORDER
SPACE-FRACTIONAL DIFFUSION EQUATIONS∗

MARIAROSA MAZZA†, STEFANO SERRA-CAPIZZANO†, AND MUHAMMAD USMAN‡

Abstract. In this work, we examine the numerical solution of a 1D distributed-order space-fractional diffusion
equation. Discretizing the given problem by means of an implicit finite difference scheme based on the shifted
Grünwald-Letnikov formula, the resulting linear systems show a Toeplitz structure. Then, by using well-known
spectral tools for Toeplitz sequences, we determine the corresponding symbol describing its asymptotic eigenvalue
distribution as the matrix size diverges. The spectral analysis is performed under different assumptions with the
aim of estimating the intrinsic asymptotic ill-conditioning of the involved matrices. The obtained results suggest
to precondition the involved linear systems with either a Laplacian-like preconditioner or with more general τ -
preconditioners. Due to the symmetric positive definite nature of the coefficient matrices, we opt for the preconditioned
conjugate gradient method, and we compare the performances of our proposal with a Strang circulant alternative
given in the literature.
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1. Introduction. In the last decades, constant-order fractional diffusion equations (FDEs)
have been widely studied and successfully applied for modeling anomalous diffusion in a wide
range of applicative fields like, e.g., finance, biology, image processing, and plasma physics
[2, 9, 17, 20]. The reason why this research field is so fruitful essentially relies on the fact
that a proper noninteger parameter, the so-called fractional derivative order, can be tuned in
order to model enhanced diffusivity not covered by classical differential modeling. An even
more powerful tool in this framework is represented by distributed-order operators, which
are particularly effective for depicting anomalous diffusion with combined scaling exponents.
In [6], Caputo firstly proposed the use of distributed-order fractional operators to describe
the stress-strain relations of inelastic media. Later, the distributed-order fractional differential
equations were also applied to diffusion processes; see, e.g., [5].

As for constant-order FDEs, also for distributed-order FDEs analytical solutions are
rarely available, and numerical methods for the computation of approximate solutions need to
be investigated. Fan and Liu [10] proposed a finite element method for solving distributed-
order FDEs on an irregular convex domain. A finite volume method for the distributed-order
advection-diffusion equation has been described by Li et al. [18], and an implicit finite
difference scheme has been used in [1].

However, as for constant-order FDEs, those methods usually produce full coefficient
matrices, which require O(n3) computational costs and O(n2) storage costs using general
purpose direct methods, where n is the number of grid points. On the other hand, in presence
of uniform gridding, the shift-invariant nature of the underlying operators leads to Toeplitz-like
matrices, and then the storage requirement can be reduced from O(n2) to O(n) and the
complexity of the matrix-vector product from O(n2) to O(n log n), thanks to the use of the
fast Fourier transform (FFT). This is the approach that has been adopted in [16], where the
author proposed to use the conjugate gradient (CG) method combined with a Strang circulant
preconditioner.
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Mimicking the analysis for constant-order FDEs performed in [7, 8, 19], in the present
paper we focus on the spectral study of the symmetric positive definite coefficient matrix-
sequences given in [16], and we compute the associated symbol, which represents the distribu-
tion of the eigenvalues as the matrix size diverges. We remind that the evaluation of the symbol
over uniform equispaced grids in the domain leads to a reasonable approximation of the
eigenvalues when the matrix size is sufficiently large. The spectral analysis is discussed under
different assumptions with the aim of estimating the intrinsic asymptotic ill-conditioning of
the involved matrices. The obtained results suggest to precondition the involved linear systems
with a Laplacian-like preconditioner. Indeed, it turns out that the overall symbol associated to
our matrix structures behaves as θα` in a neighborhood of θ = 0, where α` → 2 as `→∞,
with ` being the number of uniform subintervals in (1, 2) that we choose for the quadrature.
This is the technical reason why we propose the discrete Laplacian as main ingredient of a
preconditioning strategy since the symbol of the discrete Laplacian, 2− 2 cos(θ), behaves as
θ2 in a neighborhood of θ = 0 (see [4, 22, 23] for a theoretical explanation).

Furthermore, we compare the performances of the proposed Laplacian-like preconditioner
with the Strang circulant preconditioner proposed in [16]. We stress that the linear systems
associated with our proposal can be solved optimally inO(n) operations by the standard Gaus-
sian Elimination (known also as Thomas algorithm when applied to banded matrices), which
does not ask for “all-to-all communications” as in case of the FFT algorithm. We observe that
the discrete Laplacian belongs to the τ -algebra and hence also more general τ -preconditioners
are considered and tested numerically. As described in [24], for symmetric Toeplitz matrices
with real coefficients, the (real) τ -algebra allows one to obtain approximations of the original
coefficient matrix showing a correction with a slightly lower rank when compared with the
classical circulant algebra: this slightly smaller rank correction is reflected in a slightly smaller
number of preconditioned conjugate gradient (PCG) iterations as reported in the numerical
test section.

The paper is organized as follows. Section 2 is devoted to the presentation of the continu-
ous problem, its numerical approximation, and the basic features of the resulting coefficient
matrices. Section 3 contains the spectral and conditioning analysis mainly based on the
Toeplitz technology and its application to the spectral study of the resulting preconditioned
matrices. Finally in Section 4 we present and discuss the numerical results, and in Section 5
we draw conclusions by emphasizing the relevance of the theoretical results and a few open
problems with special attention to the higher-dimensional setting and to stability issues.

2. Riesz distributed-order space-fractional diffusion equations and finite difference
approximation. In this paper, we study the following initial-boundary value problem (see [1]):

∂u(x, t)

∂t
=

∫ 2

1

ρ(α)
∂αu(x, t)

∂|x|α
dα+ f(x, t), (x, t) ∈ Ω = [a, b]× [0, T ],

u(x, 0) = u0(x), x ∈ (a, b),

u(a, t) = u(b, t) = 0, t ∈ (0, T ],

(2.1)

where ρ(α) is the kernel function, which satisfies

ρ(α) ≥ 0, 0 <

∫ 2

1

ρ(α)c(α) <∞ ,

while f(x, t) is the source term and ∂αu(x,t)
∂|x|α is the Riesz fractional derivative of order

1 < α < 2 with respect to x defined as

∂αu(x, t)

∂|x|α
= c(α)(aD

α
xu(x, t) +x D

α
b u(x, t)), c(α) =

−1

2 cos(απ2 )
> 0.
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The left-sided and right-sided Riemann-Liouville fractional derivatives aDα
xu(x, t), xDα

b u(x, t)
are in turn defined as

aD
α
xu(x, t) =

1

Γ(2− α)

d2

dx2

∫ x

a

(x− y)1−αu(y, t)dy,

xD
α
b u(x, t) =

1

Γ(2− α)

d2

dx2

∫ b

x

(y − x)1−αu(y, t)dy,

where Γ(·) is the gamma function. As done in [1], we adopt a second-order finite difference
method to discretize equation (2.1). Let n and m be positive integers, h = b−a

n+1 be the spatial
width, ∆t = T

m be the time step-size, and consider the following partition

xi = a+ ih, i = 0, 1, . . . , n+ 1,

tj = j∆t, j = 0, 1, . . . ,m.

In order to discretize the left and right Riemann-Liouville fractional derivatives in space, we
exploit the weighted and shifted Grünwald-Letnikov difference scheme given in [15], i.e.,

aD
α
xu(xi, t) =

1

hα

i∑
q=0

ω(α)
q u(xi−q+1, t) +O(h2),

xD
α
b u(xi, t) =

1

hα

n−i+1∑
q=0

ω(α)
q u(xi+q−1, t) +O(h2),

(2.2)

where

ω
(α)
0 = γ1(α)g

(α)
0 , ω

(α)
1 = γ1(α)g

(α)
1 + γ0(α)g

(α)
0 ,

ω
(α)
k = γ1(α)g

(α)
k + γ0(α)g

(α)
k−1 + γ−1(α)g

(α)
k−2, k ≥ 2,

(2.3)

in which

γ1(α) =
α2 + 3α+ 2

12
, γ0(α) =

4− α2

6
, γ−1(α) =

α2 − 3α+ 2

12
,

g
(α)
0 = 1, g

(α)
k+1 =

(
1− α+ 1

k + 1

)
g

(α)
k , k ≥ 0.(2.4)

PROPOSITION 2.1 (See [15]). Let ω(α)
i , α ∈ (1, 2), be defined as in (2.3). Then the

coefficients ω(α)
i satisfy the following properties:

ω
(α)
0 =

α2 + 3α+ 2

12
> 0, ω

(α)
1 =

−α3 − 5α2 − 2α+ 8

12
< 0,

ω
(α)
2 =

α4 + 6α3 + α2 − 24α+ 4

24
, 1 ≥ ω(α)

0 ≥ ω(α)
3 ≥ · · · ≥ 0,

∞∑
i=0

ω
(α)
i = 0,

n∑
i=0

ω
(α)
i < 0, n ≥ 1,

ω
(α)
0 + ω

(α)
2 > 0.

Note that ω(α)
2 may not be positive.
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Concerning the discretization in time, as done in [10], we take tj+ 1
2

= tj + ∆t
2 and

consider the following central difference scheme:

∂u(tj+ 1
2
)

∂t
=
u(xi, tj+1)− u(xi, tj)

∆t
+O(∆t2).(2.5)

In order to approximate the integral in (2.1), we first decompose it at the subintervals arising
from a partition of the integral interval (1, 2). Specifically, we divide the interval (1, 2) into l
uniform subintervals and denote by ∆α the length of such subintervals. Then, the mid-point of
each subinterval is given by αk = 1 + (k − 1

2 )∆α, k = 1, 2, . . . , l. Employing the mid-point
quadrature rule, the integral term in (2.1) can be written as follows:∫ 2

1

ρ(α)
∂αu(x, t)

∂|x|α
dα =

l∑
k=1

∫ 1+k∆α

1+(k−1)∆α

ρ(α)
∂αu(x, t)

∂|x|α
dα(2.6)

=

l∑
k=1

[
ρ(αk)

∂αku(x, t)

∂|x|αk

]
∆α+O(∆α2).

Combining (2.2), (2.5), (2.6), and (2.1), we obtain

u(xi, tj+1)− u(xi, tj)

∆t
(2.7)

= ∆α

l∑
k=1

ρ(αk)c(αk)

hαk

(
i∑

q=0

ω(αk)
q u(xi−q+1,t

j+1
2

) +

n−i+1∑
q=0

ω(αk)
q u(xi+q−1,t

j+1
2

)

)
+ f(xi, tj+ 1

2
) +Rji ,

where Rji = O(h2 + ∆t2 + ∆α2), 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Let uji ≈ u(xi, tj) and f j+
1
2

i = f(xi, tj+ 1
2
). By omitting the small terms Rji in (2.7), we

arrive at the following difference finite scheme for solving (2.1):

uj+1
i =uji +

∆t∆α

2

l∑
k=1

ρ(αk)c(αk)

hαk

(
i∑

q=0

ω(αk)
q (uj+1

i−q+1 + uji−q+1)(2.8)

+

n−i+1∑
q=0

ω(αk)
q (uj+1

i+q−1 + uji+q−1)

)

+ ∆tf
j+ 1

2
i , 1 ≤ i ≤ n, 1 ≤ j ≤ m,

with the initial condition u0
i = u0(xi), for i = 0, 1, . . . , n + 1, and the boundary condition

uj0 = u(a, tj), u
j
n+1 = u(b, tj), for j = 0, 1, . . . ,m. This numerical scheme has been proved

to be unconditionally stable and to have a second-order convergence rate in both space and
time directions in [1].

Let uj = (uj1, u
j
2, . . . , u

j
n)T , f j+

1
2 = (f

j+ 1
2

1 , f
j+ 1

2
2 , . . . , f

j+ 1
2

n )T , and let I be the identity
of size n. Thus, the above numerical scheme (2.8) can be written in the matrix form

(I −An)uj+1 = (I +An)uj + ∆tf j+
1
2 ,(2.9)

with

An =
∆t∆α

2

l∑
k=1

ρ(αk)c(αk)

hαk
An(αk),(2.10)
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where

An(αk) =



2ω
(αk)
1 ω

(αk)
0 + ω

(αk)
2 ω

(αk)
3 · · · ω

(αk)
n−1 ω

(αk)
n

ω
(αk)
0 + ω

(αk)
2 2ω

(αk)
1 ω

(αk)
0 + ω

(αk)
2 ω

(αk)
3 · · · ω

(αk)
n−1

... ω
(αk)
0 + ω

(αk)
2 2ω

(αk)
1

. . .
. . .

...
...

. . .
. . .

. . .
. . . ω

(αk)
3

ω
(αk)
n−1

. . .
. . .

. . . 2ω
(αk)
1 ω

(αk)
0 + ω

(αk)
2

ω
(αk)
n ω

(αk)
n−1 · · · · · · ω

(αk)
0 + ω

(αk)
2 2ω

(αk)
1


.

We can also write An(αk) = Aαk,n +ATαk,n, where

Aαk,n =



ω
(αk)
1 ω

(αk)
0 0 · · · 0 0

ω
(αk)
2 ω

(αk)
1 ω

(αk)
0

. . .
. . . 0

... ω
(αk)
2 ω

(αk)
1

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

ω
(αk)
n−1

. . .
. . .

. . . ω
(αk)
1 ω

(αk)
0

ω
(αk)
n ω

(αk)
n−1 · · · · · · ω

(αk)
2 ω

(αk)
1


.(2.11)

It is clear that An(αk) is a symmetric Toeplitz matrix. As a consequence, the matrix
An = [Aij ]n×n = [a|i−j|]

n
i,j=1 also possesses the symmetric Toeplitz structure, and the

corresponding elements are

a0 = 2ω1, a1 = ω0 + ω2, ai = ωi+1, for i ≥ 2,

in which, by (2.10),

ωi =
∆t∆α

2

l∑
k=1

ρ(αk)c(αk)

hαk
ω

(αk)
i , for i = 0, 1, . . . , n.(2.12)

From Proposition 2.1, the next corollary immediately follows:
COROLLARY 2.2. The coefficients ωk in (2.12) satisfy

ω0 > 0, ω1 < 0, and ωk > 0, k ≥ 3,

ω0 + ω2 > 0,
∞∑
k=0

ωk = 0,

n∑
k=0

ωk < 0, n ≥ 1.

LEMMA 2.3 (see [16]). The matrix An defined in (2.10) is symmetric negative definite.
For convenience, we rewrite the linear system in (2.9) as

Mnu
j+1 = bj ,(2.13)

where

Mn = I −An, bj = (I +An)uj + ∆tf j+
1
2 .

We stress that, due to Lemma 2.3, Mn is of course a symmetric positive definite Toeplitz
matrix.
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3. Spectral analysis of the coefficient matrices. In this section, we perform a spectral
analysis of the coefficient matrix-sequence {Mn}n. Specifically, we find its symbol and study
its spectral distribution by using well-known tools for Toeplitz sequences. We will leverage the
resulting spectral knowledge to introduce ad hoc preconditioners for solving equation (2.13).

Let us first introduce some basic definitions and results.
DEFINITION 3.1. Let f ∈ L1([−π, π]), and let {fk}k∈Z be the sequence of its Fourier

coefficients defined as

fk =
1

2π

∫ π

−π
f(θ)e−ikθ dθ, k ∈ Z.

Then the matrix-sequence {Tn}n∈N with Tn = [fi−j ]
n
i,j=1 is called the sequence of Toeplitz

matrices generated by f , which in turn is called the symbol of {Tn}n∈N, and Tn is denoted by
Tn(f).

DEFINITION 3.2. The Wiener class is the set of functions f(θ) =
∑∞
k=−∞ fke

ikθ such
that

∑∞
k=−∞ |fk| <∞.

Note that the Wiener class forms a subalgebra of the continuous and 2π-periodic functions.
REMARK 3.3. Let {Tn}n∈N be a Toeplitz sequence with Tn = [fi−j ]

n
i,j=1. If {fk}k∈Z

is such that
∑∞
k=−∞ |fk| < ∞, then the series

∑∞
k=−∞ fke

ikθ converges uniformly in the
infinity norm to a continuous and 2π-periodic function f which belongs to the Wiener class
and which is the symbol of {Tn}n∈N, i.e., Tn = Tn(f), for all n ∈ N. We continue with the
definition of the spectral distribution in the sense of the eigenvalues.

DEFINITION 3.4. Let f : [a, b]→ C be a measurable function defined on [a, b] ⊂ R. Let
C0(C) be the set of continuous functions with compact support over C, and let {An}n be a
sequence of matrices of size n with eigenvalues λj(An), j = 1, . . . , n. We say that {An}n is
distributed as the pair (f, [a, b]) in the sense of the eigenvalues, and we write

{An}n ∼λ (f, [a, b]),

if the following limit relation holds for all F ∈ C0(C):

lim
n→∞

1

n

n∑
j=1

F (λj(An)) =
1

b− a

∫ b

a

F (f(t))dt.(3.1)

REMARK 3.5. When f is continuous, an informal interpretation of the limit relation (3.1)
is that when the matrix-size is sufficiently large, the eigenvalues of An can be approxi-
mated by a sampling of f on a uniform equispaced grid of the interval [a, b]. For Hermitian
Toeplitz matrix-sequences, the following theorem due to Szegö, Tyrtyshnikov, etc., holds (see,
e.g., [14]).

THEOREM 3.6. Let f ∈ L1([−π, π]) be a real-valued function. Then,

{Tn(f)}n ∼λ (f, [−π, π]).

We end this introductory part by recalling a property of the spectral norm of Toeplitz matrices
and stating a relevant theorem from [3]. Given a square matrix X of order n, we denote its
spectral norm by ‖X‖, i.e., the maximal singular value of X (‖X‖ = maxi=1,...,n σi(X)).
This value coincides with the spectral radius in the case of a normal matrix, and we recall
that every Hermitian matrix is also normal. Given a Toeplitz sequence {Tn(f)}n∈N generated
by f , it holds that (see [21, Corollary 3.5]):

(3.2) f ∈ L∞(−π, π]⇒ ‖Tn(f)‖ ≤ ‖f‖∞, ∀n ∈ N.
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THEOREM 3.7 ([3, Cor. 2.8]). Let {An}n∈N be a matrix sequence with An = Bn + Cn
and Bn Hermitian, for all n ∈ N. Assume that

• {Bn}n∈N ∼λ (f, [a, b]),
• ‖Cn‖ = o(1).

Then {An}n∈N ∼λ (f, [a, b]).
We are now ready to determine the symbol of our coefficient matrix-sequence. In that

respect, we start to compute the symbol associated to {Aαk,n}n∈N.
PROPOSITION 3.8. Let α ∈ (1, 2). The symbol associated to the matrix-sequence

{Aα,n}n∈N belongs to the Wiener class, and its formal expression is given by

fα(θ) =

∞∑
k=−1

ω
(α)
k+1e

ikθ(3.3)

=

[
8− 2α2 + (α2 + 3α+ 2)e−iθ + (α2 − 3α+ 2)eiθ

12

](
1 + ei(θ+π)

)α
.

Proof. According to (2.11), we remind that Aα,n = [ω
(α)
i−j+1]ni,j=1, with ω(α)

k = 0 for
k < 0. Then, by Definition 3.1, it holds thatAα,n = Tn(fα), where the generating function fα
is defined as

fα(θ) =

∞∑
k=−1

ω
(α)
k+1e

ikθ.

When α ∈ (1, 2), it easy to see that fα(θ) lies in the Wiener class. In detail, from Proposi-
tion 2.1 we know that ω(α)

1 = −α3−5α2−2α+8
12 < 0, ω

(α)
2 = α4+6α3+α2−24α+4

24 , ω
(α)
k ≥ 0, for

k ≥ 0 and k 6= 1, 2, and ω(α)
k = 0, for k < 0. Then

∞∑
k=−1

|ω(α)
k+1| =

∞∑
k=−1
k 6=0,1

ω
(α)
k+1 + |ω(α)

1 |+ |ω
(α)
2 |

=

∞∑
k=−1
k 6=0,1

ω
(α)
k+1 +

α3 + 5α2 + 2α− 8

12
+
|α4 + 6α3 + α2 − 24α+ 4|

24
.

Again from Proposition 2.1, we obtain
∞∑
k=0

ω
(α)
k = 0 ⇐⇒

∞∑
k=−1
k 6=0,1

ω
(α)
k+1 = −ω(α)

1 − ω(α)
2

= −−α
3 − 5α2 − 2α+ 8

12
− α4 + 6α3 + α2 − 24α+ 4

24

=
α3 + 5α2 + 2α− 8

12
− α4 + 6α3 + α2 − 24α+ 4

24
,

that is,
∞∑

k=−1

|ω(α)
k+1| =

α3 + 5α2 + 2α− 8

6

+
|α4 + 6α3 + α2 − 24α+ 4| − (α4 + 6α3 + α2 − 24α+ 4)

24
,
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which shows that
∑∞
k=−1 |ω

(α)
k+1| converges for α ∈ (1, 2). Then, thanks to Remark 3.3, fα(θ)

belongs to the Wiener class. To obtain an explicit formula for the symbol fα(θ), we exploit
the definition of ω(α)

k given in (2.3) involving the one of g(α)
k+1 in (2.4), that is,

fα(θ) =

∞∑
k=0

ω
(α)
k ei(k−1)θ =

α2 + 3α+ 2

12
g

(α)
0 e−iθ +

(
α2 + 3α+ 2

12
g

(α)
1 +

4− α2

6
g

(α)
0

)

+

∞∑
k=2

(
α2 + 3α+ 2

12
g

(α)
k +

4− α2

6
g

(α)
k−1 +

α2 − 3α+ 2

12
gk−2

)
ei(k−1)θ

=
α2 + 3α+ 2

12

∞∑
k=0

(−1)k
(
α

k

)
ei(k−1)θ +

4− α2

6

∞∑
k=0

(−1)k
(
α

k

)
eikθ

+
α2 − 3α+ 2

12

∞∑
k=0

(−1)k
(
α

k

)
ei(k+1)θ

=
α2 + 3α+ 2

12
e−iθ

∞∑
k=0

(
α

k

)
eik(θ+π) +

4− α2

6

∞∑
k=0

(
α

k

)
eik(θ+π)

+
α2 − 3α+ 2

12
eiθ

∞∑
k=0

k(−1)k
(
α

k

)
eik(θ+π) .

Applying the well-known binomial series

(1 + z)α =

∞∑
k=0

(
α

k

)
zk, z ∈ Z, |z| ≤ 1, α > 0,

with z = ei(θ+π), we obtain

fα(θ) =

[
8− 2α2 + (α2 + 3α+ 2)e−iθ + (α2 − 3α+ 2)eiθ

12

](
1 + ei(θ+π)

)α
,

and the thesis is proven.
COROLLARY 3.9. Let α ∈ (1, 2). The symbol associated to the matrix-sequence

{An(α) = Aα,n +ATα,n}n∈N belongs to the Wiener class, and its formal expression is given
by

gα(θ) = fα(θ) + fα(−θ),

where fα is defined as in (3.3).
REMARK 3.10. A similar reasoning to the one made in [7, Proposition 4] proves that the

function gα(θ) is a nonpositive function with a single zero at 0 of order α.
COROLLARY 3.11. Let An be the matrix defined in (2.10) and assume that h∆α = o(1).

Then, {
hαl

∆t∆α
An

}
n∈N
∼λ (cl gαl(θ), [0, π]) , where cl =

ρ(αl)c(αl)

2
.

Proof. From (2.10),

An = ∆t∆α
( c1
hα1

An(α1) +
c2
hα2

An(α2) +
c3
hα3

An(α3) + · · ·+ cl
hαl

An(αl)
)
,
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with ck = ρ(αk)c(αk)
2 . Then,

hαl

∆t∆α
An = c1h

αl−α1An(α1) + c2h
αl−α2An(α2) + · · ·

+ cl−1h
αl−αl−1An(αl−1) + clAn(αl)

= c1h
∆α(l−1)An(α1) + c2h

∆α(l−2)An(α2) + · · ·
+ cl−1h

∆αAn(αl−1) + clAn(αl).

Since 1 < α1 < α2 < · · · < αl < 2, we have that αl − αk > 0, for k = 1, . . . , l − 1. As a
consequence, by using (3.2) and the hypothesis h∆α = o(1), it holds that

‖ckhαl−αkAn(αk)‖ ≤ ckhαl−αk‖gαk‖∞ → 0,

and this yields the thesis by applying Theorem 3.7 with the setting Bn = clAn(αl) and
Cn = hαl

∆t∆αAn −Bn.

Similarly, for the matrix Mn, we prove the following spectral result:
COROLLARY 3.12. For the matrix Mn defined in (2.13), when hαl = o(∆t∆α) and

h∆α = o(1), it holds that{
hαl

∆t∆α
Mn

}
n∈N
∼λ (−cl gαl(θ), [0, π]) , where cl =

ρ(αl)c(αl)

2
.

Proof. The thesis follows from

hαl

∆t∆α
Mn =

hαl

∆t∆α
I − hαl

∆t∆α
An,

and applying Theorem 3.7 with Bn = − hαl
∆t∆αAn and Cn = hαl

∆t∆αI . Indeed, by Corol-
lary 3.11 it holds that

{
− hαl

∆t∆αAn
}
n∈N ∼λ (−cl gαl(θ), [0, π]). Furthermore, under the

stated hypothesis that hαl = o(∆t∆α), the remaining term hαl
∆t∆αI is such that ‖ hαl

∆t∆αI‖ =
hαl

∆t∆α = o(1), and the thesis is proven.
In the following we discuss three more issues:
• the case where the condition h∆α = o(1) is not satisfied;
• the spectral analysis of the preconditioned matrix-sequences when using the Laplacian-

style preconditioning described by the formula

Ln = I − ∆t∆α

2

l∑
k=1

ρ(αk)c(αk)

hαk
An(2);

• the expected performances of a generic τ -preconditioning in our context.
Under the assumption that h∆α ∼ 1 (for instance, when ∆α = hγ(1 + o(1)) with γ be-
ing a positive constant independent of h, we have limh→0 h

∆α = 1), by assuming that
hαl = o(∆t∆α), as already observed, we deduce that the two matrix-sequences{

hαl

∆t∆α
Mn

}
n∈N

=

{
hαl

∆t∆α
I − hαl

∆t∆α
An

}
n∈N

and {
− hαl

∆t∆α
An

}
n∈N
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share the same eigenvalue distribution, if any, since
{

hαl
∆t∆αI

}
n∈N is spectrally clustered at

zero.

Now, −An(αk) is the Toeplitz matrix of order n generated by the nonnegative function
−gαk having a unique zero at θ = 0 of order αk, and hence its minimal eigenvalue is
asymptotically given by hαk according to [4, 23]. Thus, −hαl−αkAn(αk) has a minimal
eigenvalue tending to zero exactly as hαl , independently of k. Consequently,

− hαl

∆t∆α
An = −

l∑
k=1

ckh
αl−αkAn(αk)

can be regarded as a Toeplitz matrix generated by a function which is nonnegative and with a
unique zero at θ = 0 of order αl = 2− 1

2∆α. This conclusion is supported numerically and
gives a strong theoretical motivation for choosing −An(2), which is a standard tridiagonal
Laplacian whose symbol is 2− 2 cos(θ), as the main ingredient for the proposed precondition-
ing. In fact, by [22], we know that the eigenvalues of T−1

n (g)Tn(f), for f, g ≥ 0, behave like
a sampling of f/g in its domain of definition, and hence, in our setting, the zero of the original
matrix has order αl = 2− 1

2∆α, and the symbol of the preconditioner has a zero of order 2.
It follows that our f/g has a positive range, and hence, as numerically observed, it is optimal
in the sense that the number of expected iterations does not grow with the matrix-size n.

Regarding the performances of a generic τ -preconditioning, as described in [24], for
symmetric Toeplitz matrices with real coefficients, we remind that the (real) τ -algebra allows
one to obtain approximations of the original coefficient matrix showing a correction with a
slightly lower rank when compared with the classical circulant algebra: this slightly smaller
rank correction is reflected in a slightly smaller number of preconditioned conjugate gradient
(PCG) iterations as reported in the numerical tests.

4. Numerical results. This section is devoted to the numerical validation of the results
obtained in Section 3. We start by numerically verifying the following two relations:

{An(αl)}n∈N ∼λ (gαl(θ), [0, π]) ,{
hαl

∆t∆α
An

}
n∈N
∼λ (cl gαl(θ), [0, π]) , where cl =

ρ(αl)c(αl)

2
.(4.1)

In light of Remark 3.5, this is done by comparing the eigenvalues of An(αl) and An (properly
scaled) with a uniform sampling of gαl(θ) (properly scaled as well) on [0, π]. In Figures 4.1(a)–
(c), where we fix l = 2 and vary n ∈ {100, 500, 1000}, it is observed that as n increases, the
sampling of the generating function clgαl(θ) becomes closer and closer to the eigenvalues of
hαl

∆t∆αAn. From Figure 4.1(d), we see that the matching between clgαl(θ) and hαl
∆t∆αAn is

already accurate for n = 100. Similar results are obtained in Figure 4.2, which refers to the
case where l = 5. Note that in this case the eigenvalues of hαl

∆t∆αAn approach the sampling
of clgαl(θ) less quickly, and this is why here the largest tested dimension is n = 10000. The
reason of the observed different behavior lies in the fact that for larger l, but still fixed and
independent of n, the number of corrections terms increases: hence, for a large l, the spectral
distribution result in (4.1) still holds asymptotically, but we need a larger size n for observing
the asymptotical relation (4.1) in practice.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

PRECONDITIONING FOR RIESZ DISTRIBUTED-ORDER SPACE-FDES 509

0 1 2 3
  [0, ]

-10

-5

0

(a) n = 100.

0 1 2 3
  [0, ]

-10

-5

0

(b) n = 500.

0 1 2 3
  [0, ]

-10

-5

0

(c) n = 1000.

0 1 2 3
  [0, ]

-5

-4

-3

-2

-1

0

(d) n = 100.

FIG. 4.1. (a)–(c) Comparison between the symbol clgαl (θ) and eig( hαl
∆t∆α

An), for l = 2 and
n = 100, 500, 1000. (d) Comparison between the symbol gαl (θ) and eig(An(αl)), for l = 2 and n = 100.

We now discuss the performances of the PCG method when applied to the following
example taken from [16]: assume that in the problem equation (2.1), we set

u(x, 0) = x2(1− x)2, ρ(α) = −2Γ(5− α) cos
(απ

2

)
,

f(x, t) = etx2(1− x)2 −
∫ 2

1

ρ(α)
∂αu(x, t)

∂|x|α
dα

= etx2(1− x)2 − et[f1(x) + f1(1− x)],

where

f1(x) = Γ(5)
1

lnx
(x3 − x2)− 2Γ(4)

[
1

lnx
(3x2 − 2x)− 1

(lnx)2
(x2 − x)

]
+Γ(3)

1

lnx

[
6x− 2− 5x

lnx
+

3

lnx
+

2x

(lnx)2
− 2

(lnx)2

]
.

The exact solution for this problem is

u(x, t) = etx2(1− x)2, for (x, t) ∈ [0, 1]× [0, 1].

As stopping criterion for the PCG method, we consider

||r(k)||2
||r(0)||2

< 10−8,
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FIG. 4.2. (a)–(c) Comparison between the symbol clgαl (θ) and eig( hαl
∆t∆α

An), for l = 5, and n =
100, 1000, 1000. (d) Comparison between the symbol gαl (θ) and eig(An(αl)), for l = 5 and n = 100.

where r(k) represents the residual vector after k iterations. In Tables 4.1 and 4.2, the Laplacian-
like and τ -preconditioners discussed in Section 3 are compared with the Strang circulant
proposed in [16], where the comparison is given both in terms of iterations and CPU times. In
all tables, by “Iter” we mean the average number of iterations after 10 time-steps and by “CPU”
the corresponding average timings in seconds. We also report the L2-norm error defined as

E2(h) = ||u− ũ||L2 =

√√√√h

n∑
j=1

(uj − ũj)2 ,

where u and ũ are the numerical and exact solutions at the last considered time step, respec-
tively. Since for all tested preconditioners the obtained errors are comparable, we only show
the one referring to the Laplacian preconditioner.

Tables 4.1 and 4.2 refer to the case of fixed l = 5 and to the case where l = n, respectively.
We note that, independently of the chosen l, both τ - and Strang circulant preconditioners
outperform the Laplacian one even though the cost of a Laplacian solver increases only linearly
with the dimension. Moreover, in line with the theory, for the last two tested sizes (211, 212),
the τ -preconditioning provides a slightly smaller number of iterations than the circulant, which
translates into lower CPU timings. This result for the latter agrees with the rank analysis in [24].
We expect that for larger sizes the discrepancy between the circulant and the τ -preconditioning
becomes more evident and favorable to the latter approach. Having in mind the extension to
multidimensional problems, we stress that the τ -proposal is expected to be a better option
than the circulant approach since it is well-known that multilevel circulant preconditioning
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cannot ensure a superlinear convergence character of the PCG due to the negative results
in [26], while it is worth stressing that the computational cost of ad hoc Laplacian solvers in a
multidimensional context is still linear with respect to the matrix-size.

TABLE 4.1
PCG method performances with three different preconditioners. Here l = 5.

n = m
Strang circulant τ -preconditioner Laplacian

E2(h)
Iter CPU(s) Iter CPU(s) Iter CPU(s)

24 4.0 0.0000 4.0 0.0003 7.2 0.0001 1.37e-3
25 4.0 0.0000 4.0 0.0003 8.1 0.0001 3.49e-4
26 4.0 0.0001 4.0 0.0004 7.2 0.0002 8.66e-5
27 4.0 0.0003 4.0 0.0007 7.1 0.0006 2.13e-5
28 4.0 0.0007 4.0 0.0012 7.1 0.0011 5.23e-6
29 4.0 0.0059 4.0 0.0066 7.2 0.0077 1.28e-6
210 4.0 0.0166 3.8 0.0180 7.3 0.0284 3.15e-7
211 3.9 0.0608 3.0 0.0484 7.1 0.1067 7.76e-8
212 3.7 0.2322 3.1 0.1924 7.1 0.4326 1.92e-8

TABLE 4.2
PCG method performances with three different preconditioners. Here l = n.

n = m
Strang circulant τ -preconditioner Laplacian

E2(h)
Iter CPU(s) Iter CPU(s) Iter CPU(s)

24 4.0 0.0000 4.0 0.0003 7.1 0.0001 1.37e-3
25 4.0 0.0000 4.0 0.0003 8.1 0.0001 3.49e-4
26 4.0 0.0001 4.0 0.0004 7.1 0.0002 8.66e-5
27 4.0 0.0003 4.0 0.0008 7.1 0.0005 2.13e-5
28 4.0 0.0006 4.0 0.0013 7.1 0.0008 5.23e-6
29 4.0 0.0052 4.0 0.0065 7.1 0.0078 1.28e-6
210 4.0 0.0168 4.0 0.0189 6.7 0.0271 3.15e-7
211 4.0 0.0631 3.1 0.0500 6.1 0.0918 7.76e-8
212 4.0 0.2516 3.1 0.1984 5.1 0.3097 1.92e-8

5. Conclusions and open problems. In this work, we have examined the numerical
solution of a 1D distributed-order space-fractional diffusion equation. Discretizing the given
problem by means of an implicit finite difference scheme based on the shifted Grünwald-
Letnikov formula, the resulting linear systems show a Toeplitz structure. Then, by using well-
known spectral tools for Toeplitz sequences, we have computed and studied the corresponding
symbol, describing its asymptotic eigenvalue distribution as the matrix size diverges. The
spectral analysis has been discussed under different assumptions, with the aim of estimating the
intrinsic asymptotic ill-conditioning of the involved matrices. The obtained results suggested
to precondition the involved linear systems with either a Laplacian-like preconditioner or with
more general τ -preconditioners in the framework of the PCG method. As future immediate
steps, we think that these strategies could be explored in the more challenging multilevel
setting (for 2D or 3D problems, taking also into consideration the literature [10, 11, 28]),
while a more technical analysis of the spectral features of the preconditioned matrices has to
be provided especially when h∆α ∼ 1.
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Having in mind the extension to multidimensional problems, we stress three aspects:
• the numerical approximation by local methods of a d-dimensional version of (2.1)

with d ≥ 2 leads to d-level Toeplitz matrix-sequences, and, from a spectral viewpoint,
all the machinery for analyzing the extremal eigenvalues and the global distribution of
the spectrum of such matrix-sequences is available (see [13] and references therein);

• the considered spectral tools can be adapted in an elegant manner to the case of a
variable coefficient d-dimensional version of (2.1) via the (asymptotic) theory of d-
level Generalized Locally Toeplitz matrix-sequences (see [12, 13] and the references
therein);

• from an algorithmic viewpoint, the τ -proposal is expected to be a better option than
the circulant proposal in a d-dimensional setting, d ≥ 2, since it is well-known
that multilevel circulant preconditioning cannot ensure a superlinear convergence
character of the PCG due to the negative results in [26], while it is worth stressing
that the computational cost of ad hoc Laplacian solvers in a multidimensional context
is still linear with respect to the matrix-size.

Finally we mention that, as discussed in [25, Section 3], the spectral tools used in this setting
are convenient also for the study of the stability analysis of the numerical methods for time-
dependent differential equations. Such a topic is an interesting challenge also in case of
fractional-differential equations (see, e.g., [27]) and will be the subject of future investigations.
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