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CONFORMAL MODULI OF SYMMETRIC
CIRCULAR QUADRILATERALS WITH CUSPS∗

HARRI HAKULA†, SEMEN NASYROV‡, AND MATTI VUORINEN§

Abstract. We investigate moduli of planar circular quadrilaterals that are symmetric with respect to both
coordinate axes. First we develop an analytic approach that reduces this problem to ODEs and then devise a numerical
method to find out the accessory parameters. This method uses the Schwarz equation to determine a conformal
mapping of the unit disk onto a given circular quadrilateral. We also give an example of a circular quadrilateral for
which the value of the conformal modulus can be found in analytic form. This example is used to validate the numeric
calculations. We also apply another method, the so called hpFEM, for the numerical calculation of the moduli. These
two different approaches provide results agreeing with high accuracy.

Key words. conformal capacity, conformal modulus, quadrilateral modulus, hp-FEM, numerical conformal
mapping
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1. Introduction. A planar quadrilateral is a Jordan domainQ in the complex plane with
four fixed points z1, z2, z3, z4 on its boundary; we call them the vertices of the quadrilateral
and assume that they define a positive orientation. If we need to specify the vertices of a
quadrilateral, then we write Q = (Q; z1, z2, z3, z4). As is well-known, there is a conformal
mapping g of Q onto a rectangle Π = (Π; 1, 1 + hi, hi, 0), h > 0, such that the vertices of Q
correspond to the vertices of Π. The value h does not depend on g; it is called the conformal
modulus of Q,

Mod(Q) := h.

Another method, due to L.V. Ahlfors [1, Thm 4.5, p. 63], to find the modulus is to solve
the following Dirichlet-Neumann boundary value problem for the Laplace equation. Consider
a planar quadrilateral Q = (Q; z1, z2, z3, z4) with the boundary ∂Q = ∪4

k=1∂Qk; all the four
boundary arcs are assumed to be non-degenerate. The problem is

∆u = 0, on Q,

u = 1, on ∂Q1 = (z1, z2),

u = 0, on ∂Q3 = (z3, z4),

∂u/∂n = 0, on ∂Q2 = (z2, z3),

∂u/∂n = 0, on ∂Q4 = (z4, z1).

If we find a solution function u to the above Q-problem, then the modulus can be computed
in terms of u as

∫∫
Q
|∇u|2dxdy . We will make use of both the above two formulations for

finding the modulus. The modulus of a quadrilateral is closely related to the notion of the
conformal capacity of a condenser. A condenser in the plane is a pair (G,E), where G is a
domain in the plane and E is its compact subset and its capacity is [23]

inf

∫
Q

|∇u|2dxdy ,
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(a) Map of detected fibers with de-
tail area.

(b) Detail area with negative
colours.

(c) Detail area after homogeniza-
tion.

FIGURE 1.1. Circular polygons in applications: carbon fiber modelling. (a) Map of the measured locations of
the fibres within the resin. (b) As the fibres touch, that is, there is contact, the planar intersections of the cavities form
circular n-gons. (c) After homogenization, the cavities are circular quadrilaterals. Data courtesy of I. Babuška, UT
Austin.

where the infimum is taken over the class of all nonnegative C∞(G)-functions with compact
support in G and u(x) ≥ 1 for all x ∈ E .

The investigation of conformal moduli of quadrilaterals plays an important role in geomet-
ric function theory. The method of conformal moduli is a powerful tool in the theory of quasi-
conformal mappings in the plane and in multidimensional spaces; see [1, 2, 6, 23, 32, 35, 38].
For instance, many classical extremal problems of geometric function theory are related to
moduli of quadrilaterals or capacities of condensers [6, 23, 32].

We note that conformal moduli of quadrilaterals are closely connected with those of
doubly-connected planar domains. Indeed, all smooth enough doubly-connected domains can
be subdivided into two quadrilaterals. In recent years, a lot of attention has been paid to the
numerical computation of conformal moduli of some classes of quadrilaterals such as those
associated with polygonal domains or domains bounded by circular arcs [10, 21, 26, 27, 36,
37, 41].

We investigate moduli of circular quadrilaterals bounded by four circular arcs. Naturally,
the vertices of such quadrilaterals are the intersection points of the arcs. In addition, we will
assume that the quadrilaterals are symmetric with respect to the real and imaginary axes, that
they have zero inner angles at the vertices, and that all vertices are on the unit circle. However,
these circular arcs need not be perpendicular to the unit circle. We also include curvilinear
n-gons in our examples.

The modelling of carbon fibers induces computational domains that are rich in such
domains [7]. In Figure 1.1 a map of measured fiber locations is shown with a detailed image
highlighting the domains bounded by the aforementioned circular arcs. Notice that due to
measurement tolerances it would be correct to assume that all sufficiently small gaps could be
modelled as closed, i.e., neighbouring fibers touch each other. In fact, in order to avoid cusps,
in [7] a minimum distance between fibers was imposed.

Using domain-specific discretizations of computational domains as opposed to traditional
triangulations is one of the most active areas for numerical methods for partial differential
equations. In particular, we want to mention the virtual element method [12] and the cut finite
element method [18]. In our context, of particular interest is the contruction of finite elements
on curvilinear polygons or n-gons [5]. Constructing quadrature rules for such elements is a
challenge, and employing conformal mappings is an intriguing option yet to be fully examined.
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Our main goal is to develop numerical methods for calculating conformal moduli of the
kind of circular quadrilaterals and n-gons mentioned above with a precision as high as possible.
Both analytic and purely numerical methods are included in this study.

The analytic method (Section 2) uses conformal mappings of the unit disk onto circular
quadrilaterals and their Schwarzian derivatives. This method is classical; it is used in many
papers including recent ones. Here we should mention the articles [15, 16, 17, 34] concerning
the usage of elliptic functions and a spectral Sturm-Liouville problem. The numerical method
reduces to a solution of a pair of ordinary differential equations (ODE). In Section 2.3, making
use of the Riemann-Schwarz symmetry principle, we construct a circular quadrilateral whose
modulus can be determined in analytic form. We use this example to test the accuracy of the
developed numerical methods.

The purely numerical method (Section 3) is based on the hp-finite element method (FEM)
implemented by the first author and previously tested in [29, 31]. In contrast to the first method,
the moduli are now computed via potentials of the associated Dirichlet-Neumann problems.
The hp-FEM results are paired with respective a posteriori error estimates supporting our
high confidence in the accuracy of both methods studied here. Two error estimators are
considered: the hp-FEM a posteriori error estimate based on the auxiliary space methods
and the physics-based reciprocal error [28, 29]. Convergence for the latter, while general, is
only a necessary condition, and thus it should always be used in connection with other error
estimators. The challenges caused by the zero inner angles are well-known. We deal with
this difficulty using geometric mesh grading and a control of the order of the polynomial
approximation.

The two approaches are compared for a parametrized set of circular quadrilaterals in the
form of graphics and tables. The results are in excellent agreement with the analytic results
and support our stated goal of being as accurate as possible. The n-gon test is carried out with
the hp-version only. In all cases, exponential convergence is achieved with the hp-version at
the predicted rates [40]. These observations are supported by both types of hp-error estimators.
We draw our conclusions in Section 4 and include a sample implementation of the analytic
method in Appendix A.

Several authors have studied various topics about conformal mappings of domains with
circular arc boundaries. The difficulties encountered already in the case of nonsymmetric
quadrilaterals are pointed out in [22, Section 4.10]. The interested reader might want to look
at [10, 11, 14, 17, 21, 36].

2. The method of conformal mappings.

2.1. Circular quadrilaterals and the Schwarz equation. First we recall some classical
results about conformal mappings of canonical domains onto circular polygons. Let D be
a Jordan domain, and let its boundary consist of n circular arcs Ak−1Ak, 1 ≤ k ≤ n, with
A0 = An. We will name D a circular polygon, and the points Ak are called the vertices of D.
Denote by αkπ, 0 ≤ αk ≤ 2, the inner angle of D at the vertex Ak.

By definition, the Schwarzian derivative of a meromorphic function f is the expression

Sf (z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

.

Let now f be a conformal mapping of the unit disk U := {|z| < 1} onto D, and denote
by ak the preimage of Ak under the map f lying on the unit circle ∂U := {|z| = 1}. The
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following theorem describes the form of the Schwarzian derivative of f ; see, e.g., [25, Ch. 3,
§ 1], [45, § 12].

THEOREM 2.1. The Schwarzian derivative of the conformal mapping f of U onto the
circular polygon D has the form

(2.1) Sf (z) =

n∑
k=1

(1− α2
k)/2

(z − ak)2
+

Ck
z − ak

.

Here the parameters Ck are some complex numbers satisfying the relations

n∑
k=1

Ck = 0,

1

2

n∑
k=1

(1− α2
k) +

n∑
k=1

Ckak = 0,

n∑
k=1

(1− α2
k)ak +

n∑
k=1

Cka
2
k = 0.

From Theorem 2.1 we see that the expression (2.1) for the Schwarzian derivative of
f contains n unknown constants (or so-called accessory parameters) Ck. Finding these
constants is very complicated. The problem of determining a function by its given Schwarzian
derivative is well known; many papers are devoted to this investigation. Various methods are
used to study the problem such as the parametric method [4, 9, 20, 33, 35], boundary value
problems [19, 42, 43, 44], Polubarinova-Kochina’s method [13], the method of asymptotic
integration [45], and others. Some of these references point out that the problem of accessory
parameters is very important for investigations in fluid mechanics, especially in filtration
theory.

If we know the values of Ck, then the problem of finding f is reduced to solving the
nonlinear third-order differential equation(

f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

=

n∑
k=1

(1− α2
k)/2

(z − ak)2
+

Ck
z − ak

.

The following theorem gives a connection between this problem and the integration of
linear second-order differential equation; see, e.g., [24, Ch. VI], [44, 45].

THEOREM 2.2. Let the Schwarzian derivative Sf of f be given. Then f is defined by Sf
up to a Möbius transformation. The general solution of the problem is given by the formula

f(z) =
u(z)

v(z)
.

Here u and v are arbitrary linear independent solutions of the equation

(2.2) h′′(z) + (1/2)Sf (z)h(z) = 0.

REMARK 2.3. Assume that we seek an odd solution to the problem in a domain G
containing the origin and being symmetric with respect to the origin. Let Sf (z) be an even
function in G. Then we can take u and v as odd and even solutions of equation (2.2) in G.
Therefore, we find u and v as solutions to (2.2) with the following conditions:

u(0) = 0, u′(0) = C 6= 0, v(0) = 1, v′(0) = 0.
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FIGURE 2.1. Symmetric circular quadrilateral with zero angles.

2.2. Conformal mapping of symmetric circular quadrilaterals. We now apply Theo-
rems 2.1 and 2.2 in a special case. Let A1A2A3A4 be a circular quadrilateral with zero inner
angles, symmetric with respect to both axes. Let the centers of the circles containing the
circular arcs Ak−1Ak be at the points ±t, ±is, where t, s > 0. We also assume that at the
pointsAk, the circles touch each other externally; see Figure 2.1. Denote the radii of the circles
centered at ±t and ±is by r1 and r2. Then, by Pythagoras’ theorem, t2 + s2 = (r1 + r2)2.

Denote by f the conformal mapping of the unit disk onto A1A2A3A4. Because of the
symmetry of the quadrilateral with respect to the coordinate axes and the Riemann-Schwarz
symmetry principle, we may assume without loss of generality that

(2.3) f(z) = f(z), f(−z) = −f(z).

Therefore, the preimages ak of the vertices Ak are symmetric with respect to the axes, i.e., we
can put

(2.4) a1 = eiβ , a2 = −e−iβ , a3 = −eiβ , and a4 = e−iβ , 0 < β < π/2.

Because all the angles of the quadrilateral equal zero, we have αk = 0, 1 ≤ k ≤ 4. Then,
by Theorem 2.1, the Schwarzian derivative of f has the form

Sf (z) =
1

2

[
1

(z − eiβ)2
+

1

(z + e−iβ)2
+

1

(z + eiβ)2
+

1

(z − e−iβ)2

]
+

[
C1

z − eiβ
+

C2

z + e−iβ
+

C3

z + eiβ
+

C4

z − e−iβ

]
.

Here, the constants Ck, 1 ≤ k ≤ 4, satisfy

C1 + C2 + C3 + C4 = 0

eiβC1 − e−iβC2 − eiβC3 + e−iβC4 = −2,(2.5)

ei2βC1 + e−i2βC2 + ei2βC3 + e−i2βC4 = 0.

From the first and third equations of the system we obtain C1 + C3 = 0, C2 + C4 = 0,
hence, C3 = −C1, C4 = −C2. From (2.3) it follows that C4 = C1. Moreover, (2.5) implies
Re[eiβC1] = −1/2.
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Denote Im[eiβC1] = δ. Then

eiβC1 = −1/2 + iδ, e−iβC2 = 1/2 + iδ, eiβC3 = 1/2− iδ, e−iβC4 = −1/2− iδ.

After simple transformations we obtain (see also [39])

(2.6)
1

2
Sf (z) =

ei2β

(z2 − ei2β)2
+

e−i2β

(z2 − e−i2β)2
− γ

(z2 − ei2β)(z2 − e−i2β)
,

where γ = 2δ sin 2β ∈ R. By Theorem 2.2, taking into account (2.3), we represent f in the
form

(2.7) f(z) = C
u(z)

v(z)
, C > 0,

where C is a constant and

u(z) = z +

∞∑
k=2

akz
k + . . . and v(z) = 1 +

∞∑
k=1

bkz
k

are linearly independent solutions to the ODE (2.2). Taking into account that, by (2.3), f is
odd and Sf is an even function, we conclude with the help of Remark 2.3 that u(z) is odd and
v(z) is even. Thus,

u′′(z) + (1/2)Sf (z)u(z) = 0, u(0) = 0, u′(0) = 1,(2.8)
v′′(z) + (1/2)Sf (z)v(z) = 0, v(0) = 1, v′(0) = 0.(2.9)

Therefore, we have the following result:
THEOREM 2.4. Let f be the conformal mapping of the unit disk onto a symmetric circular

quadrilateral Q with zero angles such that the points ±e±iβ , 0 < β < π/2, correspond to the
vertices of Q. Then the Schwarzian derivative of f is a rational function expressed by (2.6)
with some real γ, f has the form (2.7), where C is a positive constant, and the functions u and
v are solutions of the problems (2.8) and (2.9).

We should note that the result for the form of the Schwarzian derivative is actually
obtained in [39, Appendix] for a more general case. Here we focus on the case of zero angles.

The equations (2.8) and (2.9) can be used to find the values of β and γ, corresponding to a
given circular quadrilateral Q = A1A2A3A4. If we fix some values of the parameters β and γ
and solve the boundary problems for the ODEs, then we find the mapping f(z) = Cu(z)/v(z)
up to a factor C 6= 0. The obtained function f(z) = f(z;β, γ) maps the unit disk onto a
symmetric circular quadrilateral with zero inner angles, possibly non-uniquely. It is evident
that for a given symmetric circular quadrilateral Q, there is a unique pair (β, γ) such that
f(z;β, γ), with an appropriate value of C, maps the unit disk onto Q.

Therefore, the main problem is to find such a pair (β, γ) for a given Q. We note that
the parameter β has a very simple geometric meaning. Finding β is equivalent to finding
the conformal modulus of Q. Actually, because of the property of conformal invariance, the
modulus of Q is equal to the modulus of the unit disk with vertices (2.4), which depends only
on β. The parameter γ has no simple geometric meaning but it also affects the geometry of Q.

To find (β, γ) numerically, we seek u(eiθ) and v(eiθ) as solutions of the following
boundary value problems for ODEs:

u′′(reiθ) +
ei2θ

2
Sf (reiθ)u(reiθ) = 0, 0 ≤ r ≤ 1, u(0) = 0, u′(0) = eiθ,(2.10)

v′′(reiθ) +
ei2θ

2
Sf (reiθ)v(reiθ) = 0, 0 ≤ r ≤ 1, v(0) = 1, v′(0) = 0,(2.11)
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and determine f(eiθ) = Cu(eiθ)/v(eiθ). Then we find the values T = f(1), S = f(i)/i,
and the values of the radii R1 and R2 of the circles containing the circular arcs f(eiθ),
−β < θ < β, and f(eiθ), β < θ < π− β. All these values depend on the parameters β and γ.
Then we compare the ratios S/T and R2/R1 with the given ones, s/t and r2/r1. Therefore,
we have two equations to determine β and γ:

(2.12)
S(β, γ)

T (β, γ)
=
s

t
,

R2(β, γ)

R1(β, γ)
=
r2

r1
.

This system has a unique solution, and the obtained value of β enables us to find the modulus
of Q.

Because our main goal is to determine the conformal modulus of Q by solving the
system (2.12) and because the ratios R/T and R2/R1 do not change under homotheties, we
will often assume below that the constant C in (2.7) equals 1.

2.3. Example of circular quadrilaterals with exactly known modulus. Unfortunately,
there are very few examples of concrete circular quadrilaterals with exactly known values
of the conformal modulus. In this section, with the help of the Riemann-Schwarz symmetry
principle and the Schwarz-Christoffel formula, we give an example of this type.

Consider the circular quadrilateral Q, Q ⊂ U , with vertices lying on the unit circle ∂U at
the points

A1 = eiα, A2 = −e−iα, A3 = −eiα, and A4 = e−iα, α = arcsin (1/
√

3).

Let the boundary arcs of Q be orthogonal to the unit circle. The Möbius transformation

ω = (i cotα)
e−iα − z
e−iα + z

maps Q conformally onto the circular quadrilateral D lying in the upper half-plane of the
variable ω, bounded by two rays {Reω = −2, Imω ≥ 0} and {Reω = 1, Imω ≥ 0}
and two semicircles {|ω + 1| = 1, Imω ≥ 0} and {|ω − 1/2| = 1/2, Imω ≥ 0}; see
Figure 2.2(A). For convenience and brevity of notation, we use the same notations for boundary
points corresponding to each other in different complex planes under the applied conformal
mappings. Denote by D1 the subdomain of D lying in the strip {−1 < Reω < 0}. Let
F be the conformal map of D1 onto the half-strip G1 = {−1 < ϕ < 0, ψ > 0} in the
w-plane (w = ϕ + iψ) such that F (−1 + i) = −1, F (0) = 0, and F (∞) = ∞. Applying
the Riemann-Schwarz symmetry principle, we extend the mapping F to the domains D2 and
D3, symmetric to D1 with respect to the lines Reω = −1 and Reω = 0. Then the extended
mapping, for which we keep the same notation F , maps the union of the domainsD1∪D2∪D3

(supplemented with their common boundary arcs) onto the strip {−2 < ϕ < 1} consisting of
three half-strips, G1, G2, and G3; see Figure 2.2. At last, we can extend F by symmetry to the
domain D4, symmetric to D3 with respect to the boundary arc A4B, lying on the unit circle
{|w| = 1}. The extended function maps D4 conformally onto the half-strip G4 symmetric to
G4 with respect to the real axis. As a result, we conclude that the domain D is conformally
equivalent to the strip-shaped domain G glued from the half-strips Gk, 1 ≤ k ≤ 4, along their
common boundary segments.

Let us conformally map the upper half-plane in the ζ-plane onto G such that the points
−1/λ, −1, 1, and 1/λ (λ > 1) correspond to A2, A3, A4, and A1. The desired mapping is
given by the Schwarz-Christoffel integral

G(ζ) = c

∫ ζ

1

√
1− t
1 + t

dt

1− λ2t2
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FIGURE 2.2. (A) Circular quadrilateral in the upper half-plane. (B) its strip-shaped image.

with some constant c > 0. In a neighborhood of ζ = 1/λ we have

(2.13) G(ζ) ∼ i c
2λ

√
1− λ
1 + λ

log(ζ − 1/λ).

In a similar way, as ζ → −1/λ, we have

(2.14) G(ζ) ∼ −i c
2λ

√
1 + λ

1− λ
log(ζ + 1/λ).

We recall that the function log(ζ) maps the upper half of a sufficiently small neighborhood
of the origin conformally onto a half-strip-like domain of width π. Taking into account the
values of the widths of the half-strip parts of G and the asymptotics (2.13), (2.14), we obtain

πc

2λ

√
1− λ
1 + λ

= 1,
πc

2λ

√
1 + λ

1− λ
= 3.

Therefore, (1 + λ)/(1− λ) = 3 and λ = 1/2.
Now we can find the value of the conformal modulus of Q. Because of the invariance

of the modulus under conformal mappings, we see that Mod(Q) is equal to the modulus of
the quadrilateral that is the upper half-plane with vertices ±1, ±1/λ. Therefore, it can be
computed via elliptic integrals; see, e.g., [3, 6]. Namely,

(Mod(Q))−1 =
2K(λ)

K(λ′)
,

where

K(λ) =

∫ 1

0

dt√
(1− t2)(1− λ2t2)

is the complete elliptic integral of the first kind and λ′ =
√

1− λ2 =
√

3/2. At last, we obtain

Mod(Q) =
K(
√

3/2)

2K(1/2)
= 0.6396307855855...
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FIGURE 2.3. (A) Circular hexagon in the upper half-plane. (B) its polygonal image.

Now we will find the Schwarzian derivative of the conformal mapping of the unit disk
onto Q. As we noted in Section 2.2, it has the form (2.6). The cross-ratio of a quadruple

(z1, z2; z3, z4) =
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)

is invariant under Möbius transformations. Comparing the cross-ratios for vertices of the two
quadrilaterals, the first one of which is the unit disk with vertices ±e±iβ and the second one is
the upper half-plane with vertices ±1 and ±1/λ, we obtain

sinβ =
1− λ
1 + λ

=
1

3
,

therefore β = arcsin(1/3). A careful analysis of the Schwarzian derivative in small neigh-
borhoods of the points ±e±iβ shows that, in the considered case, the parameter γ in (2.6)
equals 2/3.

2.4. Conformal mapping of circular n-gons. It is of interest to consider circular n-
gons with n > 4 and to compute moduli of quadrilaterals which are obtained from them after
fixing four of their vertices.

Here we give some examples of circular n-gons with zero angles and known conformal
moduli of quadrilaterals constructed based on these n-gons. They can be also used for testing
the error of the hp-FEM for finding conformal moduli as shown below in Section 3.

EXAMPLE 2.5. In the z-plane z = x+ iy we consider a circular hexagon H with zero
angles. The hexagon is obtained from the half-strip {−2 < x < 2, y > 0} by removing points
lying in the disks {(x+1)2 +y2 ≤ 1}, {(x−1/3)2 +y2 ≤ 1/9}, {(x−5/6)2 +y2 ≤ 1/36},
and {(x− 3/2)2 + y2 ≤ 1/4}. It has vertices at the points (Figure 2.3(A))

A(−2, 0), B(0, 0), C(2/3, 0), D(1, 0), E(2, 0), and F (∞) .

Let us map the circular triangle I := {−2 < x < 0, y > 0} \ {(x + 1)2 + y2 ≤ 1}
conformally onto the half-strip I ′ := {−π/2 < ϕ < 0, ψ > 0} in the w-plane w = ϕ+ iψ.
Applying three times the Riemann-Schwarz symmetry principle, we extend the mapping step
by step to the circular triangles designated by II , III , and IV in Figure 2.3(A). The extended
function f maps the triangles onto the half-strips II ′, III ′, and IV ′; see Figure 2.3(B).
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Therefore, f maps H conformally onto the strip {|ϕ| < π/2} with the slit along the
segment {−π/2 < ϕ < 0, ψ = 0}. Denote this domain by Ω. The function ω = g(w) :=
2 sinw − 1 maps Ω conformally onto the ω-plane ω = ξ + iη with two slits along the rays
{ξ ≤ −1, η = 0} and {ξ ≥ 1, η = 0}. Then we apply the function inverse to the Joukowsky
function, σ = h(ω) = ω +

√
ω2 − 1, with an appropriate choice of the regular branch of

the square root. The composition h ◦ g ◦ f maps the hexagon H conformally onto the upper
half-plane with the following correspondence of points:

(2.15) A 7→ −(3 + 2
√

2), B 7→ −1, C 7→ −(3− 2
√

2), D 7→ 0, E 7→ 1, F 7→ ∞.

Therefore, we have the following result:
The hexagonH is conformally equivalent to the upper half-plane with the correspondence

of points given by (2.15).
Because the conformal modulus of the quadrilateral that is the upper half-plane with four

fixed vertices on the real axis is well-known, we can fix any four of the six vertices and easily
compute the modulus of the obtained quadrilateral.

REMARK 2.6. In Section 3 we use this example to verify the accuracy of the hp-FEM for
determining conformal moduli of circular n-gons. This method needs a calculation of double
integrals over a given n-gon. Therefore, it is better to apply it in a bounded domain. Since the
modulus is a conformal invariant, we can consider, instead of the unbounded hexagon H , its
conformal image under the Möbius transformation

w = T (z) =
4− (1− 3i)z

4− (1 + 3i)z
.

This transformation maps the upper half-plane onto the unit disk, and Q corresponds to the
hexagon bounded by circular arcs orthogonal to the unit circle. Moreover, there is the following
correspondence between the vertices of Q and their images:

A 7→ −i, B 7→ 1, C 7→ 8 + 15i

17
, D 7→ i, E 7→ −4 + 3i

5
, F 7→ −4− 3i

5
.

The obtained hexagon is considered in Section 3.3.3; see Figure 3.2.
EXAMPLE 2.7. Given n ≥ 4, consider the circular n-gon Pn which is obtained from the

half-strip {0 < x < 2(n−2), y > 0} by removing the disksDk := {(x−(2k−1))2+y2 ≤ 1},
1 ≤ k ≤ n − 2. It has zero angles and vertices at the points 0, 2, 4, . . . , 2n − 2, ∞. We
map the triangle {0 < x < 2, y > 0} \ D1 onto the half-strip {0 < ϕ < 2, ψ > 0} and
extend the mapping by symmetry to a conformal mapping of the n-gon onto the half-strip
S := {0 < ϕ < 2(n − 2), ψ > 0}. Then we map S onto the upper half-plane by the
function ζ = − cos πw

2(n−2) such that the vertices of Pn are mapped to the points − cos πk
n−2 ,

k = 0, 1, . . . , n− 2, and∞. As in Example 2.5, by fixing four vertices of Pn we can find the
exact value of the modulus of the obtained quadrilateral.

2.5. Numeric results. Here we give a numerical algorithm to find the values of β and γ
in (2.6) for a given symmetric quadrilateral with zero inner angles; see Figure 2.1. For this, as
indicated above, we need to solve the system (2.12).

Denote k := s/t, K := r2/r1. Then (2.12) has the form

(2.16) S(β, γ)/T (β, γ) = k, R2(β, γ)/R1(β, γ) = K.

First we describe, how, for given arbitrary β and γ, to find the centers T (β, γ) and iS(β, γ)
and the radii R1(β, γ) and R2(β, γ) of the circles which contain the boundary circular arcs of
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the corresponding circular polygon. We note that boundary arcs are symmetric with respect to
either the real or the imaginary axis, therefore it is sufficient to determine two distinct points
for each of the circles. We can find f(eiθ) = u(eiθ)/v(eiθ) by solving the equations (2.10)
and (2.11), where Sf is defined by (2.6) and corresponds to the fixed values of β and γ. Then
we take two different values of θ from [0, β), say, θ1 = 0 and θ2 = β/2, and find the values of
f(eiθ1) and f(eθ2). Let x1 = f(eiθ1) and x2 + iy2 = f(eθ2). Next we determine

T = (1/2)(x1 + x2 + y2
2/(x2 − x1)), R1 = |t− x1|,

where x1 = f(eiθ1) and x2 + iy2 = f(eθ2). Similarly, we fix two angles in (β, π/2], say,
θ3 = π/4 + β/2 and θ4 = π/2, and find

S = (1/2)(y3 + y4 + x2
4/(y4 − y3)), R2 = |s− y4|,

where x3 + iy3 = f(eiθ3), iy4 = f(eθ4).
Now we describe how to solve the system (2.16). Initially, for a given fixed β, we solve

the first equation from (2.16) with respect to γ. We should note that for given values of β and
k, a symmetric circular quadrilateral, and therefore γ, is not uniquely determined. We consider
circular polygons such that the circles, containing their boundary, touch each other externally
at intersection points. But there could be another circular polygon with the same values of
β and k and the circles touching internally. To avoid this, first, for a given β we need to
determine the values of γ, Aγ , and Bγ , Aγ < Bγ , for which we obtain circular quadrilaterals
with a pair of sides lying on parallel straight lines. The values Aγ and Bγ correspond to the
conditions x1 = 0 (R1 =∞) and y4 = 0 (R2 =∞).

We find the values of Aγ and Bγ by the bisection method on some segment I = [aγ , bγ ].
The segment I must be sufficiently large and must contain Aγ and Bγ . Using a numerical
experiment, we determined that for a wide class of β and k the following values of the
parameters are appropriate:

aγ = 0.7− (4/π)β, bγ = 1.2− (3/π)β.

When the values of Aγ and Bγ are found, we determine the desired value of γ = γ(β).
To fulfill the second equality in (2.16), we solve the equation

R2(β, γ(β))/R1(β, γ(β)) = K,

making use of the bisection method on the segment [0, π/4]. We do not know a priori whether
β < π/4; this means that the modulus is less than 1. If it turns out that the numerical value of
the desired modulus is greater than 1 and therefore β ≥ π/4, then the bisection method on the
segment [0, β/4] converges to the boundary value β = π/4. In this case, we swap the values
of t and s, as well as r1 and r2, and repeat the calculations for these updated values; at the
end, the found value of β must be changed to π/2− β.

For numeric calculations we use the Wolfram Mathematica software. If we want to obtain
the approximate value of the modulus quickly and with accuracy about 10−6, for solving
Cauchy’s problems for differential equations with the help of NDSolve we can use the option
PrecisionGoal−>15. To find the parameters Aγ and Bγ with the help of the bisection method,
it is sufficient to use 10 iterations, and for each of the parameters β and γ we used 25 iterations.

In Appendix A we provide the Mathematica code for the calculation of the conformal
moduli. The input values of t, s, r1, and r2 (lines 1–4) match Example 2.9 below with
α = π/5 and j = 3. The output is the found values of Mod(Q), β, and γ in line 118.

If we need higher accuracy, then we can first find the approximate values β and γ with
accuracy 10−6. Denote them by β0 and γ0. Then we use the bisection method with respect to
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β and γ assuming that β ∈ [β0− ε, β0 + ε] and γ ∈ [γ0− ε, γ0 + ε] with a sufficiently small ε,
say ε = 2 · 10−6. Certainly, in that case, we omit the first two steps connected with finding the
values of Aγ and Bγ . To find β and γ, we use NDSolve with the option PrecisionGoal−>30
for each of the parameters. The number of iterations is 30. With this enhanced method,
the accuracy is about 10−10 to 10−11, although it needs much more computing time; a few
minutes instead of 10–15 seconds.

Now we provide some numerical results.
EXAMPLE 2.8. For k =

√
2 and K = 2 we know the exact values β = arcsin(1/3) and

γ = 2/3; see Section 2.3. Using the options PrecisionGoal−>15, WorkingPrecision−>30
with the number of steps equaling 30 for each of the parameters, we find that the approximate
values are

sinβ = 0.3333333333332441, γ = 0.666666666666788.

Therefore, the absolute error is about 1.2 · 10−13.
EXAMPLE 2.9. Assume that the vertex A1 is eiα, α = π/n, n ∈ N, 4 ≤ n ≤ 8, as in

Figure 2.1. For every n, we consider the following five values of t:

t = 1 + 0.2j(1/ cosα− 1), 1 ≤ j ≤ 5.

Then,

s =
t sinα

t− cosα
, r1 = |eiα − t|, and r2 = |eiα − is|.

We computed the values of the conformal modulus for these 25 cases. In Table 2.1 we
present the values obtained with rough accuracy, with higher accuracy, and by the hp-FEM
discussed in Section 3. We see that for given θ, the difference in the results, shown in the
fourth (higher accuracy) and fifth (hp-FEM variant) columns does not exceed 5 · 10−10. This
indicates a fairly good accuracy of the suggested methods.

We note that in Section 3.3.3, the following two cases are considered in more detail:
n = 4, j = 1 (quadrilateral Q1) and n = 8, j = 5; quadrilateral Q2.

3. Moduli via potentials. The finite element method (FEM) is the standard numerical
method for solving elliptic partial differential equations. Since the FEM is an energy mini-
mization method, it is eminently suitable for problems involving the Dirichlet energy. In the
context of this paper, where the focus is on domains with zero inner angles at the vertices, the
hp-FEM variant is the most efficient one [8, 40]. With proper grading of the meshes, even
with uniform polynomial order, exponential convergence can be achieved even in problems
with strong corner singularities. In this section we give a brief overview of the method and our
implementation [29, 31]. Of particular importance is the possibility to estimate the error in
the computed quantity of interest. For quadrilaterals there exists a natural error estimate, the
so-called reciprocal relation which is a necessary but not sufficient condition for convergence.
However, if the reciprocal relation is coupled with a posteriori error estimates, we can trust
the results with high confidence [28].

3.1. Modulus of quadrilateral and the Dirichlet integral. Let Q = (Q; z1, z2, z3, z4)
be a quadrilateral with boundary ∂Q = ∪4

k=1∂Qk, where all four boundary arcs are assumed
to be non-degenerate. Consider the following Dirichlet-Neumann problem already stated in
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TABLE 2.1
The values of moduli of circular quadrilaterals.

α j rough accuracy higher accuracy hp-FEM

π/4

1 1.65195637087856 1.65195641811156 1.65195641811801
2 1.41312892318176 1.41312882432748 1.41312882433334
3 1.23851630005081 1.23851628549016 1.23851628549600
4 1.10517568205164 1.10517573064876 1.10517573065505
5 1. (sharp value) 1. (sharp value) 1.00000000000704

π/5

1 0.98160716203795 0.98160730939538 0.98160730941547
2 0.88131392216865 0.88131392866493 0.88131392869094
3 0.79679231514866 0.79679236427334 0.79679236430546
4 0.72458905475484 0.72458889240001 0.72458889243949
5 0.66218846198336 0.66218813398119 0.66218813402464

π/6

1 0.69813401618400 0.69813355689778 0.69813355697485
2 0.63911291428315 0.63911229266297 0.63911229274088
3 0.58614443760266 0.58614411420414 0.58614411428162
4 0.53833141064728 0.53833144748697 0.53833144756331
5 0.49493995006987 0.49493951440663 0.49493951447948

π/7

1 0.54204363753707 0.54204377899126 0.54204377906567
2 0.50133118737030 0.50133063755764 0.50133063763325
3 0.46350927171723 0.46350872114770 0.46350872122462
4 0.42826417448376 0.42826373909062 0.42826373916846
5 0.39531876405162 0.39531863465020 0.39531863472915

π/8

1 0.44327621319647 0.44327582367411 0.44327582393810
2 0.41254694695236 0.41254658974644 0.41254659003158
3 0.38338345187308 0.38338339855016 0.38338339885322
4 0.35565053319540 0.35565066792949 0.35565066823961
5 0.32922105387009 0.32922144646084 0.32922144678543

the introduction:

(3.1)



∆u = 0, on Q,
u = 1, on ∂Q1,

u = 0, on ∂Q3,

∂u/∂n = 0, on ∂Q2,

∂u/∂n = 0, on ∂Q4.

Assume that u is the (unique) harmonic solution of the Dirichlet-Neumann problem (3.1).
Then the modulus of Q is defined as

(3.2) Mod(Q) =

∫∫
Ω

|∇u|2 dx dy.

Due to (3.2), the modulus of a quadrilateral is the Dirichlet integral, i.e., the H1-seminorm of
the potential u squared, or, in other words, the energy norm squared, a quantity of interest that
is natural in the FEM setting.

3.2. Mesh refinement and exponential convergence. The idea behind the p-version is
to associate degrees of freedom to topological entities of the mesh in contrast to the classical
h-version, where this is done with respect to mesh nodes only. The shape functions are based
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(a) Q1: Mesh; α = π/4.
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(b) Q2: Mesh; α = π/8.

FIGURE 3.1. Circular quadrilaterals. Pure p-version meshes.

on suitable orthogonal polynomials, and their supports reflect the related topological entities,
nodes, edges, faces (in 3D), and interiors of the elements. The nodal shape functions induce a
partition of unity.

In many problem classes it can be shown that if the mesh is graded appropriately, then
the method convergences exponentially in some general norm such as the H1-seminorm.
Moreover, due to the construction of shape functions, it is natural to have large curved
elements in the mesh without a significant increase in the discretization error. Since the
number of elements can be kept relatively low given that additional refinement can always be
added via the elementwise polynomial degree, a variation in the boundary can be addressed
directly at the level of the boundary representation in some exact parametric form.

To fully realize the potential of the p-version, one has to grade the meshes properly, and
therefore we really use the hp-version here. Consider the meshes in Figures 3.2 and 3.1.
In Figures 3.2 the basic refinement strategy is illustrated. We start with an initial mesh,
where the corners with singularities are isolated, that is, the subsequent refinements of their
neighboring elements do not interfere with each other. Then the mesh is refined using
successive applications of replacement rules.

In our implementation, the geometry can be described in exact arithmetic, and therefore
there are no fixed limits on the number of refinement levels. In the case of graded meshes, one
has to resolve the question of how to set the polynomial degrees at every element; indeed, this
is a form of refinement of its own. One option in the case of strong singularities is to set the
polynomial degree based on the graph distance from the singularity. Alternatively, the degree
p can be constant over the whole mesh despite the grading.

3.3. Error estimation. Assuming that the exact capacity is not known, we have two
types of error estimates available: the reciprocal estimate and an a posteriori estimate. Natu-
rally, if the exact value is known, we can measure the true error.

3.3.1. Reciprocal error estimate. The first error estimate is rather unusual in the sense
that it is based on physics, yet only necessary. For every quadrilateral, the so-called reciprocal
relation can be used; see Definition 1. More detailed, from the definition of the modulus via
conformal mapping it is clear that the following reciprocal identity holds:

(3.3) Mod(Q) Mod(Q̃) = 1.
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(a) Initial mesh.
- 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

(b) After two levels of refinement.

(c) Potential of the problem. (d) Potential of the conjugate problem.

FIGURE 3.2. Circular hexagon.

Here Q̃ = (Q; z2, z3, z4, z1) is called the quadrilateral conjugate to Q = (Q; z1, z2, z3, z4).
In the numerical context, (3.3) gives us the following error characteristics.

DEFINITION 1 (Reciprocal identity and error). We will call

εR = |1−Mod(Q) Mod(Q̃)|

the error measure and εN = |dlog10 |εR|e| the related error number.

3.3.2. Auxiliary space error estimate. Consider the abstract problem setting with u
as the standard piecewise polynomial finite element space on some discretization T of the
computational domain D. Assuming that the exact solution u ∈ H1

0 (D) has finite energy, we
arrive at the following approximation problem: find û ∈ V such that

a(û, v) = l(v) (= a(u, v)) ∀v ∈ V,
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TABLE 3.1
Examples: parameters or coordinates used to define the problems. The problem for the hexagon is obtained

from Example 2.5 (cf. Figure 2.3(A)) after carrying out the Möbius transformation of Remark 2.6.

(a) Geometry definitions.

Example Parameters or coordinates
Q1 α = π/4, t = 1

5

(
4 +
√

2
)
, s = 1

23

(
20 + 19

√
2
)
,

r1 = 1
5

√
33− 12

√
2, r2 = 1

23

√
777 + 300

√
2

Q2 α = π/8, t = sec
(
π
8

)
, s = csc

(
π
8

)
,

r1 = tan
(
π
8

)
, r2 = 1 +

√
2

hexagon A′ = −i, B′ = 1, C ′ = 8
17 + 15

17 i,
D′ = i, E′ = − 4

5 + 3
5 i, F

′ = − 4
5 −

3
5 i

(b) Problem definitions.

Example Problem Conjugate
hexagon Q = (Q;A′, B′, D′, E′) Q̃ = (Q;B′, D′, E′, A′)

where a( · , · ) and l( · ) are the bilinear form and the load potential, respectively. Additional
degrees of freedom can be introduced by enriching the space V . This is accomplished via the
introduction of an auxiliary subspace or “error space” W ⊂ H1

0 (D) such that V ∩W = {0}.
We can then define the error problem: find ε ∈W such that

(3.4) a(ε, v) = l(v)− a(û, v)(= a(u− û, v)) ∀v ∈W.

This is simply a projection of the residual to the auxiliary space. In 2D, the space W , that
is, the additional unknowns, can be associated with element edges and interiors. Thus, for
hp-methods, this kind of error estimation is natural. The main result for this kind of estimators
is the following theorem.

THEOREM 3.1 ([28]). There is a constant K depending only on the dimension d, the
polynomial degree p, the continuity and coercivity constants C and c, and the shape-regularity
of the triangulation T such that

c

C
‖ε‖1 ≤ ‖u− û‖1 ≤ K (‖ε‖1 + osc(R, r, T )) ,

where the residual oscillation depends on the volumetric and face residuals R and r, and the
triangulation T .

The solution ε of (3.4) is called the error function. It has many useful properties for both
theoretical and practical considerations. In particular, the error function can be numerically
evaluated and analyzed for any finite element solution. By construction, the error function is
identically zero at the mesh points. In the examples below, the space W contains edge shape
functions of degree p+ 1 and internal shape functions of degrees p+ 1 and p+ 2. This choice
is not arbitrary but based on a careful cost analysis [28].

3.3.3. Examples. The numerical examples are defined in Table 3.1. We consider in
detail two circular quadrilaterals and one hexagon. The related results of Table 2.1 above have
been obtained with the method discussed here.

In Figures 3.3 and 3.4, different error measures and the related convergence rate in p are
shown. In all cases exponential convergence is realized. The estimated rates obtained through
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(a) Q1: Reciprocal error; c = 1/3.
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(b) Q1: Estimated error; c = 1/3.
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(c) Q2: Reciprocal error; c = 1/4.
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(d) Q2: Estimated error; c = 1/4.

FIGURE 3.3. Circular quadrilaterals. Different types of errors vs. the number of degrees of freedom; log-plots.
The solid line with markers represents the observed errors and the dashed line the fitted exponential curve with rate c
indicated in the caption.

nonlinear fitting are also indicated (with dashed lines), and the parameters used are given in
Table 3.2. One has to remember that such fits are notoriously sensitive to selected points, and
thus the rates given here should be taken as possible rates rather than the definitive ones. We
have used a visualization technique where the scaling is selected such that the observed graph
appears linear.

For the two quadrilaterals Q1 and Q2, the results are very good indeed. In fact, the
estimated rate for Q1 is the theoretically optimal one in terms of the number of degrees of
freedom, of course with a large constant [40]. The reason behind such a spectacular accuracy
is that the underlying mapping of the curved elements, the blending function mapping, is
exact for circular boundary segments. From the point of view of the method, the corner
singularity is practically removed by the mapping. For Q2 with the smaller aspect ratio, at
higher polynomial orders, there is a degradation of the convergence rate in comparison to the
symmetric domain of Q1, and indeed, the selected scaling cannot remain the same as for Q1.
Notice that the exceedingly large constant a1 of the estimated error is due to the non-trivial
oscillation in the estimate, and the asymptotic convergence is reached only at high values of p.
Due to symmetry, Mod(Q1) = 1. We have not shown the error in capacity in this case. This is
done in the following case, however.
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(a) Error in capacity; c = 1/4.
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(b) Reciprocal error; c = 1/4.
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(c) Estimated error; c = 1/4.
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(d) Comparison of the real and estimated errors.

FIGURE 3.4. Circular hexagon. Different types of errors vs. the number of degrees of freedom; log-plots. The
solid line with markers represents the observed errors and the dashed line the fitted exponential curve with rate c
indicated in the caption. In the comparison graph the estimated error is smaller with asymptotic effectivity of 1/10.

For the circular hexagon, the geometric meaning of the domain and its conjugate is
illustrated in Figures 3.2c and 3.2d. In this case, the exact modulus is also known,

Mod(Q) = τ(
√

2)/2 =
K(1/

√
1 +
√

2)

K(
√√

2/(1 +
√

2))
≈ 0.92401502327430725964 . . . ,

where K(r) is the complete elliptic integral. The method is indeed very accurate, and the
observed rate is within the expected range. As is often the case, the auxiliary space estimate
trails the true error, yet the effectivity is still over 1/10 as p increases. Due to the construction
of the auxiliary space, the estimate is computed at a lower polynomial order.

In Table 3.2 the error numbers for the reciprocal error estimates are also reported for the
highest polynomial order. These results are aligned with those reported for similar problems
before; see [30].

REMARK 3.2 (On the computational complexity of the error estimates). The two error
estimates do not differ in their computational complexity in any significant way. Although
the reciprocal error estimate requires the solution of two problems and the auxiliary space
estimate is for one problem only, the cost of the numerical integration (always an issue in
high-order methods) is roughly the same, and the two solution steps for the reciprocal error
estimate can share the Cholesky factorization of the interior degrees of freedom.
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TABLE 3.2
Parameters of the nonlinear fit a1 exp(a2Nc), where N is the number of degrees of freedom, and the error

numbers for the reciprocal errors.

Example Error Type a1 a2 c N (p = 20) Error Number
Q1 Estimated 1397 -2.8 1/3 1681

Reciprocal 198 -2.6 1/3 1681 10
Q2 Estimated 179191 -5.5 1/4 1681

Reciprocal 2154 -4.4 1/4 1681 9
hexagon True 47 -2.4 1/4 26761

Estimated 105 -2.8 1/4 (p = 18) 21709
Reciprocal 287 -2.5 1/4 26761 11

REMARK 3.3 (On the performance comparison between the Schwarz ODE and the
hp-FEM). As mentioned above, the quadrilateral example is particularly well-suited to the
hp-FEM. This makes it somewhat awkward to compare the computational efficiency of the
two numerical approaches presented in this paper. Of course, one should also take into account
the time spent in defining the computational domain. This is very difficult to measure, however.
The Schwarz ODE routine and the hp-solver have comparable performance when the former
is run using standard precision. Due to the implementation of the ODE solver, the higher
accuracy is obtained only by changing the floating-point representation, which leads to higher
run times. On the other hand, the Schwarz ODE has an almost uniform runtime characteristics
over all circular quadrilaterals, and it is likely that replacing the general ODE solver routines
with problem specific ones will lead to significant improvements in run times. The hp-FEM
requires more resources if the discretization includes more elements. With the current hp-
implementation, the non-graded discretization of the n-gon (Figure 3.2a) took three times
longer than the corresponding quadrilaterals; see Figure 3.1.

4. Conclusions. Here, moduli of planar circular quadrilaterals symmetric with respect
to both coordinate axes have been investigated. The computation of moduli of planar domains
with cusps is difficult and requires either a customized analytic algorithm or a general method
with sufficient flexibility. The Schwarz ODE introduced here, an analytic method to determine
a conformal mapping of the unit disk onto a given circular quadrilateral, belongs to the first
category. hp-FEM on the other hand provides a framework for highly efficient numerical
PDE solvers. We have shown that these two different approaches provide results agreeing
with high accuracy over two sets of parametrized examples. The results have been verified
using a problem with analytic solution and, in the case of the hp-FEM, by two different error
estimates. From the point-of-view of computational complexity, the choice of the preferred
method depends on many factors, and it is not possible to arrive at a general recommendation.

One interesting application is the quadrature design for finite elements on curvilinear
polygons or n-gons. Constructing quadrature rules for such elements is a challenge, and
employing conformal mappings is an intriguing option yet to be fully examined.

Appendix A. Reference implementations. The programs used to compute the results of
Table 2.1 are available at https://github.com/hhakula/hnv, and Version 1.0, used
in this paper, is archived at DOI: 10.5281/zenodo.4718350.

The Schwarz ODE code is also listed below. The expected output of the program is

{1.02791, 0.440765, 1.25503}.
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LISTING 1
Schwarz ODE.

1 t = 2.0174131664886366‘;
2 s = 1.1416407864998739‘;
3 r1 = 1.642663833605752‘;
4 r2 = 0.6753740370343625‘;
5 Clear[K, b, gamma];
6 K = r2/r1;
7 k = s/ t ;
8 mod = 1.;
9 While[Abs[mod − 1.] < 10^(−5),

10 ba = 0.;
11 bb = Pi /4;
12 Do[Clear[gamma,b];
13 b = (ba + bb) /2.;
14 theta1 = 0;
15 theta2 = b /2.;
16 theta3 = Pi /2*(1/2) + b*(1/2) ;
17 theta4 = Pi /2.;
18 agamma = 0.7 − 4./Pi*b;
19 bgamma = 1.2 − 3./Pi*b;
20 F[x_, beta_, theta_, gamma_] = Exp[2*I*theta](Exp[2*I*beta]/(x^2*Exp[2*I*theta]
21 −Exp[2*I*beta])^2 +Exp[−2*I*beta]/(x^2*Exp[2*I*theta] − Exp[−2*I*beta])^2
22 − gamma (1/((x^2*Exp[2*I*theta] − Exp[2*I*beta])(x^2*Exp[2*I*theta]
23 −Exp[−2*I*beta]))));
24 Do[gamma = (agamma + bgamma)/2.;
25 sol3 = NDSolve[{
26 u3 ’’[ x]+F[x,b,theta3,gamma]*u3[x]==0,v3’’[x]+F[x,b,theta3,gamma]*v3[x]==0,
27 u3[0]==0,u3’[0]==Exp[I*theta3],v3[0]==1,v3’[0]==0},{u3,v3},{x ,0,1}];
28 sol4 = NDSolve[{
29 u4 ’’[ x]+F[x,b,theta4,gamma]*u4[x]==0,v4’’[x]+F[x,b,theta4,gamma]*v4[x]==0,
30 u4[0]==0,u4’[0]==Exp[I*theta4],v4[0]==1,v4’[0]==0},{u4,v4},{x ,0,1}];
31 F3[x_] = u3[x ]/ v3[x] /. sol3;
32 F4[x_] = u4[x ]/ v4[x] /. sol4;
33 x2 = Re[F3[1]];
34 y2 = Im[F3[1]];
35 y3 = Im[F4[1]];
36 S = (1/2) (y2+y3+x2^2/(y2−y3));
37 If [ S [[1]]<0,
38 bgamma = gamma,
39 agamma = gamma
40 ],{ i , 10}];
41 BGAMMA = gamma;
42 Clear[gamma];
43 agamma = 0.75−4./Pi*b;
44 bgamma = 1.2−3./Pi*b;
45 Do[gamma = (agamma + bgamma)/2.;
46 sol1 = NDSolve[{
47 u1 ’’[ x]+F[x,b,theta1,gamma]*u1[x]==0,v1’’[x]+F[x,b,theta1,gamma]*v1[x]==0,
48 u1[0]==0,u1’[0]==Exp[I*theta1],v1[0]==1,v1’[0]==0},{u1, v1},{x ,0,1}];
49 sol2 = NDSolve[{
50 u2 ’’[ x]+F[x,b,theta2,gamma]*u2[x]==0,v2’’[x]+F[x,b,theta2,gamma]*v2[x]==0,
51 u2[0]==0,u2’[0]==Exp[I*theta2],v2[0]==1,v2’[0]==0},{u2,v2},{x ,0,1}];
52 F1[x_] = u1[x ]/ v1[x] /. sol1;
53 F2[x_] = u2[x ]/ v2[x] /. sol2;
54 x1 = Re[F1[1]];
55 x2 = Re[F2[1]];
56 y2 = Im[F2[1]];
57 T = (1/2) (x1+x2+y2^2/(x2−y1));
58 If [ T [[1]] > 0,
59 bgamma = gamma,
60 agamma = gamma
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61 ], { i , 10}];
62 AGAMMA = gamma;
63 Clear[gamma,x1,x2,y2,x3,y3,y4];
64 Do[gamma = (AGAMMA + BGAMMA)/2.;
65 sol1 = NDSolve[{
66 u1 ’’[ x]+F[x,b,theta1,gamma]*u1[x]==0,v1’’[x]+F[x,b,theta1,gamma]*v1[x]==0,
67 u1[0]==0,u1’[0]==Exp[I*theta1],v1[0]==1,v1’[0]==0},{u1,v1},{x ,0,1},
68 PrecisionGoal−>15];
69 sol2 = NDSolve[{
70 u2 ’’[ x]+F[x,b,theta2,gamma]*u2[x]==0,v2’’[x]+F[x,b,theta2,gamma]*v2[x]==0,
71 u2[0]==0,u2’[0]==Exp[I*theta2],v2[0]==1,v2’[0]==0},{u2,v2},{x ,0,1},
72 PrecisionGoal−>15];
73 sol3 = NDSolve[{
74 u3 ’’[ x]+F[x,b,theta3,gamma]*u3[x]==0,v3’’[x]+F[x,b,theta3,gamma]*v3[x]==0,
75 u3[0]==0,u3’[0]==Exp[I*theta3],v3[0]==1,v3’[0]==0},{u3,v3},{x ,0,1},
76 PrecisionGoal−>15];
77 sol4 = NDSolve[{
78 u4 ’’[ x]+F[x,b,theta4,gamma]*u4[x]==0,v4’’[x]+F[x,b,theta4,gamma]*v4[x]==0,
79 u4[0]==0,u4’[0]==Exp[I*theta4],v4[0]==1,v4’[0]==0},{u4,v4},{x ,0,1},
80 PrecisionGoal−>15];
81 F1[x_] = u1[x ]/ v1[x] /. sol1;
82 F2[x_] = u2[x ]/ v2[x] /. sol2;
83 F3[x_] = u3[x ]/ v3[x] /. sol3;
84 F4[x_] = u4[x ]/ v4[x] /. sol4;
85 x1 = Re[F1[1]];
86 x2 = Re[F2[1]];
87 y2 = Im[F2[1]];
88 T = (1/2) (x1+x2+y2^2/(x2−x1));
89 R1 = Abs[x1−T];
90 x3 = Re[F3[1]];
91 y3 = Im[F3[1]];
92 y4 = Im[F4[1]];
93 S = (1/2) (y3+y4+x3^2/(y3−y4));
94 R2 = Abs[y4−S];
95 If [ k*T [[1]] < S [[1]],
96 BGAMMA = gamma,
97 AGAMMA = gamma
98 ],{ i ,25}];
99 If [ R2 [[1]]/ R1[[1]]<K,

100 bb = b,
101 ba = b
102 ],{ n ,25}];
103 m = (Tan[b/2])^4;
104 mod = 2*EllipticK[m]/EllipticK[1−m];
105 If [ Abs[mod−1.]<10^(−5),
106 K = r1/r2
107 ];
108 If [ Abs[mod−1.]<10^(−5),
109 k = t /s
110 ];
111 ]; (* End top While *)
112 If [ K==r2/r1,
113 b1 = b,
114 b1 = Pi/2 − b
115 ];
116 m1 = (Tan[b1/2])^4;
117 modQ = 2*EllipticK[m1]/EllipticK[1−m1];
118 {b1, gamma, modQ}
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