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A CONVERGENT LINEAR FINITE ELEMENT SCHEME FOR THE
MAXWELL-LANDAU-LIFSHITZ-GILBERT EQUATIONS

L. BANASY, M. PAGF*, AND D. PRAETORIUS

Abstract. We consider the lowest-order nite element discretization of the nonlinear system of Maxwell's and
Landau-Lifshitz-Gilbert equations (MLLG). Two algorithms are proposed to numerically solve this problem, both of
which only require the solution of at most two linear systems per time step. One of the algorithms is decoupled in the
sense that it consists of the sequential computation of the magnetizatiafitandardsthe magnetic and electric eld.

Under some mild assumptions on the effective eld, we show that both algorithms converge towards weak solutions
of the MLLG system. Numerical experiments for a micromagnetic benchmark problem demonstrate the performance
of the proposed algorithms.
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1. Introduction. The understanding of magnetization dynamics, especially on a mi-
croscale, is of utter relevance, for example in the development of magnetic sensors, recording
heads, and magneto-resistive storage devices. In the literature, a well accepted model for
micromagnetic phenomena is the Landau-Lifshitz-Gilbert equation (LLG)YZ&g. This
nonlinear partial differential equation describes the behaviour of the magnetization of some
ferromagnetic body under the in uence of a so-called effective eld. Existence (and non-
uniqueness) of weak solutions of LLG goes back3037]. Existence of weak solutions
for MLLG was rst shown in [L8]. For a complete review of the analysis for LLG, we refer
to [19, 22, 30] or the monographs?[7, 34] and the references therein. As far as numerical
simulation is concerned, convergent integrators can be found, e.g., in the @yks][or [7],
where the latter considers a weak integrator for the coupled MLLG system. From the viewpoint
of numerical analysis, the integrator froi suffers from explicit time stepping, since this
imposes a strong coupling of the time step $iznd the spatial mesh sike The integrators
of [7, 14], on the other hand, rely on the implicit midpoint rule for time discretization, and
unconditional stability and convergence is proved. In practice, a nonlinear system of equations
has to be solved in each time step, and to that end, a xed-point iteration is proposed in
the works [/, 14]. This, however, again leads to a couplinglodndk, and thus destroys
unconditional convergence. The problem can be reduced by using the Newton method for the
midpoint scheme, which empirically allows for larger time steps; 8€pdnd also 8], where
an ef cient Newton-multigrid nonlinear solver has been proposed.

In[2], an unconditionally convergent projection-type integrator is proposed, which, despite
the nonlinearity of LLG, only requires the solution of one linear system per time step. The
effective eld in this work, however, only covers microcrystalline exchange effects. In the
subsequent worksS[ 25, 26] the analysis for this integrator was extended to cover more general
(linear) eld contributions, where only the highest-order exchange contribution is treated
implicitly, whereas the other contributions are treated explicitly. This allows reduction of the
computational effort while still preserving unconditional convergence. Finally, in the very
recent work [L6], the authors could show unconditional convergence of this integrator, where
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the effective eld consists of some general energy contributions, which are only supposed to
ful Il a certain set of properties. This particularly covers some nonlinear contributions, as
well as certain multiscale problems. In addition, it is shownili§] fhat errors arising due to
approximate computation of eld contributions like, e.g., the demagnetizing eld, do not affect
the unconditional convergence. M [the authors also investigate a higher-order extension of
this algorithm which, however, requires implicit treatment of nonlocal contributions like the
magnetostatic stray eld.

In our work, we extend the analysis of the aforementioned works and show that the
integrator from P] can be coupled with a weak formulation of the full Maxwell systgimLb—
(2.19. For the integration of this system, we propose two algorithms that only require the
solution of one (Algorithmi.1) resp. two linear systems (Algorithi?2) per time step while
still guaranteeing unconditional convergence (Theotefh The contribution of the present
work can be summarized as follows:

We extend the linear integrator frorf, [25] to time-dependent contributions of the
effective eld by considering the full Maxwell equations instead of the magnetostatic
simpli cation. This allows for more precise simulations (see, e Zf3])[as well as
the modeling of conducting ferromagnets (vi& O in (2.10). The latter is unclear
if one only considers the magnetostatic stray eld; 62 [Remark 1.4].
Unlike [7], at most two linear systems per time step, instead of a coupled nonlinear
system, need to be solved. Nevertheless, we still prove unconditional convergence.
Unlike [7], we propose a fully decoupled scheme and show that the decoupling has
no negative effect on the convergence behaviour. From a computational point of view,
this is a major improvement over the current state of the art as it greatly simpli es
preconditioning. Existing LLG or Maxwell solvers can be reused and only small
modi cations have to be done for the overall implementation.
Independently of the present workd considered the coupling of LLG with the quasi-
stationary eddy-current formulation of the Maxwell equations. There, however, only the
coupled algorithm is proposed and analyzed. As far as the decoupling of the numerical inte-
grator is concerned, the extended preprditdf the present work contained the rst thorough
numerical analysis and proof of unconditional convergence. Follovdhdgle work 28]
derived a decoupled integrator for the eddy-current LLG system. Moredrahalyzed the
nonlinear coupling of LLG to the conservation of elastic momentum to model magnetostrictive
effects and provided a decoupled time marching scheme. Finally, the recentiyvarialyzes
the numerical integration of spin diffusion effects in spintronic micromagnetics.

Outline. The remainder of this paper is organized as follows: in Se&jome recall
the mathematical model for the full Maxwell-LLG system (MLLG) and recall the notion of
a weak solution (De nition2.1). In Section3, we collect some notation and preliminaries,
as well as the de nition of the discrete ansatz spaces and their corresponding interpolation
operators. In Sectioh, we propose two algorithms (Algorithrds1 and4.2) to approximate
the MLLG system numerically. The large Sectiors then devoted to our main convergence
result (Theoren®.2) and its proof. Finally, in Sectiof,, some numerical results conclude this
work.

Notation. Throughouta b denotes the Euclidean scalar producapb in RY respec-
tively RY 9, andjaj denotes the corresponding Euclidean norm. Moreovet, #¢ -scalar
product is denoted blg; i . Finally, A . B abbreviate®\ c¢B with some generic con-
stantc > 0 which is clear from the context and, in particular, independent of the discretization
parameters andk.

2. Model problem. We consider Maxwell-Landau-Lifshitz-Gilbert equations (MLLG),
which describe the evolution of the magnetization of a ferromagnetic body that occupies
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the domain! b R3. For a given damping parameter> 0, the magnetization
m: (0;T) ! ! S?andthe electric and magnetic elds; H : (0;T) I RS satisfy the
MLLG system

(2.1a) my m my= m Heg in!+:=(0;T)

(2.1b) "oEt T H+ E= J in 1:=(0;T) ;

(21C) oHi+ 1 E = o 1 My in T;

where the effective eltH ¢ consists oHg = Ce m + H + (m) for some general energy

contribution which is assumed to ful Il a certain set of properties; $88)—5.4). This is

in analogy to L6]. We stress that, with the techniques frob®], an approximation y, of

can be included into the analysis as well. We emphasize that throughout this work, the case

Hef = Ce m+ H + CyD ( m)+ Hey is particularly covered. Here( ) denotes the

crystalline anisotropy density andle,; is a given applied eld. The constantg; o O

denote the electric and magnetic permeability of free space, respectively, and the constant
0 stands for the conductivity of the ferromagnetic domairiThe eldJ: 1! R3

describes an applied current density and ! f 0; 1gis the characteristic function of.

As is usually done for simplicity, we assume RS2 to be bounded with perfectly conducting

outer surface® into which the ferromagnét b  is embedded, andnt” is assumed to be

vacuum. In addition, the MLLG syster.(l) is supplemented by initial conditions

(2.1d) m(; )= m® in! and E(:;)=E% H(;)=H°? in
as well as boundary conditions
(2.1e) @m=0 on@k; E n=0 on@ t;

where@4 and@ 1 denote the spatial boundaries anis the respective outer normal vector.
Note that the side constraijthj = 1 a.e. in! 1 does not need to be enforced explicitly, but
follows fromjm?% =1 a.e.in! and@mj?>=2m m; =0 in! 1, which is a consequence

of (2.19. This behaviour should also be re ected by the numerical integrator. In analogy
to [7, 18], we assume the given data to satisfy

(2.19) mo2 HY(!; &), H%GE°2L%( ;R%);  J2L%( 1;RY)

as well as
(2.19) div(H°+ 'm%=0 in ; (H°+ m% n=0 on@:
With the space

Ho(curl; ):= " 2L%0): r ' 2L%);" n=0on ;

we now recall the notion of a weak solution @ {3—(2.19 from [18].
DEFINITION 2.1. Given(2.11)—«2.19), the tupem; E; H) is called a weak solution of
MLLG (2.]) if,
(i) m 2 H(! 7) withjmj = 1 almost everywhere iht and(E;H) 2 L?( 1);
(i) forall* 2Ct (!t)and 2 C! [0;T);C* () \ H%curl;) ;wehave
VA VA
me * (m my)*
(22) ' z T z z
= Ce (rm m)r' + (H m) "'+ ((m) m) 4

T T
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Z Z Z
"o E t H (r ) + E

(2.3) 4 Tz t

= J +" E° (0;);

;
Z z z Z
(2.4) 0 H + E (r )= o me + o H° (0;);
T T It

(iii) there holdsm (0; ) = mP? in the sense of traces;
(iv) for almost allt®2 (0;T), we have bounded energy

(25) ke m(tOKP 2y + kmekPo o+ KH (K 2 + KE(OKE:()  C;

whereC > 0is independent df.

Existence of weak solutions was rst shown itg]. We note, however, that our analysis
is constructive in the sense that it also proves existence.

REMARK 2.2. Under additional assumptions on the general contributign namely
that () is self-adjoint withk (n)kp s C foralln 2 L2(!) with jnj 1 almost
everywhere, the energy estimgi&5) can be improved. The same techniques asli [
Appendix A] then show for almost af 2 (0; T) and" > Othat

E(m;H;E)t)+2( ") okmikZz ) +2 KEKZ:(
tO
E (m;H;E)O) h;Ei ;
0
where

E(M;H;E) = oCekr mki;(, )+ okHkZz(y + "okEKZ:;)  oh (m);mi,:

This is in analogy toT]. In particular, the above assumptions are ful lled in case of vanishing
applied eldHe: Oandif () denotes the uniaxial anisotropy density.

3. Preliminaries. For time discretization, we impose a uniform partition of the time

interval [0;T]; 0 = to < t; < ::: <ty = T . The time step size is denoted by
k=k =t ¢t forj =0;:::;N 1 For each (discrete) function ' ! = "' (t;)
denotes the evaluation at tirge Furthermore, we write," 1 *1 = (* 1*1 ' J)=kforj 1,

and' 1*1=2 .= (" I*1 + " 1)=2forj Oandasequendé g o.

For the spatial discretization, & be a regular triangulation of the polyhedral bounded
Lipschitz domain R?® into compact and non-degenerate tetrahedralByve denote its
restrictiontol b, where we assume thhtis resolved, i.e.,

[
Th:Thj! = T2Th T\ ! 6 ; and t = T:
T2Th

By S*(T,) we denote the standaRf:-FEM space of globally continuous and piecewise af ne
functions from! to R®

SYTh)=f n2C RY: hjk 2Py(K)forallK 2 Thg:
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Byln:C() !'S %(Th), we denote the nodal interpolation operator onto this space. Now, let

the set of nodes of the triangulatidp be denoted b\},. For discretization of the magnetiza-
tion m in the LLG equatior(2.19, we de ne the set of admissible discrete magnetizations

by
Mp:=f h2SYTh):j n(2)j=1forallz2Ng:
Due to the modulus constraijth (t)j = 1, and thereforan; m = 0 almost everywhere
in! 1, we discretize the time derivatiwg(t; ) := m(t;) in the discrete tangent space which
is de ned by
K,=f n2SYThj1): n(2 n(z)=0Tforallz2Nyg

forany h 2M .
To discretize the Maxwell equatiorf&.1H—2.1¢, we use conforming ansatz spaces
Xn  HOcurl;) ,Yn L2() subordinate td, which additionally fulllr X 5 Y p.
In analogy to f], we choose rst-order edge elements
Xp:=f' h2H%curl; ): *hjk 2Py(K)forallk 2T, g
and piecewise constants

Yh:=f h2L2%(0): njk 2Po(K)forallK 2T, g;

cf. [31, Chapter 8.5]. Associated witky; letlx, : H2() !X  denote the corresponding
nodal FEM interpolator. Moreover, let

Iy, :L2() 'Y 4
denote the_2-orthogonal projection characterized by
h 1y, ;yni =0 forall 2 L?() andyp 2 Yp:
By standard estimates (see, e.@5,[31]) one derives the approximation properties

(3.1) K1 ox,"kezy +hkr (1 x,"dkezy  Ch%kr 2 kpz(y ;
(32) k |1 Yh k|_2() C hk kHl() X

forall' 2 H2() and 2 HY() .

4. Numerical algorithms. We recall that the LLG equatiof2.19 can equivalently be
stated as

me+m my=Heg (M Hep)m

under the constraigimj = 1 almost everywhere in 1. This formulation will now be used
to construct the numerical schemes. Following the approaches of AlougesZtzlapd
Bruckner et al. from16], we propose two algorithms for the numerical integration of MLLG,
where the rst one follows the lines of].



ETNA
Kent State University
http://etna.math.kent.edu

CONVERGENT LINEAR FINITE ELEMENT SCHEME FOR MAXWELL-LLG 255

4.1. MLLG integrators. For ease of presentation, we assume that the applied] eld
is continuous in time, i.eJ 2 C [0;T];L2() so thatd! = J(t;) is meaningful. We
emphasize, however, that this is not necessary for our convergence analysis.

ALGORITHM 4.1. Input: Initial datam®, E°, andH?, parameter 2 [0; 1], counter
j=0.Forallj =0;:::;N 1literate:

(i) Compute the unique solutigw! ; 2™ ;HI*™) 2 (K1 3 Xn; Yn) such that for all
(n; n h)Zijh X h Y p it holds that

(4.1a) bl wiv + b vl i

= Cehr(ml + kvl)ir iy + HI2 i+ h (ml); iy
(4.1b) "ohdhELY: i hHITTE e i+ h BN

= hJ*=2 i ;
(4.1c) ohdeHI™ i+ hr EVTYTE i = ol iy

" i - J + k J
(i) De ne m.*™* 2 M 1, nodewise byn!** (z) = .mh(z) Va(2)

J. ; - forallz2 Ny,.
jmy, (2) + kv (2)]

For the sake of computational and implementational ease, LLG and Maxwell equations can be
decoupled which leads to only two linear systems per time step. This modi cation is explicitly
stated in the second algorithm.

ALGORITHM 4.2. Input: Initial datam®, EC, andH?, parameter 2 [0; 1], counter
j =0.Forallj =0;:::;N 1literate:
(i) Compute the unique solutior}, 2 Kth such that for all , 2 Kth it holds that

hvhs nic + bmp v iy

(4.2a) . . ] 4 ] , )
= Cehr (ml + kvl);r niv + MHL; niy + h (m]); nir:

(i) Compute the unique solutioE}L™ ;HI™) 2 (Xn;Yn) such that for all
( h; h)2Xp Y pitholds that

(4.2b) "o EL™: ni hHEMr i+ h BN ogio= hJ i
(4.2¢) ohdeHI™ i+ hr BV pi o= ohvd iy

ml (2) + kv, (2)
im (2) + kvl (2)j

(i) De ne m!** 2 M \, nodewise byn!** (z) = forallz 2 Np.

4.2. Unique solvability. In this brief section, we show that the two above algorithms are
indeed well de ned and admit unique solutions in each step of the iterative loop. We start with
Algorithm 4.1

LEMMA 4.3. Algorithm4.1is well de ned in the sense thatineachsjep 0;:::;N 1
of the loop, there exist unique solutiogra’ ™ ; v1; EL™ HI™).
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Proof. We multiply the rst equation of4.1) by o and the second and third equation by
some free paramet€l; > 0to de ne the bilinear formd! (; ) on(ijh i Xnh; Yn) by

a ()G
= oh; i+ olml i+ Cekhr r i ?Oh;i
+Clk0h; %h;r i +%h; i
C . C . .
+ T(Oh;|+7lhr 1 +Cqg oh ;i
and the linear functiondl! () on(Km,-h i Xn; Yn) by
L' (; 5 ) = oCehrmi;r i +*OH'|]h; i + oh (m});
Ccihi*1=2 Ci("hz'h, i +%mL;r T rE'h, i
# A0l T gl

To ease the readability, the respective rst lines of these de nitions stem (foia), the
second from4.1b), and the third from4.1¢. Clearly, @.1) is equivalent to
d (VLEFHI)Cns o nin) =L Cnionion)

forall( n; n; n)2 KmL X h Y n. Next, we aim to show that the bilinear foran( ; )
is positive de nite onKm,-h X h Y . Usage of the Holder inequality reveals that for all
¢ )2ijh X 1 Y it holds that

a GG o)
= oh; iy + Orrnjh i b+ oCekhr;r iy ?Oh; i
Ci"o, . Ci, . . Cl .
+ " h; i 7h,r i+ h; i
+C1k°h;i+clh . i +Cy oh; 0y
= oh; i! + OCekhr o r i! + C; 0 ?0 h, i!
Cll(oh; i +%h; i+ o,
f(c 1=2) ok K2 + S0y e
1 152) oK Kizgy * — L2()
| {Z }
C]_ C]_ 1=2 2 .
| {z }
=b
where we have usdd, i, sk k|_2(| Ik kLz(, ChoosingC; = 1=2 now yields

a; b > 0 and thus the desired result 0
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The following lemma states an analogous result for the second algorithm. The proof is
straightforward and we refer to the extended prep#fhidr details.

LEMMA 4.4, Algorithm4.2is well de ned in the sense that it admits a unique solution at
eachstep =0;:::;N 1oftheiterative loop.

5. Main result and convergence analysisin this section, we aim to show that the two
preceding algorithms indeed de ne convergent schemes. We rst consider Algofithrithe
proofs within the analysis of Algorithm.1are mostly omitted since they are straightforward
and exactly follow the analysis of Algorithrh2. We again refer to the extended prepridit [
for details.

5.1. Main result. We start by collecting some general assumptions. Throughout, we
assume that the spatial mesfigg are uniformly shape regular and satisfy the angle condition
z

(5.1) rir; O for all hat functions;; ; 2 SY(Thjr ) with i 6 j:

!
Forx 2 andt 2 [tj;tj«1), we now de ne for ,, 2 fm,;H,;E,;J ;v,g the time
approximations

hk (6 x) == t ktj L (x) + % L(X); ni (B X) 1= JH(X)J
(5.2) ) ) ~ j+1 (X) + j (X)
wEx) = 00T Tt = (T = A

We suppose that the general energy contributiph is uniformly bounded ir.2(! 1), i.e.,
(5.3) k (Nkfz2q,y C foralln 2 L?(! ) withknkfz, 1

with an(h; k)-independent consta@ > 0 as well as

(5.4) () * (n) weakly subconvergent in?(! 1);

provided that the sequenog, * n is weakly subconvergent iH1(! 1) towards some
n 2 H(! 7). For the initial data, we assume

(5.5) mo * m° weakly inH(!);

as well as

(5.6) H2* H® and EQ* E° weakly inL?() :
h h

Finally, for the eld J, we assume suf cient regularity, e.g.,2 C [0; T];L?() , such that
(5.7) J *J weakly inL2( 1):

REMARK 5.1. Before proceeding to the actual proof, we would like to remark on the
before mentioned assumptions.

(i) We emphasize that all energy contributions mentioned in the introduction ful Il the
assumptionsy.3—(5.4) on (); cf. [16].

(i) Asin[1€], the analysis can be extended to include approximatignsf the general
eld contribution . In this case, one needs to ensure uniform boundedness of those
approximations as well as the subconvergence propgiyn ) * (n) weakly in
L2(! 1) providednyy is weakly subconvergent toin H(! 7).
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(i) The angle conditiorf5.1) is a somewhat technical but crucial ingredient for the
convergence analysis. Starting from the energy decay relation

z z
m
r

. .2.
— r mj=,
! jmj ! rm

which is true for any functiom with jmj 1 almost everywhere, it has rst been
shown in [L1], that(5.1) and nodewise projection ensures energy decay even on a
discrete level, i.e.,

h —— jI’I hmj:

This yields the inequalitkr m}™ k2,,, kr m} + kvi k2, whichis needed
in the upcoming proof.

(iv) Note that assumptio(b.1) is automatically ful lled for tetrahedral meshes with
dihedral angles that are smaller thar?. If the condition is satis ed byly, it can be
ensured for the re ned meshes as well, provided, e.g., the strategy &@r8¢ction
4.1] is used for re nement.

(v) Inspired by [L2], it has recently been proved][that the nodal projection step in
Algorithm 4.1 and Algorithm4.2 can be omitted. Then, the following convergence
theorem remains valid even if the angle conditibri) is violated.

The next statement is the main theorem of this work.

THEOREM 5.2 (Convergence theorem).et (M ; Vi ; Hhk ; Enk) be the quantities
obtained by either Algorithm.1or 4.2and assumé5.1)—<(5.7) and 2 (1=2;1]. Then, as
(h;k) ! (0;0) independently of each other, a subsequendengf ; H nk ; Enk ) converges
weakly inHY(! 1) L?( 1) L?( 7)toaweaksolutiofm;H;E) of MLLG. In particular,
each accumulation point din ; Hnk; Enk) is @ weak solution of MLLG in the sense of
De nition 2.1

The proof will roughly be done in three steps for either algorithm:

(i) Boundedness of the discrete quantities and energies.
(i) Existence of weakly convergent subsequences.
(iii) Identi cation of the limits as weak solutions of MLLG.

Throughout the proof, we will apply the following discrete version of Gronwall's inequal-
ity.

those quantities fulllag  banda- b+ C ;:()1 kia for™ =1;:::;r. Then, we have

P .
a Cexp C gk for’=1;:;m
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5.2. Analysis of Algorithm 4.2. As mentioned before, we rst show the desired bound-
edness.
~LEMMA 5.4. There existko, > 0 such that for allk < ko, the discrete quantities
(M;ELHL) 2M X p Y fulll

. X1
ke mikfay+ ko kvpkfag)
i=0
. X1 ,
(5.8) +kHLKZ 2y + KELKZ2 + 122 K2 kr vk
i=0
X1 _ A . .
+ KHET HQKE: + KEYT EQkE, G2
o
foreachj =0;:::;N and some constai@, > 0that only depends op j, onj! j, as well as

onC .
Proof. For the Maxwell equations, i.e., step (iii) of Algoritnn2, we choose the special
pair of test functiong n; n) = (E}"™;H}™) and get from 4.25—(4.29

CTERY O ELENTE hHITr BN+ h O EPENTE = hILE
and
R OHLGHE + e EPHET = ot HET

Summing up those two equations (and multiplyinglyC. ), we therefore see

rEI+1 IhyE|h+l| + 7kE|+l k|_2(l) C H_||+1 th,H|h+1|

kCe k

= émh;thl +Cf_, HL O HET C—eh]';E'h"ll
The LLG equation4.29 is now tested with ; = vih 2 Kmih . We get

(5.9)

[N i [N
yVplo + Vi,Vplt
h» Vh!! h {Zh h-}

= Cehr(mi + kvi);rviiy + BHL;vii, + h (m});viii;

whence
k. .
C—ekvhkfz(! )+ K2k vikZs

. - K K S

= khrmj;r viin + c. hiVpin + —h (m}p);vhio:

Next, along the lines off] 3, 16], we use the fact thar m.** K22y ko (mi+kvikZ: )
stemming from the mesh conditio.(), cf. [11], to see

. o k2 .
fkr mpt k2 kr mpkZz )+ khrmp;r viip + ko VhKLz(1)
1 _
= Skr kg 1=2 K2kr vikZ: )

k

K, i k i -
c. thkLz(| C—erH'h;v'hl! + C—eh (my);vyin:



ETNA

Kent State University
http://etna.math.kent.edu

260 L'. BANAS, M. PAGE, AND D. PRAETORIUS
Multiplying the last estimate byy=k and adding%.9), we obtain

(kr m|+1 kL2(|) kr mlhkfzu))

+ 1=2 Okkr Vihkfz(! ) thkL2(|
5.10 o . o
o e tE ERER +—kE'+lkLzu ReHI HLHE
am' H v cihy Ei*Li +C—eh(mih);vihi!:

Next, we recall Abel's summation by parts, i.e., for arbitrafy2 R" andj 0, there holds

X 1, 1, 1X .
(Ui ui 1) ui= Sjugi® o Sjuol®+ 5 jui up gf*:
: 2 2 2.
i=1 i=1
Multiplying the above equatiofb.10 by k, summing up over the time intervals, and exploiting
Abel's summation for th&} andH |, scalar-products yields

_ X1 _
Skrmikiagy+ 122 okP Kk vikieq)
i=0
k o X'
+ Cieo kVLkEZ(I) C kE kLZ()
i=0
"0 b(l i+1 i2 k Xl i+1
+ kE'* El k + —  KE[™KZ,
2Ce - h h®L2() Ce o L2(1)
1
* e 2kHLKE ) + Tcoe KHE™  HLkE:
i=0
X1 _ , Xt X1 S
27y Ci e - b miivhi
i=0 i=0 i=0
0 0L2 )
+ 7kr mhkLz(!) kE kLz() + kH kLz()
|  {z }
= EO

h

foranyj 2 1;:::;N. By use of the inequalities of Young and Hdélder, the rst part of the
right-hand S|de can be estimated by

X1 . . Xt o X1 o
Ko™ L Htvh S mhER + -2 h (miivhi
=0 € i=0 Ce i
K X1 ” A kXt o
cfo —(k (Mi)KZay + KHET HKE ) )+ % kvikfzq)
i=0 i=0

1

Cei

i+1 Zkb(l i2 .
kE kLZ() + C76 k\] k|_2() l

i=0

k
+
42Ce

forany 1; 2> 0. The combination of the last two estimates yields
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X 1
0 , .
7kr thkEZ(‘ ) + 1:2 Okz kr Vlhkfz(! )
i=0
N} 1
kK oX° "
+ Ce kVIhkﬁzu) kE kLz()
i=0
+ 0 X 1|<Ei+l ELklzy + k X 1kE'+1 Kz ) + kH hke2()
h
2Ce i=0 Ce i=0
X 1
0 i+1
+ 2Ce . th H kLz()
e KX
0 i i i 10 i
5C. l|< (k (Mp)kZ2q ) + KHY HpkZo ) )+ - kvi k21
i=0 i=0
N} 1 N} 1
k , X k X _
+ 2 KERP K, + o kIKE, + E:
0 L2()
Ce i=0 4 2Ce i=0
Unfortunately, the tem% - E'+1 kfz() on the right-hand side cannot be absorbed
by the term— o KE kfz(, y on the left-hand side since the latter consists only of
contrlbut|ons on the smaller domdin The remedy is to arti cially enlarge the rst term by
o o .
k o X 2 , X5 2 kX*
-2 KEIMKZ, — ke ElK%,, + =—— KEK
0 h L20) L20)
Ce i=0 Ce i=0 Ce i=0

and absorb the rst sum into the corresponding quantity on the left-hand side. With

ok 0 k 1

= ; = 1 —; = — "0 45k;
C, Ce( 1); Cu 2C. o and Cg 2C, 2K ;
this yields
. K1 _ X1
a = 70kr mikEz( ) + 1=2 ok®  kr vikfzqy+ C  kvpkio
i=0 i=0
) X ! i+1 K X ! i+1
+ C kE kLz() + CE kEh E kLz() + Cie kE kLZ('
i=0 i=0
Xt
t oo kH I kC2) +Ch KHU™ HLKE
i=0
k o X! . k X*! 2 kX ?
0 0 2 2
| i=0 {7 i=0 } i=0
4,k X?
b+ |2 i
0

i=0
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In order to show the desired result, we have to ensure that there are choigesdf »,
such that the constan®;, ; Cy , andCg are positive, i.e.,

( 1)>0; 1 5>O; and ("o 4 2k)>0;
1

which is equivalenttég < 1 < and , <" g=4kp. The application of the discrete Gronwall
inequality from Lemmé.3yieldsa; M and thus proves the desired result. 0O

We can now conclude the existence of weakly convergent subsequences.

LEMMA 5.5. There exist functionem;H;E) 2 HY(! +;S?) L?( t) L?( 71)such

that
Mp * m inH(! 1);
Mk My M * M inL2(H("));
M ; My M ! m inL2(! 1);
Hn;HpsHoe * H inL2( 1);
Enk;EpiEnk * H inL%( 1);

where the subsequences are successively constructed, i.e., for arbitrary mes$h! siZ&and
time step sizek ! 0 there exist subindicds ; k- for which the above convergence properties
are satis ed simultaneously. In addition, there exist san@ L2(! ) with

Vi ¥ vinL3(!ly)

for the same subsequence as above.

Proof. From Lemma5.4, we immediately get uniform boundedness of all of those
sequences. A compactness argument thus allows us to successively extract weakly convergent
subsequences. It only remains to show that the corresponding limits coincide, i.e.,

+

lim p =lim , =lim [ =lim 7 where nx 2 fmpg; Hnk; Enk G

In particular, Lemm#&.4 provides the uniform bound

1
kmp™ mik?.,, C

i=0

Here, we used the fact tham}™  mlk?,,,  k2kvjkZ.,; see, e.g.,q] or [24

Lemma 3.3.2]. We rewritenx 2 f Mpc;Enc;Hrcgas L+ S0 07 Dyonlty 1:4]
and thus get

Z .
K K2 _ X t’“|(J'+t U i 12
hk hk ™L2( 1) = . h K ( h h) hfL2()
j=0 i
K 1
j+1 j2

k ki hk,_z()! 0
j=0

and analogously

K hk P:kkEZ( 1) ! 0;
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i.e., we haveim ,, =1lim n 2 L?( 1) respectivelyL?(! t). In particular, it holds
thatlim =, =lim . From the uniqueness of weak limits and the continuous inclusions
Hi('t) L2H(')) L2(! 1), we then even conclude the convergence properties of
Mpk; My, , andmipe in L2(H(!)) aswellasmp * minH(! 1). From

kjm] 1k|_2([T) kj m] J mhkjkLZ(!T)"‘ kjmhkj 1kL2(!T)
and

kimpy (6 )i Lkeeqy  hmaxkr mikizq);
i

we nally deducejmj = 1 almost everywhere ih+. a

LEMMA 5.6. The limit functionv 2 L?(! 1) equals the time derivative @, i.e.,
v = @m almost everywhere iht.

Proof. The proof follows the lines of]] and we therefore only sketch it. The elaborated
arguments can be found i64, Lemma 3.3.12]. Using the inequality

1
k@mmk  Vikiig o) - ékkvhkkfz(!

1)
we exploit weak semicontinuity of the norm to see
k@m vkiig,y liminf k@mpe v keio,) =0 as(h;k) I (0;0);

whencev = @m almost everywhere iht. O

Proof of Theorenb.2. For the LLG part of(2.2), we follow the lines of §]. Let
"2CY(y)and(; )2Cl [0;T);CY () \ Ho(curl; ) be arbitrary. We now de ne
test functions by( n; n; n)(t ) == ITa(my " )ilx, 5 1y, (t ). Recall that the
L 2-orthogonal projectiomy, : L?() 'Y hsatises(u | v, u;yp)=0 forally, 2 Yy
and allu 2 L?() . With the notation$.2), equation 4.29 of Algorithm 4.2implies

Z Zy Z+
h‘/hk; hi! + m]hk th; hi! = Ce hr (mhk+ thk);r hi!
0 0
Z5 Z
+ hH ;o ni + . h (mg); nir:

With n(t; ) := Ih(my, ' )(t; ) andthe approximation properties of the nodal interpolation
operator, this yields

Zq
hvie + My VigesMye "
Zq Z ¢
+ k hrv, ;r(m, ")iir+Ce hrmg;r(m, )i
ZTO Z 0
. PHGmp ' . h (m,);m, "i = 0O(h):

Passing to the limit and using the strong(! t)-convergence afn,, ' towardsm ,



ETNA

Kent State University
http://etna.math.kent.edu

264 L'. BANAS, M. PAGE, AND D. PRAETORIUS
we get
Z+ Z
hvy +my vipeompy i ! hme+m mgm iy,
7 0
T
k hrvyr(my ")in ! 0 and
z5 Z
hrm, r (my,  ")in ! . hrm;r (m )i,

cf. [2]. For the second limit, we have used the boundednelskrof/, kfz(! N for 2 (1=2;1];
see Lemm&.4. The weak convergence propertiedf, and (m,, ) from (5.4) now yield

Z < Z
H, m, i ! H;m "i and
z.° Z’;
h(mg)m, ‘i ! h(m);m "i:
0 0
So far, we thus have proved
Zy Z 5
hme+m mym 'ip = Cg hrm;r (m *')i,
0 ZOT z .
+ H;m "i, + h(m)ym ‘i :
0 0

Finally, we use the identities

(m my (m ")=me 5
me (m )= (M mg) 5 and
rmr (m ")=rm @mr ')

for the left-hand side respectively the rst term on the right-hand side to con€fugle The
equalitym (0; ) = m? in the trace sense follows from the weak convergangg * m in
H(! 1) and thus weak convergence of the traces. Using the weak convergente m?® in
L2(!), we nally identify the sought limit.

For the Maxwell par{2.3)—(2.4) of De nition 2.1, we proceed as irv]. Given the above
de nition of the test functions,4.2b) implies

Z . Z, .

"o NEnk)t; ni hH T hio + hEp; ni = Ry ni s
2 2. °z ;

o hHn) ni + hr Epes ni = o Wy nine
0 0 0

We now consider each of those two terms separately. For the rst term of the rst equation, we
integrate by parts in time and get

. NWEnk)t; ni hES: 1(0;)i

}

, PEpc; ( n)ed + rEhk(T; )i'g n(T; )i
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Passing to the limit on the right-hand side, we see that
Z; Z+
NEn)e; ni ! FE; ¢ hE% (0;)i ;
0 0
where we have used the assumed convergence of the initial data. For the rst term in the
second equation, we proceed analogously. The convergence of the terms

Z Z+
hH T hio ! hH;r i
oZT ZoT
hiEp; ni ! hE; i ;
OZT ZoT
Ry ni ! h; i ; and
0
T Zq
h/hk; hi! ! hnt: i!
0 0

is straightforward. Here, we have used the approximation prop€&i#s{(3.2) of the interpo-
lation operators for the last two limits. It remains to analyze the second term in the second
equation. Using  E;, (t) 2 Y}, and the orthogonality properties b§, , we deduce
Z+ Z+ Z+
. hr  Efe; ni = . hr  Ef; i hr Ep:@ 1 y,) i
pa v Z .
= hr Ej; i = hELr il hE;r [
0 0 0
For the last equality, we have used the boundary conditiom =0 on @ 1 and integration
by parts. This yields4.3) and @.4).
It remains to show the energy estimé®ed). From the discrete energy estim#fes), we
get for anyt®2 [0; T] with t°2 [tj; tj+1)

kr m;k (to)kfzo ) + thk kfz(! 10) + kH ;k (to)kfz() + kE;k (to)kfz()
{0

= kr m}, (192, ) + i KV (S)KZ 21y + KH (1OKE2 () + KE, (19KZ:

tj+1

kr m;k(to)kfz(!)+ . kvhk(s)kfzu)+kH;k(tO)kEZ() +kE;k(t°)kﬁZ()
C,:

Integration in time thus yields for any measurablelset [0; T]
Z A

ke mi (K2 ) + | kvhkkfz(!to)
Z

! z z
+ IkH;k(tO)kEZ() + IkE;k(t")kfz() |C2;
whence weak lower semi-continuity leads to
Z VA Z Z Z
kr mkfz(! ) + | kmtkﬁz(] +0) + | kH kEz() | kEkEz() | Cz:

The desired result now follows from standard measure theory; see,24.dV,[Thm. 4.4].
0
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5.3. Analysis of Algorithm 4.1. This short section deals with Algorithif 1 Since the
analysis follows the lines of Sectidn2, we omit the proofs and the reader is referred to the
extended preprint of this worl@] for details. As before, we have boundedness of the involved
discrete quantities, this time, however, in a slight variation.

LEMMA 5.7.The discrete quantitie@mjh; Ejh; HL) 2Mp X p Y qfulll

. Xt . .
ke mikfaqy+ Kk kvikzo ) + KHiKE 2 + KEjKE 2
i=
K1
+ 1=2 k> kr vpkiz,, Cs
i=0

Note, that # contrast to Lemnia4 from the analysis of Algorithm.2, we do not have
boundedness of |_s'(kH | Hk2, ) +kE[™ ELkZ,, )inthis case. This, however,
is not necessary to prove that the limits of the in time piecewise constant and piecewise af ne
approximations coincide. The remedy is a clever use of the midpoint rule; details are found
in [33, Section 4.2.1]. Analogously to Lemnas, we thus conclude the existence of weakly
convergent subsequences that ful Il

Mpc * m inHY(! 1);
M ; My Mhk ¥ M inLZ(H(1));
Mpc; MMy ! m inL2(! 1);
Hu;Hy Hae ¥ H inL?( 1);
Enk;EpiEnk * E inL2( 71);

Vi ¥V inL2(!1):

The proof of Theorens.2for Algorithm 4.1then completely follows the lines of the one
for Algorithm 4.2,

6. Numerical examples.We study the standard-mag benchmark problenmumber 4,
using Algorithm4.1and Algorithm4.2. Here, the effective eld consists of the magnetic eld
H from the Maxwell equations and some constant external lelg; , i.e., (m'h) = Hext

in [6], and we also use those results for comparison.

Despite the fact that the systesh 1) in Algorithm 4.1is linear, for computational reasons
it is preferable to solve LLG and the Maxwell equations separately. After decoupling, the
corresponding linear systems can be solved using dedicated linear solvers. This leads to a
considerable improvement in computational performance7&flh order to decouple the
respective equations id (I), we employ a simple block Gauss-Seidel algorithm. For simplicity
weset 0,3 0.Assuming the solution! *, H! El isknown fora xed time levej,

we setG? = H!  FQ = El  andw? = vl * and iterate the following problem over

1see the Micromagnetic Modeling Activity Group
http://www.ctcms.nist.gov/~rdm/mumag.org.html
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FIG. 6.1.Mesh for the domain atxz = 0 (left) and zoom at the mesh for the domhitx3 = 0 (right).

Findw;];F;];G;12KrT]Jh X n Y nsuchthatforall n; ni n 2Ky X Y op,we
have

hwp; nin + bmb wls i Cehr (Ml + kwp)ir i

6.1a .
( ) +rGh1+Hext; hin;
2, - . . . 2 .
(6.1b) "OEH:h; hi hGqr pio = "oErEjh; nio;
2 - . . . 2 . . . .
(6.1¢) oEkGh; hi +hr Fo;opio = OEH_I]h; ni ohwy; hiv;

untilkw, w, ks + kG, G, ki +kF, Fy 'ki <TOL. Inthis settingF,, is
an approximation oE'h+1 =2 andG,, is an approximation off Jh+l =2 respectively. Therefore,
we have

Ejh+l Ejh .
7|( = dt E]h .

Analogous treatment of thd -term thus motivates the above algorithm. We obtain the
solution on the time levgl + 1 asv} = w,,H}"" =2G, H},E}"" =2F, E. The
linear system@.19 is solved using a direct solver, where the constraint on the slﬂpggh:eis
realized via a Lagrange multiplier; se25]. For the solution of the linear syster®.{(H—(6.19

we employ a multigrid preconditioned Uzawa algorithm frof [

The physical parameters that were used for the computation wesrel :25667 10 6,

"o =0:88422 10 !, A=1:3 10 Y, Mg=8 10°, =2:2211 10°, =0:02
Hext =( oMs) 1( 246;4:3,0),andCe = 2A( oM2) 1. Here, denotes the gyromag-
netic ratio, andM ¢ is the so-called saturation magnetization; see, €Lg], We set =1 in
both Algorithms4.1 and4.2. The ferromagnetic domaih =0:5 0:125 0:003 ( m)
is uniformly partitioned into cubes with dimensions @.90625 3:90625 3)(nm),
each cube consisting of six tetrahedra. The Maxwell equations are solved on the domain
=4 4 3:.072) ( m). The nite element mesh for the domainis constructed by
gradual re nement towards the ferromagnetic donlajsee Figureés.1l We take a uniform
time stepk = 0:05which is two times larger than the time step required for the midpoint
scheme §]. Note that the scheme admits time steps uk to 1, the smaller time step has
been chosen to attain the desired accuracy.

The initial conditionm ¢ for the magnetization is an equilibrium “S-state”, see Figué
which is computed from a long-time simulation as & f]. The initial conditionH ¢ is
obtained from the magnetostatic approximation of the Maxwell equations witkardO;
for details seef]. In Figure6.3we plot the evolution of the average componentsandm,
of the magnetization for Algorithm.1and Algorithm4.2. For comparison, we also present
the results computed with the midpoint scheme fr@mjith time stepk = 0:02.

2 N i 2 j+1 = i
(Fo EL) ETTOED=

j+1=2
h
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FIG. 6.2. Initial conditionm 2.

1
ml Algori!hm 2
m2 Algorithm 2 -~
o8 m1 Algorithm 3 --------
\ m2 Algorithm 3
\ m1 midpoint
o8 m2 midpoint
FAR “,\
/ Ay i
04t \ |
\‘ 1
/ ‘\‘
02 \ ‘
/ \ ! ;
y \ ;
\ / ]
o \ \ y
\ /
-0.2 \
04 F
-0.6 -
\ 5
\ /
-0.8 + \\ / ] J#
./ < .
-1 L ) : :
0 02 0.4 06 08 1

R R
FIG. 6.3.Evolution ofj! j 1 , M andj! j 1 , M2, wherem; denotes the¢-th component of the computed
magnetizationm : ! | RS3. Algorithm 2 refers to Algorithrd.1and Algorithm 3 to Algorithna.2.

R
Fic. 6.4.Algorithm4.1: solution atj! j * | my(t)=0.

/ =
i

27 S
o

\ “1“ : ]“ "v““““

: i :
RN 3 ‘ . W
p{\\‘*\\&\\u “ . i\

R
FIG. 6.5.Midpoint scheme fromg] 7]: solution atj! j 1 , My =0.

We also show ggnapshot of the magnetization for Algorithirand the midpoint scheme
at times when! | , M1(t) = 0 in Figures6.4and6.5, respectively. We conclude that the

results for both algorithms are in good agreement with those computed with the midpoint
scheme.
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