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A CONVERGENT LINEAR FINITE ELEMENT SCHEME FOR THE
MAXWELL-LANDAU-LIFSHITZ-GILBERT EQUATIONS �

L'. BA �NASy, M. PAGEz, AND D. PRAETORIUSz

Abstract. We consider the lowest-order �nite element discretization of the nonlinear system of Maxwell's and
Landau-Lifshitz-Gilbert equations (MLLG). Two algorithms are proposed to numerically solve this problem, both of
which only require the solution of at most two linear systems per time step. One of the algorithms is decoupled in the
sense that it consists of the sequential computation of the magnetization andafterwardsthe magnetic and electric �eld.
Under some mild assumptions on the effective �eld, we show that both algorithms converge towards weak solutions
of the MLLG system. Numerical experiments for a micromagnetic benchmark problem demonstrate the performance
of the proposed algorithms.
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1. Introduction. The understanding of magnetization dynamics, especially on a mi-
croscale, is of utter relevance, for example in the development of magnetic sensors, recording
heads, and magneto-resistive storage devices. In the literature, a well accepted model for
micromagnetic phenomena is the Landau-Lifshitz-Gilbert equation (LLG); see(2.1a). This
nonlinear partial differential equation describes the behaviour of the magnetization of some
ferromagnetic body under the in�uence of a so-called effective �eld. Existence (and non-
uniqueness) of weak solutions of LLG goes back to [5, 37]. Existence of weak solutions
for MLLG was �rst shown in [18]. For a complete review of the analysis for LLG, we refer
to [19, 22, 30] or the monographs [27, 34] and the references therein. As far as numerical
simulation is concerned, convergent integrators can be found, e.g., in the works [13, 14] or [7],
where the latter considers a weak integrator for the coupled MLLG system. From the viewpoint
of numerical analysis, the integrator from [13] suffers from explicit time stepping, since this
imposes a strong coupling of the time step sizek and the spatial mesh sizeh. The integrators
of [7, 14], on the other hand, rely on the implicit midpoint rule for time discretization, and
unconditional stability and convergence is proved. In practice, a nonlinear system of equations
has to be solved in each time step, and to that end, a �xed-point iteration is proposed in
the works [7, 14]. This, however, again leads to a coupling ofh andk, and thus destroys
unconditional convergence. The problem can be reduced by using the Newton method for the
midpoint scheme, which empirically allows for larger time steps; see [20] and also [8], where
an ef�cient Newton-multigrid nonlinear solver has been proposed.

In [2], an unconditionally convergent projection-type integrator is proposed, which, despite
the nonlinearity of LLG, only requires the solution of one linear system per time step. The
effective �eld in this work, however, only covers microcrystalline exchange effects. In the
subsequent works [3, 25, 26] the analysis for this integrator was extended to cover more general
(linear) �eld contributions, where only the highest-order exchange contribution is treated
implicitly, whereas the other contributions are treated explicitly. This allows reduction of the
computational effort while still preserving unconditional convergence. Finally, in the very
recent work [16], the authors could show unconditional convergence of this integrator, where
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the effective �eld consists of some general energy contributions, which are only supposed to
ful�ll a certain set of properties. This particularly covers some nonlinear contributions, as
well as certain multiscale problems. In addition, it is shown in [16] that errors arising due to
approximate computation of �eld contributions like, e.g., the demagnetizing �eld, do not affect
the unconditional convergence. In [4], the authors also investigate a higher-order extension of
this algorithm which, however, requires implicit treatment of nonlocal contributions like the
magnetostatic stray�eld.

In our work, we extend the analysis of the aforementioned works and show that the
integrator from [2] can be coupled with a weak formulation of the full Maxwell system(2.1b)–
(2.1c). For the integration of this system, we propose two algorithms that only require the
solution of one (Algorithm4.1) resp. two linear systems (Algorithm4.2) per time step while
still guaranteeing unconditional convergence (Theorem5.2). The contribution of the present
work can be summarized as follows:

� We extend the linear integrator from [2, 25] to time-dependent contributions of the
effective �eld by considering the full Maxwell equations instead of the magnetostatic
simpli�cation. This allows for more precise simulations (see, e.g., [23]) as well as
the modeling of conducting ferromagnets (via� 6= 0 in (2.1b)). The latter is unclear
if one only considers the magnetostatic stray�eld; cf. [32, Remark 1.4].

� Unlike [7], at most two linear systems per time step, instead of a coupled nonlinear
system, need to be solved. Nevertheless, we still prove unconditional convergence.

� Unlike [7], we propose a fully decoupled scheme and show that the decoupling has
no negative effect on the convergence behaviour. From a computational point of view,
this is a major improvement over the current state of the art as it greatly simpli�es
preconditioning. Existing LLG or Maxwell solvers can be reused and only small
modi�cations have to be done for the overall implementation.

Independently of the present work, [28] considered the coupling of LLG with the quasi-
stationary eddy-current formulation of the Maxwell equations. There, however, only the
coupled algorithm is proposed and analyzed. As far as the decoupling of the numerical inte-
grator is concerned, the extended preprint [9] of the present work contained the �rst thorough
numerical analysis and proof of unconditional convergence. Following [9], the work [28]
derived a decoupled integrator for the eddy-current LLG system. Moreover, [10], analyzed the
nonlinear coupling of LLG to the conservation of elastic momentum to model magnetostrictive
effects and provided a decoupled time marching scheme. Finally, the recent work [1] analyzes
the numerical integration of spin diffusion effects in spintronic micromagnetics.

Outline. The remainder of this paper is organized as follows: in Section2, we recall
the mathematical model for the full Maxwell-LLG system (MLLG) and recall the notion of
a weak solution (De�nition2.1). In Section3, we collect some notation and preliminaries,
as well as the de�nition of the discrete ansatz spaces and their corresponding interpolation
operators. In Section4, we propose two algorithms (Algorithms4.1and4.2) to approximate
the MLLG system numerically. The large Section5 is then devoted to our main convergence
result (Theorem5.2) and its proof. Finally, in Section6, some numerical results conclude this
work.

Notation. Throughout,a � b denotes the Euclidean scalar product ofa; b in Rd respec-
tively Rd� d, andjaj denotes the corresponding Euclidean norm. Moreover, theL 2(�) -scalar
product is denoted byh�; �i � . Finally, A . B abbreviatesA � c B with some generic con-
stantc > 0 which is clear from the context and, in particular, independent of the discretization
parametersh andk.

2. Model problem. We consider Maxwell-Landau-Lifshitz-Gilbert equations (MLLG),
which describe the evolution of the magnetization of a ferromagnetic body that occupies
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the domain! b 
 � R3. For a given damping parameter� > 0, the magnetization
m : (0; T) � ! ! S2 and the electric and magnetic �eldsE; H : (0; T) � 
 ! R3 satisfy the
MLLG system

m t � � m � m t = � m � H eff in ! T := (0 ; T) � !;(2.1a)

"0E t � r � H + �� ! E = � J in 
 T := (0 ; T) � 
 ;(2.1b)

� 0H t + r � E = � � 0� ! m t in 
 T ;(2.1c)

where the effective �eldH eff consists ofH eff = Ce� m + H + � (m) for some general energy
contribution� which is assumed to ful�ll a certain set of properties; see(5.3)–(5.4). This is
in analogy to [16]. We stress that, with the techniques from [16], an approximation� h of �
can be included into the analysis as well. We emphasize that throughout this work, the case
H eff = Ce� m + H + CaD�( m) + H ext is particularly covered. Here,�( �) denotes the
crystalline anisotropy density andH ext is a given applied �eld. The constants"0; � 0 � 0
denote the electric and magnetic permeability of free space, respectively, and the constant
� � 0 stands for the conductivity of the ferromagnetic domain! . The �eld J : 
 T ! R3

describes an applied current density and� ! : 
 ! f 0; 1g is the characteristic function of! .
As is usually done for simplicity, we assume
 � R3 to be bounded with perfectly conducting
outer surface@
 into which the ferromagnet! b 
 is embedded, and
 n! is assumed to be
vacuum. In addition, the MLLG system (2.1) is supplemented by initial conditions

m(0; �) = m 0 in ! and E(0; �) = E0; H (0; �) = H 0 in 
(2.1d)

as well as boundary conditions

@n m = 0 on@!T ; E � n = 0 on@
 T ;(2.1e)

where@!T and@
 T denote the spatial boundaries andn is the respective outer normal vector.
Note that the side constraintjm j = 1 a.e. in! T does not need to be enforced explicitly, but
follows from jm 0j = 1 a.e. in! and@t jm j2 = 2m � m t = 0 in ! T , which is a consequence
of (2.1a). This behaviour should also be re�ected by the numerical integrator. In analogy
to [7, 18], we assume the given data to satisfy

m 0 2 H 1(!; S2); H 0; E0 2 L 2(
 ; R3); J 2 L 2(
 T ; R3)(2.1f)

as well as

div(H 0 + � ! m 0) = 0 in 
 ; (H 0 + � ! m 0) � n = 0 on@
 :(2.1g)

With the space

H 0(curl ; 
) :=
�

' 2 L 2(
) : r � ' 2 L 2(
) ; ' � n = 0 on �
	

;

we now recall the notion of a weak solution of (2.1a)–(2.1c) from [18].
DEFINITION 2.1. Given(2.1f)–(2.1g), the tupel(m; E; H ) is called a weak solution of

MLLG (2.1) if,
(i) m 2 H 1(! T ) with jm j = 1 almost everywhere in! T and(E; H ) 2 L 2(
 T );

(ii) for all ''' 2 C1 (! T ) and��� 2 C1
c

�
[0; T); C1 (
) \ H 0(curl ; 
)

�
; we have

Z

! T

m t � ''' � �
Z

! T

(m � m t ) � '''

= � Ce

Z

! T

(r m � m) � r ''' +
Z

! T

(H � m) � ''' +
Z

! T

(� (m) � m) � ''';

(2.2)
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� "0

Z


 T

E � ��� t �
Z


 T

H � (r � ��� ) + �
Z

! T

E � ���

= �
Z


 T

J � ��� + "0

Z



E0 � ��� (0; �);

(2.3)

� � 0

Z


 T

H � ��� t +
Z


 T

E � (r � ��� ) = � � 0

Z

! T

m t � ��� + � 0

Z



H 0 � ��� (0; �);(2.4)

(iii) there holdsm(0; �) = m 0 in the sense of traces;
(iv) for almost allt0 2 (0; T), we have bounded energy

kr m(t0)k2
L 2 ( ! ) + km t k2

L 2 ( ! t 0) + kH (t0)k2
L 2 (
) + kE(t0)k2

L 2 (
) � C;(2.5)

whereC > 0 is independent oft.
Existence of weak solutions was �rst shown in [18]. We note, however, that our analysis

is constructive in the sense that it also proves existence.
REMARK 2.2. Under additional assumptions on the general contribution� (�), namely

that � (�) is self-adjoint withk� (n)kL 4 ( ! ) � C for all n 2 L 2(! ) with jnj � 1 almost
everywhere, the energy estimate(2.5) can be improved. The same techniques as in [16,
Appendix A] then show for almost allt0 2 (0; T) and" > 0 that

E(m; H ; E)( t0) + 2( � � " )� 0km t k2
L 2 ( ! t 0) + 2 � kEk2

L 2 ( ! t 0)

� E (m; H ; E)(0) �
Z t 0

0
hJ; Ei 
 ;

where

E(m; H ; E) := � 0Cekr mk2
L 2 ( ! ) + � 0kH k2

L 2 (
) + "0kEk2
L 2 ( ! ) � � 0h� (m); m i ! :

This is in analogy to [7]. In particular, the above assumptions are ful�lled in case of vanishing
applied �eld H ext � 0 and if � (�) denotes the uniaxial anisotropy density.

3. Preliminaries. For time discretization, we impose a uniform partition of the time
interval [0; T]; 0 = t0 < t 1 < : : : < t N = T . The time step size is denoted by
k = kj := t j +1 � t j for j = 0 ; : : : ; N � 1. For each (discrete) function'''; ' '' j := ''' (t j )
denotes the evaluation at timet j . Furthermore, we writedt ''' j +1 := ( ''' j +1 � ''' j )=k for j � 1,
and''' j +1 =2 := ( ''' j +1 + ''' j )=2 for j � 0 and a sequencef ''' j gj � 0.

For the spatial discretization, letT 

h be a regular triangulation of the polyhedral bounded

Lipschitz domain
 � R3 into compact and non-degenerate tetrahedra. ByTh , we denote its
restriction to! b 
 , where we assume that! is resolved, i.e.,

Th = T 

h j! =

�
T 2 T 


h : T \ ! 6= ;
	

and ! =
[

T 2T h

T:

By S1(Th ) we denote the standardP1-FEM space of globally continuous and piecewise af�ne
functions from! to R3

S1(Th ) := f ��� h 2 C(!; R3) : ��� h jK 2 P 1(K ) for all K 2 Th g:
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By I h : C(
) ! S 1(Th ), we denote the nodal interpolation operator onto this space. Now, let
the set of nodes of the triangulationTh be denoted byNh . For discretization of the magnetiza-
tion m in the LLG equation(2.1a), we de�ne the set of admissible discrete magnetizations
by

M h := f ��� h 2 S 1(Th ) : j��� h (z)j = 1 for all z 2 N h g:

Due to the modulus constraintjm(t)j = 1 , and thereforem t � m = 0 almost everywhere
in ! T , we discretize the time derivativev(t j ) := m t (t j ) in the discrete tangent space which
is de�ned by

K ��� h := f    h 2 S 1(Th j! ) :    h (z) � ��� h (z) = 0 for all z 2 N h g

for any��� h 2 M h .
To discretize the Maxwell equations(2.1b)–(2.1c), we use conforming ansatz spaces

Xh � H 0(curl ; 
) , Yh � L 2(
) subordinate toT 

h which additionally ful�ll r � X h � Y h .

In analogy to [7], we choose �rst-order edge elements

Xh := f ''' h 2 H 0(curl ; 
) : ''' h jK 2 P 1(K ) for all K 2 T 

h g

and piecewise constants

Yh := f ��� h 2 L 2(
) : ��� h jK 2 P 0(K ) for all K 2 T 

h g;

cf. [31, Chapter 8.5]. Associated withXh ; let I X h : H 2(
) ! X h denote the corresponding
nodal FEM interpolator. Moreover, let

I Yh : L 2(
) ! Y h

denote theL 2-orthogonal projection characterized by

h��� � I Yh ���; yh i 
 = 0 for all ��� 2 L 2(
) andyh 2 Yh :

By standard estimates (see, e.g., [15, 31]) one derives the approximation properties

k''' � I X h ''' kL 2 (
) + hkr � (''' � I X h ''' )kL 2 (
) � C h2kr 2''' kL 2 (
) ;(3.1)

k��� � I Yh ��� kL 2 (
) � C hk��� kH 1 (
) ;(3.2)

for all ''' 2 H 2(
) and��� 2 H 1(
) .

4. Numerical algorithms. We recall that the LLG equation(2.1a) can equivalently be
stated as

� m t + m � m t = H eff � (m � H eff)m

under the constraintjm j = 1 almost everywhere in
 T . This formulation will now be used
to construct the numerical schemes. Following the approaches of Alouges et al. [2, 3] and
Bruckner et al. from [16], we propose two algorithms for the numerical integration of MLLG,
where the �rst one follows the lines of [7].
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4.1. MLLG integrators. For ease of presentation, we assume that the applied �eldJ
is continuous in time, i.e.,J 2 C

�
[0; T]; L 2(
)

�
so thatJ j := J(t j ) is meaningful. We

emphasize, however, that this is not necessary for our convergence analysis.

ALGORITHM 4.1. Input: Initial datam 0, E0, andH 0, parameter� 2 [0; 1], counter
j = 0 . For all j = 0 ; : : : ; N � 1 iterate:

(i) Compute the unique solution(v j
h ; E j +1

h ; H j +1
h ) 2 (Km j

h
; Xh ; Yh ) such that for all

(��� h ;    h ; ��� h ) 2 K m j
h

� X h � Y h it holds that

� hv j
h ; ��� h i ! + hm j

h � v j
h ; ��� h i !(4.1a)

= � Cehr (m j
h + �k v j

h ); r ��� h i ! + hH j +1 =2
h ; ��� h i ! + h� (m j

h ); ��� h i ! ;

"0hdt E
j +1
h ;    h i 
 � h H j +1 =2

h ; r �    h i 
 + � h� ! E j +1 =2
h ;    h i 
(4.1b)

= �h J j +1 =2;    h i 
 ;

� 0hdt H
j +1
h ; ��� h i 
 + hr � E j +1 =2

h ; ��� h i 
 = � � 0hv j
h ; ��� h i ! :(4.1c)

(ii) De�ne m j +1
h 2 M h nodewise bym j +1

h (z) =
m j

h (z) + kv j
h (z)

jm j
h (z) + kv j

h (z)j
for all z 2 N h .

For the sake of computational and implementational ease, LLG and Maxwell equations can be
decoupled which leads to only two linear systems per time step. This modi�cation is explicitly
stated in the second algorithm.

ALGORITHM 4.2. Input: Initial datam 0, E0, andH 0, parameter� 2 [0; 1], counter
j = 0 . For all j = 0 ; : : : ; N � 1 iterate:

(i) Compute the unique solutionv j
h 2 K m j

h
such that for all��� h 2 K m j

h
it holds that

� hv j
h ; ��� h i ! + hm j

h � v j
h ; ��� h i !

= � Cehr (m j
h + �k v j

h ); r ��� h i ! + hH j
h ; ��� h i ! + h� (m j

h ); ��� h i ! :
(4.2a)

(ii) Compute the unique solution(E j +1
h ; H j +1

h ) 2 (Xh ; Yh ) such that for all
(   h ; ��� h ) 2 X h � Y h it holds that

"0hdt E
j +1
h ;    h i 
 � h H j +1

h ; r �    h i 
 + � h� ! E j +1
h ;    h i 
 = �h J j ;    h i 
 ;(4.2b)

� 0hdt H
j +1
h ; ��� h i 
 + hr � E j +1

h ; ��� h i 
 = � � 0hv j
h ; ��� h i ! :(4.2c)

(iii) De�ne m j +1
h 2 M h nodewise bym j +1

h (z) =
m j

h (z) + kv j
h (z)

jm j
h (z) + kv j

h (z)j
for all z 2 N h .

4.2. Unique solvability. In this brief section, we show that the two above algorithms are
indeed well de�ned and admit unique solutions in each step of the iterative loop. We start with
Algorithm 4.1.

LEMMA 4.3. Algorithm4.1is well de�ned in the sense that in each stepj = 0 ; : : : ; N � 1
of the loop, there exist unique solutions(m j +1

h ; v j
h ; E j +1

h ; H j +1
h ).
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Proof. We multiply the �rst equation of(4.1) by � 0 and the second and third equation by
some free parameterC1 > 0 to de�ne the bilinear formaj (�; �) on (Km j

h
; Xh ; Yh ) by

aj �
(��� ; 			 ; ���) ; (���;    ; � �� )

�

:= �� 0 h��� ; ��� i ! + � 0 hm j
h � ��� ; ��� i ! + � 0Ce�k hr ��� ; r ��� i ! �

� 0

2
h��� ; ��� i 


+
C1"0

k
h			 ;    i 
 �

C1

2
h��� ; r �    i 
 +

C1�
2

h			 ;    i !

+
C1� 0

k
h��� ; ��� i 
 +

C1

2
hr � 			 ; ��� i 
 + C1� 0 h��� ; ��� i !

and the linear functionalL j (�) on (Km j
h
; Xh ; Yh ) by

L j �
(���;    ; � �� )

�
:= � � 0Ce hr m j

h ; r ��� i ! +
� 0

2
hH j

h ; ��� i ! + � 0 h� (m j
h ); ��� i !

� C1hJ j +1 =2;    i 
 +
C1"0

k
hE j

h ;    i 
 +
C1

2
hH j

h ; r �    i 
 �
C1�

2
hE j

h ;    i !

+
C1� 0

k
hH j

h ; ��� i 
 �
C1

2
hr � E j

h ; ��� i 
 :

To ease the readability, the respective �rst lines of these de�nitions stem from(4.1a), the
second from (4.1b), and the third from (4.1c). Clearly, (4.1) is equivalent to

aj �
(v j

h ; E j +1
h ; H j +1

h ); (��� h ;    h ; ��� h )
�

= L
�
(��� h ;    h ; ��� h )

�

for all (��� h ;    h ; ��� h ) 2 K m j
h

� X h � Y h . Next, we aim to show that the bilinear formaj (�; �)
is positive de�nite onKm j

h
� X h � Y h . Usage of the Hölder inequality reveals that for all

(''';    ; � �� ) 2 K m j
h

� X h � Y h it holds that

aj �
(���;    ; � �� ); (���;    ; � �� )

�

= �� 0h���; � �� i ! + � 0hm j
h � ���; � �� i ! + � 0Ce�k hr ���; r ��� i ! �

� 0

2
h���; � �� i !

+
C1"0

k
h   ;    i 
 �

C1

2
h���; r �    i 
 +

C1�
2

h   ;    i !

+
C1� 0

k
h���; ��� i 
 +

C1

2
hr �    ; � �� i 
 + C1� 0 h���; � �� i !

= �� 0h���; � �� i ! + � 0Ce�k hr ���; r ��� i ! +
�
C1� 0 �

� 0

2

�
h���; � �� i !

+
C1"0

k
h   ;    i 
 +

C1�
2

h   ;    i ! +
C1� 0

k
h���; ��� i 


�
�
� �

1
2

(C1 � 1=2)
�

| {z }
=: a

� 0k��� k2
L 2 ( ! ) +

C1"0

k
k   k2

L 2 (
)

+
� C1

k
�

C1 � 1=2
2

�

| {z }
=: b

� 0k��� k2
L 2 ( ! ) ;

where we have usedh���; � �� i ! � � 1
2 k��� k2

L 2 ( ! ) � 1
2 k��� k2

L 2 ( ! ) : ChoosingC1 = 1=2 now yields
a; b > 0 and thus the desired result.
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The following lemma states an analogous result for the second algorithm. The proof is
straightforward and we refer to the extended preprint [9] for details.

LEMMA 4.4. Algorithm4.2 is well de�ned in the sense that it admits a unique solution at
each stepj = 0 ; : : : ; N � 1 of the iterative loop.

5. Main result and convergence analysis.In this section, we aim to show that the two
preceding algorithms indeed de�ne convergent schemes. We �rst consider Algorithm4.2. The
proofs within the analysis of Algorithm4.1are mostly omitted since they are straightforward
and exactly follow the analysis of Algorithm4.2. We again refer to the extended preprint [9]
for details.

5.1. Main result. We start by collecting some general assumptions. Throughout, we
assume that the spatial meshesTh j! are uniformly shape regular and satisfy the angle condition

Z

!
r � i � r � j � 0 for all hat functions� i ; � j 2 S 1(Th j! ) with i 6= j:(5.1)

For x 2 
 and t 2 [t j ; t j +1 ), we now de�ne for `
h 2 f m `

h ; H `
h ; E `

h ; J ` ; v `
h g the time

approximations

 hk (t; x) :=
t � t j

k
 j +1

h (x) +
t j +1 � t

k
 j

h (x);  �
hk (t; x) :=  j

h (x);

 +
hk (t; x) :=  j +1

h (x);  hk (t; x) :=  j +1 =2
h (x) =

 j +1
h (x) +  j

h (x)
2

:
(5.2)

We suppose that the general energy contribution� (�) is uniformly bounded inL 2(! T ), i.e.,

k� (n)k2
L 2 ( ! T ) � C� for all n 2 L 2(! T ) with knk2

L 2 ( ! T ) � 1(5.3)

with an(h; k)-independent constantC� > 0 as well as

� (nhk ) * � (n) weakly subconvergent inL 2(! T );(5.4)

provided that the sequencenhk * n is weakly subconvergent inH 1(! T ) towards some
n 2 H 1(! T ). For the initial data, we assume

m 0
h * m 0 weakly inH 1(! );(5.5)

as well as

H 0
h * H 0 and E0

h * E0 weakly inL 2(
) :(5.6)

Finally, for the �eld J, we assume suf�cient regularity, e.g.,J 2 C
�
[0; T]; L 2(
)

�
, such that

J � * J weakly inL 2(
 T ):(5.7)

REMARK 5.1. Before proceeding to the actual proof, we would like to remark on the
before mentioned assumptions.

(i) We emphasize that all energy contributions mentioned in the introduction ful�ll the
assumptions (5.3)–(5.4) on � (�); cf. [16].

(ii) As in [16], the analysis can be extended to include approximations� h of the general
�eld contribution � . In this case, one needs to ensure uniform boundedness of those
approximations as well as the subconvergence property� h (nhk ) * � (n) weakly in
L 2(! T ) providednhk is weakly subconvergent ton in H 1(! T ).
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(iii) The angle condition(5.1) is a somewhat technical but crucial ingredient for the
convergence analysis. Starting from the energy decay relation

Z

!

�
�r

� m
jm j

� �
�2

�
Z

!
jr m j2;

which is true for any functionm with jm j � 1 almost everywhere, it has �rst been
shown in [11], that (5.1) and nodewise projection ensures energy decay even on a
discrete level, i.e.,

Z

!

�
�rI h

� m
jm j

� �
�2

�
Z

!
jrI h mj2:

This yields the inequalitykr m j +1
h k2

L 2 ( ! ) � kr m j
h + kv j

h k2
L 2 ( ! ) , which is needed

in the upcoming proof.
(iv) Note that assumption(5.1) is automatically ful�lled for tetrahedral meshes with

dihedral angles that are smaller than�= 2. If the condition is satis�ed byT0, it can be
ensured for the re�ned meshes as well, provided, e.g., the strategy from [36, Section
4.1] is used for re�nement.

(v) Inspired by [12], it has recently been proved [1] that the nodal projection step in
Algorithm 4.1and Algorithm4.2can be omitted. Then, the following convergence
theorem remains valid even if the angle condition (5.1) is violated.

The next statement is the main theorem of this work.

THEOREM 5.2 (Convergence theorem).Let (m hk ; vhk ; H hk ; Ehk ) be the quantities
obtained by either Algorithm4.1or 4.2and assume(5.1)–(5.7) and� 2 (1=2; 1]. Then, as
(h; k) ! (0; 0) independently of each other, a subsequence of(m hk ; H hk ; Ehk ) converges
weakly inH 1(! T ) � L 2(
 T ) � L 2(
 T ) to a weak solution(m; H ; E) of MLLG. In particular,
each accumulation point of(m hk ; H hk ; Ehk ) is a weak solution of MLLG in the sense of
De�nition 2.1.

The proof will roughly be done in three steps for either algorithm:

(i) Boundedness of the discrete quantities and energies.
(ii) Existence of weakly convergent subsequences.

(iii) Identi�cation of the limits as weak solutions of MLLG.

Throughout the proof, we will apply the following discrete version of Gronwall's inequal-
ity.

LEMMA 5.3 (Gronwall). Let k0; : : : ; kr � 1 > 0 and a0; : : : ; ar � 1; b; C > 0, and let
those quantities ful�lla0 � banda` � b+ C

P ` � 1
j =0 kj aj for ` = 1 ; : : : ; r . Then, we have

a` � C exp
�

C
P ` � 1

j =0 kj

�
for ` = 1 ; : : : ; r:
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5.2. Analysis of Algorithm 4.2. As mentioned before, we �rst show the desired bound-
edness.

LEMMA 5.4. There existsk0 > 0 such that for allk < k 0, the discrete quantities
(m j

h ; E j
h ; H j

h ) 2 M h � X h � Y h ful�ll

kr m j
h k2

L 2 ( ! ) + k
j � 1X

i =0

kv i
h k2

L 2 ( ! )

+ kH j
h k2

L 2 (
) + kE j
h k2

L 2 (
) +
�
� � 1=2

�
k2

j � 1X

i =0

kr v i
h k2

L 2 ( ! )

+
j � 1X

i =0

�
kH i +1

h � H i
h k2

L 2 (
) + kE i +1
h � E i

h k2
L 2 (
)

�
� C2

(5.8)

for eachj = 0 ; : : : ; N and some constantC2 > 0 that only depends onj
 j, on j! j, as well as
onC� .

Proof. For the Maxwell equations, i.e., step (iii) of Algorithm4.2, we choose the special
pair of test functions(   h ; ��� h ) = ( E i +1

h ; H i +1
h ) and get from (4.2b)–(4.2c)

"0

k
hE i +1

h � E i
h ; E i +1

h i 
 � h H i +1
h ; r � E i +1

h i 
 + � h� ! E i +1
h ; E i +1

h i 
 = �h J i ; E i +1
h i 


and
� 0

k
hH i +1

h � H i
h ; H i +1

h i 
 + hr � E i +1
h ; H i +1

h i 
 = � � 0hv i
h ; H i +1

h i ! :

Summing up those two equations (and multiplying by1=Ce), we therefore see
"0

kCe
hE i +1

h � E i
h ; E i +1

h i 
 +
�
Ce

kE i +1
h k2

L 2 ( ! ) +
� 0

kCe
hH i +1

h � H i
h ; H i +1

h i 


= �
� 0

Ce
hv i

h ; H i
h i ! +

� 0

Ce
hv i

h ; H i
h � H i +1

h i ! �
1

Ce
hJ i ; E i +1

h i 
 :
(5.9)

The LLG equation (4.2a) is now tested with''' i = v i
h 2 K m i

h
. We get

� hv i
h ; v i

h i ! + hm i
h � v i

h ; v i
h i !| {z }

=0

= � Cehr (m i
h + �k v i

h ); r v i
h i ! + hH i

h ; v i
h i ! + h� (m i

h ); v i
h i ! ;

whence
�k
Ce

kv i
h k2

L 2 ( ! ) + �k 2kr v i
h k2

L 2 ( ! )

= � khr m i
h ; r v i

h i ! +
k

Ce
hH i

h ; v i
h i ! +

k
Ce

h� (m i
h ); v i

h i ! :

Next, along the lines of [2, 3, 16], we use the fact thatkr m i +1
h k2

L 2 ( ! ) �kr (m i
h + kv i

h )k2
L 2 ( ! )

stemming from the mesh condition (5.1), cf. [11], to see

1
2

kr m i +1
h k2

L 2 ( ! ) �
1
2

kr m i
h k2

L 2 ( ! ) + k hr m i
h ; r v i

h i ! +
k2

2
kr v i

h kL 2 ( ! )

=
1
2

kr m i
h k2

L 2 ( ! ) �
�
� � 1=2

�
k2kr v i

h k2
L 2 ( ! )

�
� k
Ce

kv i
h k2

L 2 ( ! ) +
k

Ce
hH i

h ; v i
h i ! +

k
Ce

h� (m i
h ); v i

h i ! :
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Multiplying the last estimate by� 0=k and adding (5.9), we obtain

� 0

2k
(kr m i +1

h k2
L 2 ( ! ) � kr m i

h k2
L 2 ( ! ) )

+
�
� � 1=2

�
� 0kkr v i

h k2
L 2 ( ! ) +

�� 0

Ce
kv i

h k2
L 2 ( ! )

+
"0

k Ce
hE i +1

h � E i
h ; E i +1

h i 
 +
�
Ce

kE i +1
h k2

L 2 ( ! ) +
� 0

kCe
hH i +1

h � H i
h ; H i +1

h i 


�
� 0

Ce
hH i

h � H i +1
h ; v i

h i ! �
1

Ce
hJ i ; E i +1

h i 
 +
� 0

Ce
h� (m i

h ); v i
h i ! :

(5.10)

Next, we recall Abel's summation by parts, i.e., for arbitraryu i 2 Rn andj � 0, there holds

jX

i =1

(u i � u i � 1) � u i =
1
2

ju j j2 �
1
2

ju 0j2 +
1
2

jX

i =1

ju i � u i � 1j2:

Multiplying the above equation(5.10) by k, summing up over the time intervals, and exploiting
Abel's summation for theE i

h andH i
h scalar-products yields

� 0

2
kr m j

h k2
L 2 ( ! ) +

�
� � 1=2

�
� 0k2

j � 1X

i =0

kr v i
h k2

L 2 ( ! )

+
�k� 0

Ce

j � 1X

i =0

kv i
h k2

L 2 ( ! ) +
"0

2Ce
kE j

h k2
L 2 (
)

+
"0

2Ce

j � 1X

i =0

kE i +1
h � E i

h k2
L 2 (
) +

k�
Ce

j � 1X

i =0

kE i +1
h k2

L 2 ( ! )

+
� 0

2Ce
kH j

h k2
L 2 (
) +

� 0

2Ce

j � 1X

i =0

kH i +1
h � H i

h k2
L 2 (
)

�
� 0k
Ce

j � 1X

i =0

hH i
h � H i +1

h ; v i
h i ! �

k
Ce

j � 1X

i =0

hJ i ; E i +1
h i 
 +

� 0k
Ce

j � 1X

i =0

h� (m i
h ); v i

h i !

+
� 0

2
kr m 0

h k2
L 2 ( ! ) +

"0

2Ce
kE0

h k2
L 2 (
) +

� 0

2Ce
kH 0

h k2
L 2 (
)

| {z }
=: E0

h

for any j 2 1; : : : ; N . By use of the inequalities of Young and Hölder, the �rst part of the
right-hand side can be estimated by

k� 0

Ce

j � 1X

i =0

hH i
h � H i +1

h ; v i
h i ! �

k
Ce

j � 1X

i =0

hJ i ; E i +1
h i 
 +

� 0k
Ce

j � 1X

i =0

h� (m i
h ); v i

h i !

�
k� 0

Ce

j � 1X

i =0

1
2� 1

(k� (m i
h )k2

L 2 ( ! ) + kH i +1
h � H i

h k2
L 2 (
) ) +

� 1� 0k
Ce

j � 1X

i =0

kv i
h k2

L 2 ( ! )

+
k

4� 2Ce

j � 1X

i =0

kE i +1
h k2

L 2 (
) +
� 2k
Ce

j � 1X

i =0

kJ i k2
L 2 (
) ;

for any� 1; � 2 > 0. The combination of the last two estimates yields
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� 0

2
kr m j

h k2
L 2 ( ! ) +

�
� � 1=2

�
� 0k2

j � 1X

i =0

kr v i
h k2

L 2 ( ! )

+
�k� 0

Ce

j � 1X

i =0

kv i
h k2

L 2 ( ! ) +
"0

2Ce
kE j

h k2
L 2 (
)

+
"0

2Ce

j � 1X

i =0

kE i +1
h � E i

h k2
L 2 (
) +

k�
Ce

j � 1X

i =0

kE i +1
h k2

L 2 ( ! ) +
� 0

2Ce
kH j

h k2
L 2 (
)

+
� 0

2Ce

j � 1X

i =0

kH i +1
h � H i

h k2
L 2 (
)

�
� 0

2Ce� 1
k

j � 1X

i =0

(k� (m i
h )k2

L 2 ( ! ) + kH i +1
h � H i

h k2
L 2 (
) ) +

� 1� 0k
Ce

j � 1X

i =0

kv i
h k2

L 2 ( ! )

+
k� 2

Ce

j � 1X

i =0

kE i +1
h k2

L 2 (
) +
k

4� 2Ce

j � 1X

i =0

kJ i k2
L 2 (
) + E0

h :

Unfortunately, the termk� 2
Ce

P j � 1
i =0 kE i +1

h k2
L 2 (
) on the right-hand side cannot be absorbed

by the termk�
Ce

P j � 1
i =0 kE i +1

h k2
L 2 ( ! ) on the left-hand side since the latter consists only of

contributions on the smaller domain! . The remedy is to arti�cially enlarge the �rst term by

k� 2

Ce

j � 1X

i =0

kE i +1
h k2

L 2 (
) �
2k� 2

Ce

j � 1X

i =0

kE i +1
h � E i

h k2
L 2 (
) +

2� 2k
Ce

j � 1X

i =0

kE i
h k2

L 2 (
)

and absorb the �rst sum into the corresponding quantity on the left-hand side. With

Cv :=
� 0k
Ce

(� � � 1); CH :=
� 0

2Ce

�
1 �

k
� 1

�
; and CE :=

1
2Ce

�
"0 � 4� 2k

�
;

this yields

aj :=
� 0

2
kr m j

h k2
L 2 ( ! ) +

�
� � 1=2

�
� 0k2

j � 1X

i =0

kr v i
h k2

L 2 ( ! ) + Cv

j � 1X

i =0

kv i
h k2

L 2 ( ! )

+
"0

2Ce
kE j

h k2
L 2 (
) + CE

j � 1X

i =0

kE i +1
h � E i

h k2
L 2 (
) +

k�
Ce

j � 1X

i =0

kE i +1
h k2

L 2 ( ! )

+
� 0

2Ce
kH j

h k2
L 2 (
) + CH

j � 1X

i =0

kH i +1
h � H i

h k2
L 2 (
)

� E 0
h +

k� 0

2Ce� 1

j � 1X

i =0

k� (m i
h )k2

L 2 ( ! ) +
k

4� 2Ce

j � 1X

i =0

kJ i k2
L 2 (
)

| {z }
=: b

+
2� 2k
Ce

j � 1X

i =0

kE i
h k2

L 2 (
)

� b+
4� 2k
"0

j � 1X

i =0

ai :
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In order to show the desired result, we have to ensure that there are choices of� 1 and� 2,
such that the constantsCv ; CH , andCE are positive, i.e.,

(� � � 1) > 0;
�
1 �

k
� 1

�
> 0; and ("0 � 4� 2k) > 0;

which is equivalent tok0 < � 1 < � and� 2 < " 0=4k0. The application of the discrete Gronwall
inequality from Lemma5.3yieldsaj � M and thus proves the desired result.

We can now conclude the existence of weakly convergent subsequences.
LEMMA 5.5. There exist functions(m; H ; E) 2 H 1(! T ; S2) � L 2(
 T ) � L 2(
 T ) such

that

m hk * m in H 1(! T );

m hk ; m �
hk ; m hk * m in L 2(H 1(! )) ;

m hk ; m �
hk ; m hk ! m in L 2(! T );

H hk ; H �
hk ; H hk * H in L 2(
 T );

Ehk ; E �
hk ; Ehk * H in L 2(
 T );

where the subsequences are successively constructed, i.e., for arbitrary mesh sizesh ! 0 and
time step sizesk ! 0 there exist subindicesh` ; k` for which the above convergence properties
are satis�ed simultaneously. In addition, there exist somev 2 L 2(! � ) with

v �
hk * v in L 2(! T )

for the same subsequence as above.
Proof. From Lemma5.4, we immediately get uniform boundedness of all of those

sequences. A compactness argument thus allows us to successively extract weakly convergent
subsequences. It only remains to show that the corresponding limits coincide, i.e.,

lim  hk = lim  �
hk = lim  +

hk = lim  hk ; where hk 2 f m hk ; H hk ; Ehk g:

In particular, Lemma5.4provides the uniform bound

j � 1X

i =0

km i +1
h � m i

h k2
L 2 ( ! ) � C2:

Here, we used the fact thatkm j +1
h � m j

h k2
L 2 ( ! ) � k2kv j

h k2
L 2 ( ! ) ; see, e.g., [2] or [24,

Lemma 3.3.2]. We rewrite hk 2 f m hk ; Ehk ; H hk g as j
h + t � t j

k ( j +1
h �  j

h ) on [t j � 1; t j ]
and thus get

k hk �  �
hk k2

L 2 (
 T ) =
N � 1X

j =0

Z t j +1

t j

k j
h +

t � t j

k
( j +1

h �  j
h ) �  j

h k2
L 2 (
)

� k
N � 1X

j =0

k j +1
h �  j

h k2
L 2 (
) �! 0

and analogously

k hk �  +
hk k2

L 2 (
 T ) �! 0;
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i.e., we havelim  �
hk = lim  hk 2 L 2(
 T ) respectivelyL 2(! T ). In particular, it holds

that lim  hk = lim  hk . From the uniqueness of weak limits and the continuous inclusions
H 1(! T ) � L 2(H 1(! )) � L 2(! T ), we then even conclude the convergence properties of
m hk ; m �

hk , andm hk in L 2(H 1(! )) as well asm hk * m in H 1(! T ). From

kjmj � 1kL 2 ( ! T ) � kj m j � j m �
hk jkL 2 ( ! T ) + kjm �

hk j � 1kL 2 ( ! T )

and

kjm �
hk (t; �)j � 1kL 2 ( ! ) � h max

t j
kr m j

h kL 2 ( ! ) ;

we �nally deducejm j = 1 almost everywhere in! T .
LEMMA 5.6. The limit functionv 2 L 2(! T ) equals the time derivative ofm, i.e.,

v = @t m almost everywhere in! T .
Proof. The proof follows the lines of [2] and we therefore only sketch it. The elaborated

arguments can be found in [24, Lemma 3.3.12]. Using the inequality

k@t m hk � v �
hk kL 1 ( ! T ) .

1
2

kkv �
hk k2

L 2 ( ! T ) ;

we exploit weak semicontinuity of the norm to see

k@t m � vkL 1 ( ! T ) � lim inf k@t m hk � v �
hk kL 1 ( ! T ) = 0 as(h; k) �! (0; 0);

whencev = @t m almost everywhere in! T .
Proof of Theorem5.2. For the LLG part of(2.2), we follow the lines of [2]. Let

''' 2 C1 (! T ) and(   ; � �� ) 2 C1
c

�
[0; T); C1 (
) \ H 0(curl ; 
)

�
be arbitrary. We now de�ne

test functions by(��� h ;    h ; ��� h )( t; �) :=
�
I h (m �

hk � ''' ); I X h    ; I Yh ���
�
(t; �). Recall that the

L 2-orthogonal projectionI Yh : L 2(
) ! Y h satis�es(u � I Yh u; yh ) = 0 for all yh 2 Yh

and allu 2 L 2(
) . With the notation (5.2), equation (4.2a) of Algorithm 4.2 implies

�
Z T

0
hv �

hk ; ��� h i ! +
Z T

0
hm �

hk � v �
hk ; ��� h i ! = � Ce

Z T

0
hr (m �

hk + �k v �
hk ); r ��� h i !

+
Z T

0
hH �

hk ; ��� h i ! +
Z T

0
h� (m �

hk ); ��� h i ! :

With ��� h (t; �) := I h (m �
hk � ''' )( t; �) and the approximation properties of the nodal interpolation

operator, this yields

Z T

0
h� v �

hk + m �
hk � v �

hk ; m �
hk � ''' i !

+ k �
Z T

0
hr v �

hk ; r (m �
hk � ''' )i ! + Ce

Z T

0
hr m �

hk ; r (m �
hk � ''' )i !

�
Z T

0
hH �

hk ; m �
hk � ''' i ! �

Z T

0
h� (m �

hk ); m �
hk � ''' i ! = O(h):

Passing to the limit and using the strongL 2(! T )-convergence ofm �
hk � ''' towardsm � ''' ,
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we get

Z T

0
h� v �

hk + m �
hk � v �

hk ; m �
hk � ''' i ! �!

Z T

0
h� m t + m � m t ; m � ''' i ! ;

k �
Z T

0
hr v �

hk ; r (m �
hk � ''' )i ! �! 0; and

Z T

0
hr m �

hk ; r (m �
hk � ''' )i ! �!

Z T

0
hr m; r (m � ''' )i ! ;

cf. [2]. For the second limit, we have used the boundedness ofkkr v �
hk k2

L 2 ( ! T ) for � 2 (1=2; 1];

see Lemma5.4. The weak convergence properties ofH �
hk and� (m �

hk ) from (5.4) now yield

Z T

0
hH �

hk ; m �
hk � ''' i ! �!

Z T

0
hH ; m � ''' i ! and

Z T

0
h� (m �

hk ); m �
hk � ''' i ! �!

Z T

0
h� (m); m � ''' i ! :

So far, we thus have proved

Z T

0
h� m t + m � m t ; m � ''' i ! = � Ce

Z T

0
hr m; r (m � ''' )i !

+
Z T

0
hH ; m � ''' i ! +

Z T

0
h� (m); m � ''' i ! :

Finally, we use the identities

(m � m t ) � (m � ''' ) = m t � ''';

m t � (m � ''' ) = � (m � m t ) � '''; and

r m � r (m � ''' ) = r m � (m � r ''' )

for the left-hand side respectively the �rst term on the right-hand side to conclude(2.2). The
equalitym(0; �) = m 0 in the trace sense follows from the weak convergencem hk * m in
H 1(! T ) and thus weak convergence of the traces. Using the weak convergencem 0

h * m 0 in
L 2(! ), we �nally identify the sought limit.

For the Maxwell part(2.3)–(2.4) of De�nition 2.1, we proceed as in [7]. Given the above
de�nition of the test functions, (4.2b) implies

"0

Z T

0
h(Ehk )t ;    h i 
 �

Z T

0
hH +

hk ; r �    h i 
 + �
Z T

0
h� ! E+

hk ;    h i 
 =
Z T

0
hJ �

hk ;    h i 
 ;

� 0

Z T

0
h(H hk )t ; ��� h i 
 +

Z T

0
hr � E+

hk ; ��� h i 
 = � � 0

Z T

0
hv �

hk ; ��� h i ! :

We now consider each of those two terms separately. For the �rst term of the �rst equation, we
integrate by parts in time and get

Z T

0
h(Ehk )t ;    h i 
 = �

Z T

0
hEhk ; (   h )t i 
 + hEhk (T; �);    h (T; �)i 
| {z }

=0

�h E0
h ;    h (0; �)i 
 :
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Passing to the limit on the right-hand side, we see that
Z T

0
h(Ehk )t ;    h i 
 �! �

Z T

0
hE;    t i 
 � h E0;    (0; �)i 
 ;

where we have used the assumed convergence of the initial data. For the �rst term in the
second equation, we proceed analogously. The convergence of the terms

Z T

0
hH +

hk ; r �    h i 
 �!
Z T

0
hH ; r �    i 
 ;

Z T

0
h� ! E+

hk ;    h i 
 �!
Z T

0
h� ! E;    i 
 ;

Z T

0
hJ �

hk ;    h i 
 �!
Z T

0
hJ;    i 
 ; and

Z T

0
hv �

hk ; ��� h i ! �!
Z T

0
hm t ; ��� i !

is straightforward. Here, we have used the approximation properties(3.1)–(3.2) of the interpo-
lation operators for the last two limits. It remains to analyze the second term in the second
equation. Usingr � E+

hk (t) 2 Yh and the orthogonality properties ofI Yh , we deduce
Z T

0
hr � E+

hk ; ��� h i 
 =
Z T

0
hr � E+

hk ; ��� i 
 �
Z T

0
hr � E+

hk ; (1 � I Yh )��� i 


=
Z T

0
hr � E+

hk ; ��� i 
 =
Z T

0
hE+

hk ; r � ��� i 
 �!
Z T

0
hE; r � ��� i 
 :

For the last equality, we have used the boundary condition��� � n = 0 on @
 T and integration
by parts. This yields (2.3) and (2.4).

It remains to show the energy estimate(2.5). From the discrete energy estimate(5.8), we
get for anyt0 2 [0; T] with t0 2 [t j ; t j +1 )

kr m +
hk (t0)k2

L 2 ( ! ) + kv �
hk k2

L 2 ( ! t 0) + kH +
hk (t0)k2

L 2 (
) + kE+
hk (t0)k2

L 2 (
)

= kr m +
hk (t0)k2

L 2 ( ! ) +
Z t 0

0
kv �

hk (s)k2
L 2 ( ! ) + kH +

hk (t0)k2
L 2 (
) + kE+

hk (t0)k2
L 2 (
)

� kr m +
hk (t0)k2

L 2 ( ! ) +
Z t j +1

0
kv �

hk (s)k2
L 2 ( ! ) + kH +

hk (t0)k2
L 2 (
) + kE+

hk (t0)k2
L 2 (
)

� C2:

Integration in time thus yields for any measurable setI � [0; T]
Z

I
kr m +

hk (t0)k2
L 2 ( ! ) +

Z

I
kv �

hk k2
L 2 ( ! t 0)

+
Z

I
kH +

hk (t0)k2
L 2 (
) +

Z

I
kE+

hk (t0)k2
L 2 (
) �

Z

I
C2;

whence weak lower semi-continuity leads to
Z

I
kr mk2

L 2 ( ! ) +
Z

I
km t k2

L 2 ( ! t 0) +
Z

I
kH k2

L 2 (
)

Z

I
kEk2

L 2 (
) �
Z

I
C2:

The desired result now follows from standard measure theory; see, e.g., [21, IV, Thm. 4.4].
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5.3. Analysis of Algorithm 4.1. This short section deals with Algorithm4.1. Since the
analysis follows the lines of Section5.2, we omit the proofs and the reader is referred to the
extended preprint of this work [9] for details. As before, we have boundedness of the involved
discrete quantities, this time, however, in a slight variation.

LEMMA 5.7. The discrete quantities(m j
h ; E j

h ; H j
h ) 2 M h � X h � Y h ful�ll

kr m j
h k2

L 2 ( ! ) + k
j � 1X

i =0

kv i
h k2

L 2 ( ! ) + kH j
h k2

L 2 (
) + kE j
h k2

L 2 (
)

+
�
� � 1=2

�
k2

j � 1X

i =0

kr v i
h k2

L 2 ( ! ) � C3

for eachj = 0 ; : : : ; N and some constantC3 > 0 that depends only onj
 j, j! j, andC� .
Note, that in contrast to Lemma5.4from the analysis of Algorithm4.2, we do not have

boundedness of
P j � 1

i =0 (kH i +1
h � H i

h k2
L 2 (
) + kE i +1

h � E i
h k2

L 2 (
) ) in this case. This, however,
is not necessary to prove that the limits of the in time piecewise constant and piecewise af�ne
approximations coincide. The remedy is a clever use of the midpoint rule; details are found
in [33, Section 4.2.1]. Analogously to Lemma5.5, we thus conclude the existence of weakly
convergent subsequences that ful�ll

m hk * m in H 1(! T );

m hk ; m �
hk ; m hk * m in L 2(H 1(! )) ;

m hk ; m �
hk ; m hk ! m in L 2(! T );

H hk ; H �
hk ; H hk * H in L 2(
 T );

Ehk ; E �
hk ; Ehk * E in L 2(
 T );

v �
hk * v in L 2(! T ):

The proof of Theorem5.2for Algorithm 4.1then completely follows the lines of the one
for Algorithm 4.2.

6. Numerical examples.We study the standard� -mag benchmark problem1 number 4,
using Algorithm4.1and Algorithm4.2. Here, the effective �eld consists of the magnetic �eld
H from the Maxwell equations and some constant external �eldH ext , i.e., � (m j

h ) = H ext

for all j = 1 ; : : : ; N . This problem has been solved previously using the midpoint scheme
in [6], and we also use those results for comparison.

Despite the fact that the system (4.1) in Algorithm 4.1 is linear, for computational reasons
it is preferable to solve LLG and the Maxwell equations separately. After decoupling, the
corresponding linear systems can be solved using dedicated linear solvers. This leads to a
considerable improvement in computational performance; cf. [7]. In order to decouple the
respective equations in (4.1), we employ a simple block Gauss-Seidel algorithm. For simplicity
we set� � 0, J � 0. Assuming the solutionv j � 1

h , H j
h , E j

h is known for a �xed time levelj ,
we setG 0

h = H j
h , F0

h = E j
h , andw 0

h = v j � 1
h and iterate the following problem over`:

1see the Micromagnetic Modeling Activity Group
http://www.ctcms.nist.gov/~rdm/mumag.org.html

http://www.ctcms.nist.gov/~rdm/mumag.org.html
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FIG. 6.1.Mesh for the domain
 at x3 = 0 (left) and zoom at the mesh for the domain! at x3 = 0 (right).

Findw `
h ; F `

h ; G `
h 2 K m j

h
� X h � Y h such that for all��� h ;    h ; ��� h 2 K m j

h
� X h � Y h , we

have

� hw `
h ; ��� h i ! + hm j

h � w j
h ; ��� h i ! = � Cehr (m j

h + �k w `
h ); r ��� h i !

+ hG ` � 1
h + H ext ; ��� h i ! ;

(6.1a)

"0
2
k

hF `
h ;    h i 
 � h G `

h ; r �    h i 
 = "0
2
k

hE j
h ;    h i 
 ;(6.1b)

� 0
2
k

hG `
h ; ��� h i 
 + hr � F `

h ; ��� h i 
 = � 0
2
k

hH j
h ; ��� h i 
 � � 0hw `

h ; ��� h i ! ;(6.1c)

until kw `
h � w ` � 1

h k1 + kG `
h � G ` � 1

h k1 + kF `
h � F ` � 1

h k1 < T OL . In this setting,F `
h is

an approximation ofE j +1 =2
h andG `

h is an approximation ofH j +1 =2
h , respectively. Therefore,

we have

2
k

(F `
h � E j

h ) �
2
k

(E j +1 =2
h � E j

h ) =
E j +1

h � E j
h

k
= dt E

j +1
h :

Analogous treatment of theH j +1 =2
h -term thus motivates the above algorithm. We obtain the

solution on the time levelj + 1 asv j
h = w `

h , H j +1
h = 2G `

h � H j
h , E j +1

h = 2F `
h � E j

h . The
linear system (6.1a) is solved using a direct solver, where the constraint on the spaceKm j

h
is

realized via a Lagrange multiplier; see [25]. For the solution of the linear system (6.1b)–(6.1c)
we employ a multigrid preconditioned Uzawa algorithm from [7].

The physical parameters that were used for the computation were� 0 = 1 :25667� 10� 6,
"0 = 0 :88422� 10� 11, A = 1 :3 � 10� 11, M s = 8 � 105,  = 2 :211� 105, � = 0 :02,
H ext = ( � 0M s) � 1(� 24:6; 4:3; 0), andCe = 2A(� 0M 2

s ) � 1. Here, denotes the gyromag-
netic ratio, andM s is the so-called saturation magnetization; see, e.g., [16]. We set� = 1 in
both Algorithms4.1 and 4.2. The ferromagnetic domain! = 0 :5 � 0:125� 0:003 (� m)
is uniformly partitioned into cubes with dimensions of(3:90625� 3:90625� 3)(nm),
each cube consisting of six tetrahedra. The Maxwell equations are solved on the domain

 = (4 � 4 � 3:072) (� m). The �nite element mesh for the domain
 is constructed by
gradual re�nement towards the ferromagnetic domain! , see Figure6.1. We take a uniform
time stepk = 0 :05 which is two times larger than the time step required for the midpoint
scheme [6]. Note that the scheme admits time steps up tok = 1 , the smaller time step has
been chosen to attain the desired accuracy.

The initial conditionm 0 for the magnetization is an equilibrium “S-state”, see Figure6.2,
which is computed from a long-time simulation as in [6, 7]. The initial conditionH 0 is
obtained from the magnetostatic approximation of the Maxwell equations with andE0 = 0;
for details see [6]. In Figure6.3we plot the evolution of the average componentsm1 andm2

of the magnetization for Algorithm4.1and Algorithm4.2. For comparison, we also present
the results computed with the midpoint scheme from [6] with time stepk = 0 :02.
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FIG. 6.2. Initial conditionm 0 .
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FIG. 6.3.Evolution ofj! j � 1
R

! m1 andj! j � 1
R

! m2 , wherem j denotes thej -th component of the computed
magnetizationm : ! ! R3 . Algorithm 2 refers to Algorithm4.1and Algorithm 3 to Algorithm4.2.

FIG. 6.4.Algorithm4.1: solution atj! j � 1
R

! m1 (t ) = 0 .

FIG. 6.5.Midpoint scheme from [6, 7]: solution at j! j � 1
R

! m1 = 0 .

We also show a snapshot of the magnetization for Algorithm4.1and the midpoint scheme
at times whenj! j � 1

R
! m1(t) = 0 in Figures6.4and6.5, respectively. We conclude that the

results for both algorithms are in good agreement with those computed with the midpoint
scheme.
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